科研費 - 森吉 仁志
-
二階の接触幾何学
研究課題/研究課題番号:08454012 1996年 - 1998年
山口 佳三
担当区分:研究分担者
研究成果の概要はつぎの通りである。研究代表者は線形有限型偏微分方程式系(ホロノミック系)の同値問題とその基本解による射影埋め込みの同値問題の対応を論じ、前者に対する背足の定理の応用として超幾何方程式系E(n,k)に対応する射影埋め込みの像がE(3,6)の場合を除いて、Grassmann多様体(Plucker embeddingの像)の一部とはならないことを示した。また、さらに、E.Cartanのいわゆる5変数論文の一般化を論じた。
泉屋は準線形一階偏微分方程式の解曲面の特異点の分類を行い、また、空間次元一次元の場合のHamilton-Jacobi型方程式の粘性解のgenericな分岐の分類を行った。この場合、とくに、Hamilton関数が凸という条件を満たさない場合もあつかい、それは、初期条件から特性曲線の方法で解いた多価解の一部から選び出せるであろうと言うおおかたの予想とことなる結果を得た。清原は、可積分測地流を持つリーマン多様体のクラスとして「リウヴィル多様体」と「ケーラ・リウヴィル多様体」を定義し、その構造を詳細に調べた。又その同型類の一部を分類した。結果として多くの新しい例が含まれることを示した。又新しい「C-計量」の族を見いだした。
石川はシンプレクチック多様体へのコランク1以下のアイソトロピック写像の空間に対するトム・マザー型の横断性定理を証明した。また、写像の分岐を表すある種の加群を用いて、アイソトロピック写像のシンプレクチック安定性とラグランジュ安定性のマザー型およびアーノルド型特徴付けを与えた。
河澄は、超楕円写像類群の有限体上のコホモロジーを計算する新しい初等的な道具を開発した。また、リーマン面のモジュライ空間のコホモロジーの複素解析的ゲルファント・フクス・コホモロジーによる無限小的研究について概説し、併せて一般森田・マンフォード類の研究の95年秋までの現状を述べた。さらに、写像類群上の森田・マンフォード類の群コサイクルを顕わに求め、代数曲線のモジュライ空間の安定コホモロジーの「連続部分」を決定した。 -
解析的二次不変量とMaslov類に関連する指数定理の研究
研究課題/研究課題番号:08740041 1996年
奨励研究(A)
森吉 仁志
担当区分:研究代表者
配分額:1200000円 ( 直接経費:1200000円 )
本研究では、
1.“Spectral flow"あるいは“Eta-invariant"といった解析的二次不変量を捉えるために、K-理論や巡回コホモロジー理論を表現のための主要な手段としながら,二次特性類が関与する精密化された指数定理を構築すること;
2.この精密化された指数定理をシンプレクティック幾何学の範疇で考察し、そこで二次特性類として現われてくるMaslov類との関連を明らかにすること;
を主要な研究目標とした。また主要な実例がS^1の微分同相群の等質空間や無限次元グラスマン多様体などの不変微分型式と密接に関連していることに着目して、これらの空間のシンプレクティック型式や微分同相群から派生する二次特性類とMaslov類との関連性について研究をおこなった。
本年度における具体的な結果としては、Maslov類およびSpectral flowとユニタリー群の中心Z拡大との関連性を明確にしたことが挙げられる。この結果については1997年4月の日本数学会特別講演において発表予定である。またPacific Journal誌に掲載された論文:S^1の場合についての主要な二次特性類であるGodbillon-Vey類に対するAtiyah-Singerの指数定理の一般化(これは「巡回コホモロジー群による指数定理の一般化」という昨年度の奨励研究Aの課題と密接に関連する)も、二次特性類が関与する精密化された指数定理の構築に向けて得られた一つの結果である。 -
巡回コホモロジー群による指数定理の一般化の研究
研究課題/研究課題番号:07740051 1995年
奨励研究(A)
森吉 仁志
担当区分:研究代表者
配分額:800000円 ( 直接経費:800000円 )
本研究では、Connesによる非可換微分幾何の枠組に基いてAtiyah-Singerの指数定理を捉え直すことを目的とした。特に、葉層束に関して二次特性類が関与する巡回コサイクルを構成すること、およびこのような巡回コサイクルとK-群の元との対合を考察しAtiyah-Singerの指数定理の一般化を導くことに研究の重点をおき、さらに主要な実例に現れるこのような巡回コサイクルに関して、無限次元の等質空間の不変微分型式(例えば1次元球面の微分同相群の等質空間あるいは無限次元グラスマン多様体上のシンプレクティック型式)との関連性を考察した。またK-群や巡回コホモロジー理論とSpectral flowやEta-invariantといった解析的二次不変量と二次特性類が関与する精密化された指数定理に関する考察もおこなった。
本年度における具体的な結果としては、S^1の場合についての主要な二次特性類であるGodbillon-Vey類に対するAtiyah-Singerの指数定理の一般化(これはProceedings of“Geometric Study of Foliation"(1994)に掲載された昨年度の研究結果と前後して密接に関連する)が得られた。これは閉曲面上の葉層S^1束に対するGodbillon-Vey数が、非可換微分幾何における「曲率」と考えられることを示しており、本研究の目的に照らして満足すべきものと思われる。この結果はPacific Jurnal誌に掲載予定である。 -
無限次元グラスマン多様体の幾何と微分同相群に付随した二次特性類の研究
研究課題/研究課題番号:06740052 1994年
奨励研究(A)
森吉 仁志
担当区分:研究代表者
配分額:1200000円 ( 直接経費:1200000円 )
本研究では、多様体上に定義される上記のような幾何的な作用素全体の成す空間が自然に無限次元グラスマン多様体に埋め込まれていることに着目し、無限次元グラスマン多様体と作用素全体の成す空間の位相的な関連、そして作用素全体の空間の構造が初めに与えられた多様体の位相をどのように反映しているかについて調べることを目的とした。とくに作用素全体の成す空間には多様体の微分同相群が作用していることから、微分同相群のコホモロジー類あるいはその離散部分群から構成される葉層束の二次特性類との密接な関連が予期されるので、その関連を明確にすることに研究の重点をおいた。
本年度の研究においてはS^1の場合について主要な二次特性類であるGodbillon-Vey類およびEuler類と、S^1の微分同相群全体のなす空間から無限次元グラスマン多様体への埋め込みから引き戻しとして得られる微分同相群の等質空間上のシンプルレクティック構造との関連が明確にされた(この結果はComtemporary Math.誌に掲載予定である)。さらにこのようなS^1の場合の具体例をふまえて、高次元の葉層束のGodbillon-Vey類に対するConnesにより提唱された非可換微分幾何学の枠組に沿う結果をも得た(これはProceedings of "Genometric Study of Foliation"に掲載された)。