Updated on 2024/09/30

写真a

 
SASAKI Takema
 
Organization
Graduate School of Science Assistant Professor
Graduate School
Graduate School of Science
Undergraduate School
School of Science Department of Biological Science
Title
Assistant Professor

Degree 1

  1. 博士 (理学) ( 2015.3   総合研究大学院大学 ) 

Research Areas 1

  1. Life Science / Plant molecular biology and physiology

Research History 6

  1. Nagoya University   Graduate School of Science   Assistant Professor

    2022.5

      More details

    Country:Japan

  2. National Institute of Genetics   Assistant Professor   Assistant professor

    2020.1 - 2022.4

  3. The Graduate University for Advanced Studies   School of Life Science Department of Genetics   Assistant Professor

    2020.1 - 2022.4

  4. Tübingen university   ZMBP   Postdoctoral researcher

    2019.6 - 2020.1

  5. National institute of genetics

    2019.4 - 2020.1

  6. National institute of genetics

    2015.4 - 2019.3

▼display all

Professional Memberships 2

  1. THE JAPANESE SOCIETY OF PLANT PHYSIOLOGISTS

  2. THE BOTANICAL SOCIETY OF JAPAN

Committee Memberships 1

  1. 日本植物学会   電子出版物編集委員会  

    2021.4 - 2023.3   

 

Papers 10

  1. Microtubule-associated phase separation of MIDD1 tunes cell wall spacing in xylem vessels in Arabidopsis thaliana

    Takeshi Higa, Saku T. Kijima, Takema Sasaki, Shogo Takatani, Ryosuke Asano, Yohei Kondo, Mayumi Wakazaki, Mayuko Sato, Kiminori Toyooka, Taku Demura, Hiroo Fukuda, Yoshihisa Oda

    Nature Plants     2024.1

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media LLC  

    DOI: 10.1038/s41477-023-01593-9

    Other Link: https://www.nature.com/articles/s41477-023-01593-9

  2. Confined-microtubule assembly shapes three-dimensional cell wall structures in xylem vessels Reviewed

    Takema Sasaki, Kei Saito, Daisuke Inoue, Henrik Serk, Yuki Sugiyama, Edouard Pesquet, Yuta Shimamoto, Yoshihisa Oda

    Nature Communications   Vol. 14 ( 1 )   2023.11

     More details

    Authorship:Lead author   Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media LLC  

    Abstract

    Properly patterned deposition of cell wall polymers is prerequisite for the morphogenesis of plant cells. A cortical microtubule array guides the two-dimensional pattern of cell wall deposition. Yet, the mechanism underlying the three-dimensional patterning of cell wall deposition is poorly understood. In metaxylem vessels, cell wall arches are formed over numerous pit membranes, forming highly organized three-dimensional cell wall structures. Here, we show that the microtubule-associated proteins, MAP70-5 and MAP70-1, regulate arch development. The map70-1 map70-5 plants formed oblique arches in an abnormal orientation in pits. Microtubules fit the aperture of developing arches in wild-type cells, whereas microtubules in map70-1 map70-5 cells extended over the boundaries of pit arches. MAP70 caused the bending and bundling of microtubules. These results suggest that MAP70 confines microtubules within the pit apertures by altering the physical properties of microtubules, thereby directing the growth of pit arches in the proper orientation. This study provides clues to understanding how plants develop three-dimensional structure of cell walls.

    DOI: 10.1038/s41467-023-42487-w

    Other Link: https://www.nature.com/articles/s41467-023-42487-w

  3. A Quantitative Method for Evaluating Phragmoplast Morphology Invited Reviewed

    Takema Sasaki, Yoshihisa Oda

    Methods in Molecular Biology     page: 225 - 232   2021.10

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Springer US  

    DOI: 10.1007/978-1-0716-1744-1_13

  4. A Novel Katanin-Tethering Machinery Accelerates Cytokinesis Reviewed

    Takema Sasaki, Motosuke Tsutsumi, Kohei Otomo, Takashi Murata, Noriyoshi Yagi, Masayoshi Nakamura, Tomomi Nemoto, Mitsuyasu Hasebe, Yoshihisa Oda

    Current Biology   Vol. 29 ( 23 ) page: 4060 - 4070.e3   2019.12

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Elsevier BV  

    DOI: 10.1016/j.cub.2019.09.049

  5. Imaging of Developing Metaxylem Vessel Elements in Cultured Hypocotyls Invited Reviewed

    Takema Sasaki, Yoshihisa Oda

    Methods Mol Biol   Vol. 1992   page: 351 - 358   2019.5

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  6. A Rho-based reaction-diffusion system governs cell wall patterning in metaxylem vessels. Reviewed International journal

    Yoshinobu Nagashima, Satoru Tsugawa, Atsushi Mochizuki, Takema Sasaki, Hiroo Fukuda, Yoshihisa Oda

    Scientific reports   Vol. 8 ( 1 ) page: 11542 - 11542   2018.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Rho GTPases play crucial roles in cell polarity and pattern formation. ROPs, Rho of plant GTPases, are widely involved in cell wall patterning in plants, yet the molecular mechanism underlying their action remains unknown. Arabidopsis ROP11 is locally activated to form plasma membrane domains, which direct formation of cell wall pits in metaxylem vessel cells through interaction with cortical microtubules. Here, we show that the pattern formation of cell wall pits is governed by ROP activation via a reaction-diffusion mechanism. Genetic analysis and reconstructive assays revealed that ROPGEF4/7 and ROPGAP3/4, which encode ROP activators and inactivators, respectively, regulated the formation of ROP-activated domains; these in turn determined the pattern of cell wall pits. Mathematical modelling showed that ROP-activation cycle generated ROP domains by reaction-diffusion mechanism. The model predicted that a positive feedback and slow diffusion of ROP11-ROPGEF4 complex were required to generate ROP-activated domains. ROPGEF4 formed a dimer that interacted with activated ROP11 in vivo, which could provide positive feedback for ROP activation. ROPGEF4 was highly stable on the plasma membrane and inhibited ROP11 diffusion. Our study indicated that ROP-based reaction-diffusion system self-organizes ROP-activated domains, thereby determines the pit pattern of metaxylem vessels.

    DOI: 10.1038/s41598-018-29543-y

    PubMed

  7. Cortical microtubule dynamics during xylem vessel cell differentiation Reviewed

    Takema Sasaki, Yoshihisa Oda

    BSJ-review   Vol. 9 ( 148 )   2018

     More details

    Language:Japanese  

  8. CORTICAL MICROTUBULE DISORDERING1 is required for secondary cell wall patterning in xylem vessels Reviewed

    Takema Sasaki, Hiroo Fukuda, Yoshihisa Oda

    Plant Cell   Vol. 29 ( 12 ) page: 3123 - 3139   2017.12

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:American Society of Plant Biologists  

    Proper patterning of the cell wall is essential for plant cell development. Cortical microtubule arrays direct the deposition patterns of cell walls at the plasma membrane. However, the precise mechanism underlying cortical microtubule organization is not well understood. Here, we show that a microtubule-associated protein, CORD1 (CORTICAL MICROTUBULE DISORDERING1), is required for the pitted secondary cell wall pattern of metaxylem vessels in Arabidopsis thaliana. Loss of CORD1 and its paralog, CORD2, led to the formation of irregular secondary cell walls with small pits in metaxylem vessels, while overexpressing CORD1 led to the formation of abnormally enlarged secondary cell wall pits. Ectopic expression of CORD1 disturbed the parallel cortical microtubule array by promoting the detachment of microtubules from the plasma membrane. A reconstructive approach revealed that CORD1-induced disorganization of cortical microtubules impairs the boundaries of plasma membrane domains of active ROP11 GTPase, which govern pit formation. Our data suggest that CORD1 promotes cortical microtubule disorganization to regulate secondary cell wall pit formation. The Arabidopsis genome has six CORD1 paralogs that are expressed in various tissues during plant development, suggesting they are important for regulating cortical microtubules during plant development.

    DOI: 10.1105/tpc.17.00663

    Scopus

    PubMed

  9. Shoot-derived cytokinins systemically regulate root nodulation Reviewed

    Takema Sasaki, Takuya Suzaki, Takashi Soyano, Mikiko Kojima, Hitoshi Sakakibara, Masayoshi Kawaguchi

    NATURE COMMUNICATIONS   Vol. 5 ( 4983 )   2014.9

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:NATURE PUBLISHING GROUP  

    Legumes establish symbiotic associations with nitrogen-fixing bacteria (rhizobia) in root nodules to obtain nitrogen. Legumes control nodule number through long-distance communication between roots and shoots, maintaining the proper symbiotic balance. Rhizobial infection triggers the production of mobile CLE-RS1/2 peptides in Lotus japonicus roots; the perception of the signal by receptor kinase HAR1 in shoots presumably induces the production of an unidentified shoot-derived inhibitor (SDI) that translocates to roots and blocks further nodule development. Here we show that, CLE-RS1/2-HAR1 signalling activates the production of shoot-derived cytokinins, which have an SDI-like capacity to systemically suppress nodulation. In addition, we show that LjIPT3 is involved in nodulation-related cytokinin production in shoots. The expression of LjIPT3 is activated in an HAR1-dependent manner. We further demonstrate shoot-to-root long-distance transport of cytokinin in L. japonicus seedlings. These findings add essential components to our understanding of how legumes control nodulation to balance nutritional requirements and energy status.

    DOI: 10.1038/ncomms5983

    Web of Science

    PubMed

  10. Stable transformation in Lotus japonicus Reviewed

    Takema Sasaki, Takuya Suzaki, Masayoshi Kawaguchi

      Vol. 3 ( e796 )   2013.6

     More details

    Authorship:Lead author   Language:English  

    DOI: 10.21769/BioProtoc.796

▼display all

KAKENHI (Grants-in-Aid for Scientific Research) 8

  1. 植物細胞の紡錘体形成に働く新規機構の分子的解析

    Grant number:23K05801  2023.4 - 2026.3

    日本学術振興会  科学研究費助成事業 基盤研究(C)  基盤研究(C)

    佐々木 武馬

      More details

    Authorship:Principal investigator 

    Grant amount:\4680000 ( Direct Cost: \3600000 、 Indirect Cost:\1080000 )

  2. 水生ストレプト植物実験系の構築

    2021.4 - 2024.3

    情報・システム研究機構  戦略的研究プロジェクト 

    佐々木武馬

      More details

    Authorship:Principal investigator 

  3. 植物細胞分裂様式の分子的理解

    Grant number:21K15128  2021.4 - 2023.3

    日本学術振興会  科学研究費助成事業 若手研究  若手研究

    佐々木 武馬

      More details

    細胞分裂は生物の体を形づくるための根源的な生命現象です。なかでも陸上植物は細胞板により細胞質を区切ることで分裂する独自の分裂様式を進化させてきました。この分裂様式では細胞板の建設される位置と角度は厳密に制御されています。この制御の結果、陸上植物は複雑で規律だった細胞の並びを作り出すことができます。このように陸上植物は細胞板を用いた細胞分裂様式を進化させることで、多種多様な形態を獲得してきました。陸上植物細胞の分裂過程では細胞板を構築するために独自の微小管構造が用いられており、細胞板形成の中心的な役割を果たします。これら微小管構造の解析が、陸上植物の分裂様式の理解に欠かせません。しかしながらその理解は、これら微小管構造の制御因子の分子的な解析が不足しているために未だに不十分です。本研究ではこれら微小管構造を制御する因子の探索およびその解析をシロイヌナズナおよびゼニゴケを用い実施することで、陸上植物の細胞分裂様式を分子的に理解することを目的としています。これまでの研究では陸上植物に特異的な微小管付随タンパク質を新たに同定し、シロイヌナズナおよびゼニゴケの細胞分裂時微小管構造の動態を制御することを明らかにしました。今後はこれら微小管付随タンパク質の機能とそれにより駆動される陸上植物に独自な細胞分裂時細胞分裂構造について解析を進めることで、陸上植物の分裂様式の分子的な理解を進めていきます。

  4. 多種植物細胞を用いた植物特異的な細胞分裂様式の解析にむけて

    2020.6 - 2022.3

    国立大学法人筑波大学つくば機能植物イノベーション研究センター  形質転換植物デザイン研究拠点 共同利用・共同研究 

    佐々木武馬, 野中聡子

      More details

    Authorship:Principal investigator 

  5. 植物特異的な細胞分裂様式の分子的解明

    2019.6 - 2020.3

    公益財団法人 山田科学振興財団  長期間派遣援助 

    佐々木武馬

      More details

    Authorship:Principal investigator  Grant type:Competitive

  6. 植物特異的な細胞分裂様式を担う微小管構造形成機構に関する研究

    2019.4 - 2020.1

    日本学術振興会  特別研究員奨励費 

    佐々木武馬

      More details

    Authorship:Principal investigator  Grant type:Competitive

  7. 微小管の脱配向化によりもたらされる新規細胞変形機構に関する研究

    2018.4 - 2021.3

    科研費  若手研究 

    佐々木武馬

      More details

    Authorship:Principal investigator  Grant type:Competitive

  8. 根粒菌感染時のマメ科植物の根毛変形に焦点を当てた、環境変化と植物細胞の形の変化に関する研究

    2015.4 - 2016.3

    公益財団法人 日本科学協会  平成27年度笹川科学研究助成 

    佐々木武馬

      More details

    Authorship:Principal investigator  Grant type:Competitive

▼display all