Updated on 2024/03/29

写真a

 
ODA Yoshihisa
 
Organization
Graduate School of Science Professor
Graduate School
Graduate School of Science
Undergraduate School
School of Science Department of Biological Science
Title
Professor

Degree 2

  1. 博士(生命科学) ( 2007.3   東京大学 ) 

  2. 修士(生命科学) ( 2004.3   東京大学 ) 

Research Interests 6

  1. 道管

  2. 細胞分裂

  3. Cytoskeleton

  4. Cell wall

  5. Plant cell

  6. G protein

Research Areas 3

  1. Life Science / Plant molecular biology and physiology

  2. Life Science / Cell biology

  3. Life Science / Developmental biology

Research History 7

  1. Nagoya University   Professor

    2022.4

  2. 国立遺伝学研究所   遺伝形質研究系   教授

    2019.4 - 2022.3

  3. 国立遺伝学研究所   新分野創造センター   准教授

    2014.4 - 2019.3

  4. 科学技術振興機構   さきがけ研究者(兼任)

    2011.12 - 2015.3

  5. The University of Tokyo   Graduate School of Science   Assistant Professor

    2011.4 - 2014.3

  6. The University of Tokyo   Graduate School of Science

    2010.4 - 2011.3

  7. The University of Tokyo   Graduate School of Science

    2007.4 - 2010.3

▼display all

Education 2

  1. The University of Tokyo   Graduate School of Frontier Sciences

    2004.4 - 2007.3

  2. The University of Tokyo   Graduate School of Frontier Sciences

    2002.4 - 2004.3

Professional Memberships 4

  1. 公益財団法人日本植物学会

  2. 日本植物生理学会

  3. The Molecular Biology Society of Japan

  4. 日本細胞生物学会

Committee Memberships 9

  1. 日本植物生理学会   代議員  

    2024.1 - 2025.12   

      More details

    Committee type:Academic society

  2. Cell Structure and Function   Associate Editor  

    2023.1 - 2024.3   

      More details

    Committee type:Academic society

  3. 公益社団法人日本植物学会   第六期代議員  

    2022.6 - 2024.5   

      More details

    Committee type:Academic society

  4. 日本植物生理学会   代議員  

    2022.1 - 2023.12   

      More details

    Committee type:Academic society

  5. Department of Biological Sciences, Graduate School of Science, University of Tokyo,   Interlocking faculty  

    2021.4 - 2022.3   

  6. 日本植物生理学会   代議員  

    2020.1 - 2021.12   

      More details

    Committee type:Academic society

  7. Scientific Reports   Editorial Board Member  

    2019.6   

  8. RIES, Hokkaido University   Visiting professor  

    2018.4 - 2022.3   

  9. 日本植物生理学会   広報委員  

    2018.3 - 2022.3   

      More details

    Committee type:Academic society

▼display all

Awards 4

  1. 平成28年度文部科学大臣表彰 若手科学者賞

    2016.4   文部科学省  

  2. 奨励賞

    2015.9   (公社) 日本植物学会   二次細胞壁パターンを創り出す空間シグナルの研究

    小田祥久

  3. 奨励賞

    2013.3   日本植物生理学会   植物細胞表層における空間統御機構の研究

    小田祥久

  4. 若手奨励賞

    2011.9   日本植物学会   シロイヌナズナ培養細胞の新規道管分化誘導系を基盤とした微小管による細胞内空間制御機構の解析

    小田祥久

 

Papers 45

  1. Microtubule-associated phase separation of MIDD1 tunes cell wall spacing in xylem vessels in Arabidopsis thaliana Reviewed

    Higa T, Kijima ST, Sasaki T, Takatani S, Asano R, Kondo Y, Wakazaki M, Sato M, Toyooka K, Demura T, Fukuda H, Oda Y.

    Nature Plants     2024.1

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/s41477-023-01593-9

  2. Confined-microtubule assembly shapes three-dimensional cell wall structures in xylem vessels Reviewed International coauthorship

    Sasaki T, Saito K, Inoue D, Serk H, Sugiyama Y, Pesquet E, Shimamoto Y, Oda Y.

    Nature communications     2023.11

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/s41467-023-42487-w

  3. Ab-GALFA, A bioassay for insect gall formation using the model plant Arabidopsis thaliana Reviewed

    Tomoko Hirano, Ayaka Okamoto, Yoshihisa Oda, Tomoaki Sakamoto, Seiji Takeda, Takakazu Matsuura, Yoko Ikeda, Takumi Higaki, Seisuke Kimura, Masa H. Sato

    Scientific Reports     2023.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: https://doi.org/10.1038/s41598-023-29302-8

  4. Microtubule-associated ROP interactors affect microtubule dynamics and modulate cell wall patterning and root hair growth Reviewed International coauthorship

    Gil Feiguelman, Xiankui Cui, Hasana Sternberg, Eliran Ben Hur, Takeshi Higa, Yoshihisa Oda, Ying Fu, Shaul Yalovsky

    Development   Vol. 149 ( 22 )   2022.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:The Company of Biologists  

    ROPs and Interactor of Constitutively active ROP (ICR) family member ICR5/MIDD1 have been implicated to function as signaling modules which regulate metaxylem secondary cell wall patterning. Yet, loss of function mutants of ICR5 and its closest homologs have not been studied, and hence the function of these ICR family members are not fully established. Here, we studied the functions of ICR2 and its homolog ICR5/MIDD1. We show that ICR2 is a microtubule-associated protein that affects microtubule dynamics. Secondary cell wall pits in the metaxylem of icr2 and icr5 Arabidopsis single mutants and icr2 icr5 double mutants are smaller than those in wild-type Col-0 seedlings, however, they are remarkably denser, implying a complex function of ICRs in secondary cell wall patterning. ICR5 has a unique function in protoxylem secondary cell wall patterning, while icr2 but not icr5 mutants develop split root hairs demonstrating functional diversification. Taken together, our results show that ICR2 and ICR5 have unique and cooperative functions as microtubule-associated proteins and as ROP effectors.

    DOI: 10.1242/dev.200811

    Web of Science

  5. Secondary cell wall patterning—connecting the dots, pits and helices Reviewed International coauthorship

    Huizhen Xu, Alessandro Giannetti, Yuki Sugiyama, Wenna Zheng, René Schneider, Yoichiro Watanabe, Yoshihisa Oda, Staffan Persson

    Open Biology   Vol. 12 ( 5 ) page: 210208   2022.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:The Royal Society  

    All plant cells are encased in primary cell walls that determine plant morphology, but also protect the cells against the environment. Certain cells also produce a secondary wall that supports mechanically demanding processes, such as maintaining plant body stature and water transport inside plants. Both these walls are primarily composed of polysaccharides that are arranged in certain patterns to support cell functions. A key requisite for patterned cell walls is the arrangement of cortical microtubules that may direct the delivery of wall polymers and/or cell wall producing enzymes to certain plasma membrane locations. Microtubules also steer the synthesis of cellulose—the load-bearing structure in cell walls—at the plasma membrane. The organization and behaviour of the microtubule array are thus of fundamental importance to cell wall patterns. These aspects are controlled by the coordinated effort of small GTPases that probably coordinate a Turing's reaction–diffusion mechanism to drive microtubule patterns. Here, we give an overview on how wall patterns form in the water-transporting xylem vessels of plants. We discuss systems that have been used to dissect mechanisms that underpin the xylem wall patterns, emphasizing the VND6 and VND7 inducible systems, and outline challenges that lay ahead in this field.

    DOI: 10.1098/rsob.210208

    PubMed

    Other Link: https://royalsocietypublishing.org/doi/full-xml/10.1098/rsob.210208

  6. Cell-by-cell dissection of phloem development links a maturation gradient to cell specialization Invited Reviewed International coauthorship International journal

    Pawel Roszak, Jung-ok Heo, Bernhard Blob, Koichi Toyokura, Yuki Sugiyama, Maria Angels de Luis Balaguer, Winnie W. Y. Lau, Fiona Hamey, Jacopo Cirrone, Ewelina Madej, Alida M. Bouatta, Xin Wang, Marjorie Guichard, Robertas Ursache, Hugo Tavares, Kevin Verstaen, Jos Wendrich, Charles W. Melnyk, Yoshihisa Oda, Dennis Shasha, Sebastian E. Ahnert, Yvan Saeys, Bert De Rybel, Renze Heidstra, Ben Scheres, Guido Grossmann, Ari Pekka Mähönen, Philipp Denninger, Berthold Göttgens, Rosangela Sozzani, Kenneth D. Birnbaum, Yrjö Helariutta

    Science   Vol. 374 ( 6575 ) page: eaba5531 - +   2021.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:American Association for the Advancement of Science (AAAS)  

    [Figure: see text].

    DOI: 10.1126/science.aba5531

    Web of Science

    PubMed

  7. A Quantitative Method for Evaluating Phragmoplast Morphology

    Sasaki T, Oda Y

    Methods Mol Biol   Vol. 2382   page: 225 - 232   2021.10

     More details

    Authorship:Last author   Language:English   Publishing type:Part of collection (book)   Publisher:Springer US  

    DOI: 10.1007/978-1-0716-1744-1_13

    PubMed

  8. Excess Pyrophosphate Restrains Pavement Cell Morphogenesis and Alters Organ Flatness in Arabidopsis thaliana Reviewed

    Shizuka Gunji, Yoshihisa Oda, Hisako Takigawa-Imamura, Hirokazu Tsukaya, Ali Ferjani

    FRONTIERS IN PLANT SCIENCE   Vol. 11   page: 31   2020.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:FRONTIERS MEDIA SA  

    In Arabidopsis thaliana, the vacuolar proton-pumping pyrophosphatase (H+-PPase) is highly expressed in young tissues, which consume large amounts of energy in the form of nucleoside triphosphates and produce pyrophosphate (PPi) as a byproduct. We reported that excess PPi in the H+-PPase loss-of-function fugu5 mutant severely compromised gluconeogenesis from seed storage lipids, arrested cell division in cotyledonary palisade tissue, and triggered compensated cell enlargement; this phenotype was recovered upon sucrose supply. Thus, we provided evidence that the hydrolysis of inhibitory PPi, rather than vacuolar acidification, is the major contribution of H+-PPase during seedling establishment. Here, examination of the epidermis revealed that fugu5 pavement cells exhibited defective puzzle-cell formation. Importantly, removal of PPi from fugu5 background by the yeast cytosolic PPase IPP1, in fugu5-1 AVP1(pro)::IPP1 transgenic lines, restored the phenotypic aberrations of fugu5 pavement cells. Surprisingly, pavement cells in mutants with defects in gluconeogenesis (pck1-2) or the glyoxylate cycle (icl-2; mls-2) showed no phenotypic alteration, indicating that reduced sucrose production from seed storage lipids is not the cause of fugu5 epidermal phenotype. fugu5 had oblong cotyledons similar to those of angustifolia-1 (an-1), whose leaf pavement cells display an abnormal arrangement of cortical microtubules (MTs). To gain insight into the genetic interaction between ANGUSTIFOLIA and H+-PPase in pavement cell differentiation, an-1 fugu5-1 was analyzed. Surprisingly, epidermis developmental defects were synergistically enhanced in the double mutant. In fact, an-1 fugu5-1 pavement cells showed a striking three-dimensional growth phenotype on both abaxial and adaxial sides of cotyledons, which was recovered by hydrolysis of PPi in an-1 fugu5-1 AVP1(pro)::IPP1. Live imaging revealed that cortical MTs exhibited a reduced velocity, were slightly fragmented and sparse in the above lines compared to the WT. Consistently, addition of PPi in vitro led to a dose-dependent delay of tubulin polymerization, thus supporting a link between PPi and MT dynamics. Moreover, mathematical simulation of three-dimensional growth based on cotyledon proximo-distal and medio-lateral phenotypic quantification implicated restricted cotyledon expansion along the medio-lateral axis in the crinkled surface of an-1 fugu5-1. Together, our data suggest that PPi homeostasis is a prerequisite for proper pavement cell morphogenesis, epidermal growth and development, and organ flattening.

    DOI: 10.3389/fpls.2020.00031

    Web of Science

  9. A Novel Katanin-Tethering Machinery Accelerates Cytokinesis Reviewed

    Takema Sasaki, Motosuke Tsutsumi, Kohei Otomo, Takashi Murata, Noriyoshi Yagi, Masayoshi Nakamura, Tomomi Nemoto, Mitsuyasu Hasebe, Yoshihisa Oda

    Current Biology   Vol. 29 ( 23 ) page: 4060 - 4070.e3   2019.12

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Elsevier BV  

    DOI: 10.1016/j.cub.2019.09.049

    Web of Science

    PubMed

  10. Imaging of Developing Metaxylem Vessel Elements in Cultured Hypocotyls Invited

    Takema Sasaki, Yoshihisa Oda

      Vol. 1992   page: 351 - 358   2019.6

     More details

    Authorship:Corresponding author   Language:English  

    DOI: 10.1007/978-1-4939-9469-4_23

  11. A Rho-actin signaling pathway shapes cell wall boundaries in Arabidopsis xylem vessels. Reviewed International journal

    Yuki Sugiyama, Yoshinobu Nagashima, Mayumi Wakazaki, Mayuko Sato, Kiminori Toyooka, Hiroo Fukuda, Yoshihisa Oda

    Nature communications   Vol. 10 ( 1 ) page: 468 - 468   2019.1

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    Patterned cell wall deposition is crucial for cell shapes and functions. In Arabidopsis xylem vessels, ROP11 GTPase locally inhibits cell wall deposition through microtubule disassembly, inducing pits in cell walls. Here, we show that an additional ROP signaling pathway promotes cell wall growth at pit boundaries. Two proteins, Boundary of ROP domain1 (BDR1) and Wallin (WAL), localize to pit boundaries and regulate cell wall growth. WAL interacts with F-actin and promotes actin assembly at pit boundaries while BDR1 is a ROP effector. BDR1 interacts with WAL, suggesting that WAL could be recruited to the plasma membrane by a ROP-dependent mechanism. These results demonstrate that BDR1 and WAL mediate a ROP-actin pathway that shapes pit boundaries. The study reveals a distinct machinery in which two closely associated ROP pathways oppositely regulate cell wall deposition patterns for the establishment of tiny but highly specialized cell wall domains.

    DOI: 10.1038/s41467-019-08396-7

    PubMed

  12. Cortical microtubule dynamics during xylem vessel cell differentiation Invited Reviewed

    Takema Sasaki, Yoshihisa Oda

    BSJ-review   Vol. 9C   page: 148 - 154   2018.11

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

    DOI: 10.24480/bsj-review.9c5.00144

  13. Transcriptional switch for programmed cell death in pith parenchyma of sorghum stems. Reviewed International journal

    Masaru Fujimoto, Takashi Sazuka, Yoshihisa Oda, Hiroyuki Kawahigashi, Jianzhong Wu, Hideki Takanashi, Takayuki Ohnishi, Jun-Ichi Yoneda, Motoyuki Ishimori, Hiromi Kajiya-Kanegae, Ken-Ichiro Hibara, Fumiko Ishizuna, Kazuo Ebine, Takashi Ueda, Tsuyoshi Tokunaga, Hiroyoshi Iwata, Takashi Matsumoto, Shigemitsu Kasuga, Jun-Ichi Yonemaru, Nobuhiro Tsutsumi

    Proceedings of the National Academy of Sciences of the United States of America   Vol. 115 ( 37 ) page: E8783-E8792 - E8792   2018.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Pith parenchyma cells store water in various plant organs. These cells are especially important for producing sugar and ethanol from the sugar juice of grass stems. In many plants, the death of pith parenchyma cells reduces their stem water content. Previous studies proposed that a hypothetical D gene might be responsible for the death of stem pith parenchyma cells in Sorghum bicolor, a promising energy grass, although its identity and molecular function are unknown. Here, we identify the D gene and note that it is located on chromosome 6 in agreement with previous predictions. Sorghum varieties with a functional D allele had stems enriched with dry, dead pith parenchyma cells, whereas those with each of six independent nonfunctional D alleles had stems enriched with juicy, living pith parenchyma cells. D expression was spatiotemporally coupled with the appearance of dead, air-filled pith parenchyma cells in sorghum stems. Among D homologs that are present in flowering plants, Arabidopsis ANAC074 also is required for the death of stem pith parenchyma cells. D and ANAC074 encode previously uncharacterized NAC transcription factors and are sufficient to ectopically induce programmed death of Arabidopsis culture cells via the activation of autolytic enzymes. Taken together, these results indicate that D and its Arabidopsis ortholog, ANAC074, are master transcriptional switches that induce programmed death of stem pith parenchyma cells. Thus, targeting the D gene will provide an approach to breeding crops for sugar and ethanol production.

    DOI: 10.1073/pnas.1807501115

    Web of Science

    PubMed

  14. A Rho-based reaction-diffusion system governs cell wall patterning in metaxylem vessels. Reviewed International journal

    Yoshinobu Nagashima, Satoru Tsugawa, Atsushi Mochizuki, Takema Sasaki, Hiroo Fukuda, Yoshihisa Oda

    Scientific reports   Vol. 8 ( 1 ) page: 11542 - 11542   2018.8

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    Rho GTPases play crucial roles in cell polarity and pattern formation. ROPs, Rho of plant GTPases, are widely involved in cell wall patterning in plants, yet the molecular mechanism underlying their action remains unknown. Arabidopsis ROP11 is locally activated to form plasma membrane domains, which direct formation of cell wall pits in metaxylem vessel cells through interaction with cortical microtubules. Here, we show that the pattern formation of cell wall pits is governed by ROP activation via a reaction-diffusion mechanism. Genetic analysis and reconstructive assays revealed that ROPGEF4/7 and ROPGAP3/4, which encode ROP activators and inactivators, respectively, regulated the formation of ROP-activated domains; these in turn determined the pattern of cell wall pits. Mathematical modelling showed that ROP-activation cycle generated ROP domains by reaction-diffusion mechanism. The model predicted that a positive feedback and slow diffusion of ROP11-ROPGEF4 complex were required to generate ROP-activated domains. ROPGEF4 formed a dimer that interacted with activated ROP11 in vivo, which could provide positive feedback for ROP activation. ROPGEF4 was highly stable on the plasma membrane and inhibited ROP11 diffusion. Our study indicated that ROP-based reaction-diffusion system self-organizes ROP-activated domains, thereby determines the pit pattern of metaxylem vessels.

    DOI: 10.1038/s41598-018-29543-y

    PubMed

  15. Reconstruction of ROP GTPase Domains on the Plasma Membrane in Tobacco Leaves

    Oda Y, Nagashima Y, Fukuda H

    Methods Mol Biol   Vol. 1821   page: 393 - 399   2018.7

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Thesis (other)  

    DOI: 10.1007/978-1-4939-8612-5_26

  16. Emerging roles of cortical microtubule–membrane interactions Invited Reviewed

    Yoshihisa Oda

    Journal of Plant Research   Vol. 131 ( 1 ) page: 5 - 14   2018.1

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Springer Tokyo  

    Plant cortical microtubules have crucial roles in cell wall development. Cortical microtubules are tightly anchored to the plasma membrane in a highly ordered array, which directs the deposition of cellulose microfibrils by guiding the movement of the cellulose synthase complex. Cortical microtubules also interact with several endomembrane systems to regulate cell wall development and other cellular events. Recent studies have identified new factors that mediate interactions between cortical microtubules and endomembrane systems including the plasma membrane, endosome, exocytic vesicles, and endoplasmic reticulum. These studies revealed that cortical microtubule-membrane interactions are highly dynamic, with specialized roles in developmental and environmental signaling pathways. A recent reconstructive study identified a novel function of the cortical microtubule-plasma membrane interaction, which acts as a lateral fence that defines plasma membrane domains. This review summarizes recent advances in our understanding of the mechanisms and functions of cortical microtubule-membrane interactions.

    DOI: 10.1007/s10265-017-0995-4

    Scopus

  17. CORTICAL MICROTUBULE DISORDERING1 is required for secondary cell wall patterning in xylem vessels Reviewed

    Takema Sasaki, Hiroo Fukuda, Yoshihisa Oda

    Plant Cell   Vol. 29 ( 12 ) page: 3123 - 3139   2017.12

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:American Society of Plant Biologists  

    Proper patterning of the cell wall is essential for plant cell development. Cortical microtubule arrays direct the deposition patterns of cell walls at the plasma membrane. However, the precise mechanism underlying cortical microtubule organization is not well understood. Here, we show that a microtubule-associated protein, CORD1 (CORTICAL MICROTUBULE DISORDERING1), is required for the pitted secondary cell wall pattern of metaxylem vessels in Arabidopsis thaliana. Loss of CORD1 and its paralog, CORD2, led to the formation of irregular secondary cell walls with small pits in metaxylem vessels, while overexpressing CORD1 led to the formation of abnormally enlarged secondary cell wall pits. Ectopic expression of CORD1 disturbed the parallel cortical microtubule array by promoting the detachment of microtubules from the plasma membrane. A reconstructive approach revealed that CORD1-induced disorganization of cortical microtubules impairs the boundaries of plasma membrane domains of active ROP11 GTPase, which govern pit formation. Our data suggest that CORD1 promotes cortical microtubule disorganization to regulate secondary cell wall pit formation. The Arabidopsis genome has six CORD1 paralogs that are expressed in various tissues during plant development, suggesting they are important for regulating cortical microtubules during plant development.

    DOI: 10.1105/tpc.17.00663

    Scopus

  18. A Novel Plasma Membrane-Anchored Protein Regulates Xylem Cell-Wall Deposition through Microtubule-Dependent Lateral Inhibition of Rho GTPase Domains Reviewed

    Yuki Sugiyama, Mayumi Wakazaki, Kiminori Toyooka, Hiroo Fukuda, Yoshihisa Oda

    CURRENT BIOLOGY   Vol. 27 ( 16 ) page: 2522 - +   2017.8

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:CELL PRESS  

    Spatial control of cell-wall deposition is essential for determining plant cell shape [1]. Rho-type GTPases, together with the cortical cytoskeleton, play central roles in regulating cell-wall patterning [2]. In meta-xylem vessel cells, which are the major components of xylem tissues, active ROP11 Rho GTPases form oval plasma membrane domains that locally disrupt cortical microtubules, thereby directing the formation of oval pits in secondary cell walls [3-5]. However, the regulatory mechanism that determines the planar shape of active Rho of Plants (ROP) domains is still unknown. Here we show that IQD13 associates with cortical microtubules and the plasma membrane to laterally restrict the localization of ROP GTPase domains, thereby directing the formation of oval secondary cell-wall pits. Loss and overexpression of IQD13 led to the formation of abnormally round and narrow secondary cell-wall pits, respectively. Ectopically expressed IQD13 increased the presence of parallel cortical microtubules by promoting microtubule rescue. A reconstructive approach revealed that IQD13 confines the area of active ROP domains within the lattice of the cortical microtubules, causing narrow ROP domains to form. This activity required the interaction of IQD13 with the plasma membrane. These findings suggest that IQD13 positively regulates microtubule dynamics as well as their linkage to the plasma membrane, which synergistically confines the area of active ROP domains, leading to the formation of oval secondary cell-wall pits. This finding sheds light on the role of microtubule-plasma membrane linkage as a lateral fence that determines the planar shape of Rho GTPase domains.

    DOI: 10.1016/j.cub.2017.06.059

    Web of Science

  19. Microtubule-dependent targeting of the exocyst complex is necessary for xylem development in Arabidopsis Reviewed

    Nemanja Vukasinovic, Yoshihisa Oda, Premysl Pejchar, Lukas Synek, Tamara Pecenkova, Anamika Rawat, Juraj Sekeres, Martin Potocky, Viktor Zarsky

    NEW PHYTOLOGIST   Vol. 213 ( 3 ) page: 1052 - 1067   2017.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:WILEY  

    Cortical microtubules (MTs) play a major role in the patterning of secondary cell wall (SCW) thickenings in tracheary elements (TEs) by determining the sites of SCW deposition. The EXO70A1 subunit of the exocyst secretory vesicle tethering complex was implicated to be important for TE development via the MT interaction. We investigated the subcellular localization of several exocyst subunits in the xylem of Arabidopsis thaliana and analyzed the functional significance of exocyst-mediated trafficking in TE development. Live cell imaging of fluorescently tagged exocyst subunits in TE using confocal microscopy and protein-protein interaction assays were performed to describe the role of the exocyst and its partners in TE development. In TEs, exocyst subunits were localized to the sites of SCW deposition in an MT-dependent manner. We propose that the mechanism of exocyst targeting to MTs involves the direct interaction of exocyst subunits with the COG2 protein. We demonstrated the importance of a functional exocyst subunit EXO84b for normal TE development and showed that the deposition of SCW constituents is partially compromised, possibly as a result of the mislocalization of secondary cellulose synthase in exocyst mutants. We conclude that the exocyst complex is an important factor bridging the pattern defined by cortical MTs with localized secretion of the SCW in developing TEs.

    DOI: 10.1111/nph.14267

    Web of Science

  20. VND6-induced xylem cell differentiation in arabidopsis cell cultures Invited

    Yoshihisa Oda

    Methods in Molecular Biology   Vol. 1544   page: 67 - 73   2017

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Part of collection (book)   Publisher:Humana Press Inc.  

    In vitro xylem differentiation is a powerful technique that can be used to elucidate the process of xylem development that occurs deep inside plant tissues in nature. The experimental procedure described here is designed to induce metaxylem vessel differentiation at exceptionally high frequency and synchronicity using genetically engineered Arabidopsis cell suspensions. By triggering a transcriptional switch, over 80% of the cells synchronously differentiate into xylem cells within 32 h of treatment with estradiol. Exogenous marker genes can be transiently introduced into the cells by coculturing them with transformed Agrobacterium before inducing xylem differentiation. This system is fast, easy to handle, and highly compatible with molecular and cell biology techniques used to explore xylem cell differentiation.

    DOI: 10.1007/978-1-4939-6722-3_6

    Scopus

    PubMed

  21. Experimental systems for xylem differentiation using Arabidopsis cells Invited Reviewed

    Yoshihisa Oda

    BSJ-review   Vol. 7   page: 182   2016

     More details

    Language:Japanese  

  22. Cortical microtubule rearrangements and cell wall patterning Invited Reviewed

    Yoshihisa Oda

    FRONTIERS IN PLANT SCIENCE   Vol. 6   page: 236   2015.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:FRONTIERS RESEARCH FOUNDATION  

    Plant cortical microtubules, which form a highly ordered array beneath the plasma membrane, play essential roles in determining cell shape and function by directing the arrangement of cellulosic and non-cellulosic compounds on the cell surface. Interphase transverse arrays of cortical microtubules self-organize through their dynamic instability and inter-microtubule interactions, and by branch-form microtubule nucleation and severing. Recent studies revealed that distinct spatial signals including ROP GTPase, cellular geometry, and mechanical stress regulate the behavior of cortical microtubules at the subcellular and supercellular levels, giving rise to dramatic rearrangements in the cortical microtubule array in response to internal and external cues. Increasing evidence indicates that negative regulators of microtubules also contribute to the rearrangement of the cortical microtubule array. In this review, I summarize recent insights into how the rearrangement of the cortical microtubule array leads to proper, flexible cell wall patterning.

    DOI: 10.3389/fpls.2015.00236

    Web of Science

  23. Novel Coiled-Coil Proteins Regulate Exocyst Association with Cortical Microtubules in Xylem Cells via the Conserved Oligomeric Golgi-Complex 2 Protein Reviewed

    Yoshihisa Oda, Yuki Iida, Yoshinobu Nagashima, Yuki Sugiyama, Hiroo Fukuda

    PLANT AND CELL PHYSIOLOGY   Vol. 56 ( 2 ) page: 277 - 286   2015.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:OXFORD UNIV PRESS  

    Xylem vessel cells develop secondary cell walls in distinct patterns. Cortical microtubules are rearranged into distinct patterns and regulate secondary cell wall deposition; however, it is unclear how exocytotic membrane trafficking is linked to cortical microtubules. Here, we show that the novel coiled-coil proteins vesicle tethering 1 (VETH1) and VETH2 recruit EXO70A1, an exocyst subunit essential for correct patterning of secondary cell wall deposition, to cortical microtubules via the conserved oligomeric Golgi complex (COG) 2 protein. VETH1 and VETH2 encode an uncharacterized domain of an unknown function designated DUF869, and were preferentially up-regulated in xylem cells. VETH1-green fluorescent protein (GFP) and VETH2-GFP co-localized at novel vesicle-like small compartments, which exhibited microtubule plus-end-directed and end-tracking dynamics. VETH1 and VETH2 interacted with COG2, and this interaction promoted the association between cortical microtubules and EXO70A1 These results suggest that the VETH-COG2 complex ensures the correct secondary cell wall deposition pattern by recruiting exocyst components to cortical microtubules.

    DOI: 10.1093/pcp/pcu197

    Web of Science

    PubMed

  24. Xylem Cell Wall Pattern Formation Regulated by Microtubule-associated Proteins and ROP GTPases Reviewed

    Yoshihisa Oda, Hiroo Fukuda

    Plant Cell Wall Patterning and Cell Shape     page: 191 - 214   2014.12

     More details

    Language:English   Publishing type:Part of collection (book)   Publisher:Wiley Blackwell  

    This chapter introduces cortical microtubule associations with secondary wall development. It discusses the recently established experimental systems contributing to cellular analysis in living xylem cells. The chapter summarizes recent insights into the molecular mechanisms underlying the regulation of secondary cell wall patterns in xylem fibers and protoxylem and metaxylem vessels. It focuses on the emerging interaction between microtubules and ROP GTPases. The development of a number of Arabidopsis xylem cell differentiation systems contributed to the discovery of master xylem differentiation transcription factors. The chapter discusses the current understanding of the molecular mechanisms underlying secondary wall patterning in xylem fibers and protoxylem and metaxylem vessels. In addition to various microtubule-associated proteins (MAPs) and ROP GTPases, proper delivery and synthesis of secondary cell wall components appears to be required for secondary wall patterns.

    DOI: 10.1002/9781118647363.ch7

    Scopus

  25. A bHLH Complex Activates Vascular Cell Division via Cytokinin Action in Root Apical Meristem Reviewed

    Kyoko Ohashi-Ito, Maria Saegusa, Kuninori Iwamoto, Yoshihisa Oda, Hirofumi Katayama, Mikiko Kojima, Hitoshi Sakakibara, Hiroo Fukuda

    CURRENT BIOLOGY   Vol. 24 ( 17 ) page: 2053 - 2058   2014.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:CELL PRESS  

    Higher organisms possess mechanisms to maintain stem cells' proliferative and pluripotent states in stem cell niches [1]. Plants possess two types of stem cell niches in the root and shoot apical meristems, where regulatory interactions exist between stem cells and organizing cells. Recent studies provided new insights into the molecular mechanism of stem cell maintenance [2-4]. However, earlier and more essential developmental events such as the acquisition of stem cell proliferative activity are still unknown. In vascular tissues, procambial cells function as stem cells and differentiate into xylem, phloem, and procambium. Procambial cell proliferation starts at root apical meristem (RAM) postembryonically; therefore, procambial cell development in RAM is a good model for investigating the regulation of stem cell proliferation. LONESOME HIGHWAY (LHW) and TARGET OF MONOPTEROS5 (TMO5), as well as its homolog, TMO5-LIKE1 (T5L1), encode bHLH proteins that function as heterodimers (LHW-TMO5 and LHW-T5L1) in vascular tissue organization [5-7]. LHW-T5L1 promotes vascular-cell-specific proliferation in RAM [7]. Here, we demonstrate that LHW-T5L1 promotes expression of key cytokinin production genes, including LONELY GUY3 (LOG3) and LOG4, in xylem precursor cells, resulting in elevated cytokinin levels in the surrounding cells. LHW-T5L1 can also promote expression of AHP6, which suppresses cytokinin signaling and then maintains xylem precursor cells at a nondividing state. Our results indicate that LHW-T5L1 establishes xylem precursor cells as a signal center that promotes procambial-cell-specific proliferation through cytokinin response.

    DOI: 10.1016/j.cub.2014.07.050

    Web of Science

    PubMed

  26. Emerging roles of small GTPases in secondary cell wall development Reviewed

    Yoshihisa Oda, Hiroo Fukuda

    FRONTIERS IN PLANT SCIENCE   Vol. 5   page: 428   2014.8

     More details

    Language:English   Publisher:FRONTIERS RESEARCH FOUNDATION  

    Regulation of plant cell wall deposition and patterning is essential for the normal growth and development of plants. Small GTPases play pivotal roles in the modulation of primary cell wall formation by controlling cytoskeletal organization and membrane trafficking. However, the functions of small GTPases in secondary cell wall development are poorly understood. Recent studies on xylem cells revealed that the Rho of plants (ROP) group of small GTPases critically participates in the spatial patterning of secondary cell walls. In differentiating xylem cells, a specific GTPase-activating protein (GAP)/guanine nucleotide exchange factor (GEE) pair facilitates local activation of ROP11 to establish de novo plasma membrane domains. The activated ROP11 then recruits a microtubule-associated protein, MIDD1, to mediate the mutual inhibition between cortical microtubules and active ROP. Furthermore, recent works suggest that certain small GTPases, including ROP and Rab GTPases, regulate membrane trafficking to establish secondary cell wall deposition and patterning. Accordingly, this mini-review assesses and summarizes the current literature regarding the emerging functions of small GTPases in the development of secondary cell walls.

    DOI: 10.3389/fpls.2014.00428

    Web of Science

    PubMed

  27. Spatial organization of xylem cell walls by ROP GTPases and microtubule-associated proteins Reviewed

    Yoshihisa Oda, Hiroo Fukuda

    CURRENT OPINION IN PLANT BIOLOGY   Vol. 16 ( 6 ) page: 743 - 748   2013.12

     More details

    Language:English   Publisher:CURRENT BIOLOGY LTD  

    Proper patterning of cellulosic cell walls is critical for cell shaping and differentiation of plant cells. Cortical microtubule arrays regulate the deposition patterns of cellulose microfibrils by controlling the targeting and trajectory of cellulose synthase complexes. Although some microtubule-associated proteins (MAPs) regulate the arrangement of cortical microtubules, knowledge about the overall mechanism governing the spacing of cortical microtubules is still limited. Recent studies reveal that ROP GTPases and MAPs spatially regulate the assembly and disassembly of cortical microtubules in developing xylem cells, in which localized secondary cell walls are deposited. Here, we review recent insights into the regulation of xylem cell wall patterning by cortical microtubules, ROP GTPases, and MAPs.

    DOI: 10.1016/j.pbi.2013.10.010

    Web of Science

    PubMed

  28. 二次細胞壁パターンの制御機構

    小田祥久, 福田裕穂

    化学と生物   Vol. 51 ( 12 ) page: 795 - 801   2013.12

     More details

    Language:Japanese   Publisher:Japan Society for Bioscience, Biotechnology, and Agrochemistry  

    DOI: 10.1271/kagakutoseibutsu.51.795

    J-GLOBAL

  29. The dynamic interplay of plasma membrane domains and cortical microtubules in secondary cell wall patterning Reviewed

    Yoshihisa Oda, Hiroo Fukuda

    FRONTIERS IN PLANT SCIENCE   Vol. 4   page: 511   2013.12

     More details

    Language:English   Publisher:FRONTIERS RESEARCH FOUNDATION  

    Patterning of the cellulosic cell wall underlies the shape and function of plant cells. The cortical microtubule array plays a central role in the regulation of cell wall patterns. However, the regulatory mechanisms by which secondary cell wall patterns are established through cortical microtubules remain to be fully determined. Our recent study in xylem vessel cells revealed that a mutual inhibitory interaction between cortical microtubules and distinct plasma membrane domains leads to distinctive patterning in secondary cell walls. Our research revealed that the recycling of active and inactive ROP proteins by a specific GAP and GEE pair establishes distinct de novo plasma membrane domains. Active ROP recruits a plant-specific microtubule-associated protein, MIDD1, which mediates the mutual interaction between cortical microtubules and plasma membrane domains. In this mini review, we summarize recent research regarding secondary wall patterning, with a focus on the emerging interplay between plasma membrane domains and cortical microtubules through MIDD1 and ROP.

    DOI: 10.3389/fpls.2013.00511

    Web of Science

    PubMed

  30. Rho of Plant GTPase Signaling Regulates the Behavior of Arabidopsis Kinesin-13A to Establish Secondary Cell Wall Patterns Reviewed

    Yoshihisa Oda, Hiroo Fukuda

    PLANT CELL   Vol. 25 ( 11 ) page: 4439 - 4450   2013.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER SOC PLANT BIOLOGISTS  

    Plant cortical microtubule arrays determine the cell wall deposition pattern and proper cell shape and function. Although various microtubule-associated proteins regulate the cortical microtubule array, the mechanisms underlying marked rearrangement of cortical microtubules during xylem differentiation are not fully understood. Here, we show that local Rho of Plant (ROP) GTPase signaling targets an Arabidopsis thaliana kinesin-13 protein, Kinesin-13A, to cortical microtubules to establish distinct patterns of secondary cell wall formation in xylem cells. Kinesin-13A was preferentially localized with cortical microtubules in secondary cell wall pits, areas where cortical microtubules are depolymerized to prevent cell wall deposition. This localization of Kinesin-13A required the presence of the activated ROP GTPase, MICROTUBULE DEPLETION DOMAIN1 (MIDD1) protein, and cortical microtubules. Knockdown of Kinesin-13A resulted in the formation of smaller secondary wall pits, while overexpression of Kinesin-13A enlarged their surface area. Kinesin-13A alone could depolymerize microtubules in vitro; however, both MIDD1 and Kinesin-13A were required for the depolymerization of cortical microtubules in vivo. These results indicate that Kinesin-13A regulates the formation of secondary wall pits by promoting cortical microtubule depolymerization via the ROP-MIDD1 pathway.

    DOI: 10.1105/tpc.113.117853

    Web of Science

    PubMed

  31. Molecular basis of secondary cell wall patterning

    ODA YOSHIHISA, FUKUDA HIROO

    Cellul Commun   Vol. 20 ( 3 ) page: 125 - 129   2013.9

     More details

    Language:Japanese  

    CiNii Books

    J-GLOBAL

  32. The proteasome is responsible for caspase-3-like activity during xylem development Reviewed

    Jia-Jia Han, Wei Lin, Yoshihisa Oda, Ke-Ming Cui, Hiroo Fukuda, Xin-Qiang He

    PLANT JOURNAL   Vol. 72 ( 1 ) page: 129 - 141   2012.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:WILEY-BLACKWELL  

    Xylem development is a process of xylem cell terminal differentiation that includes initial cell division, cell expansion, secondary cell wall formation and programmed cell death (PCD). PCD in plants and apoptosis in animals share many common characteristics. Caspase-3, which displays Asp-Glu-Val-Asp (DEVD) specificity, is a crucial executioner during animal cells apoptosis. Although a gene orthologous to caspase-3 is absent in plants, caspase-3-like activity is involved in many cases of PCD and developmental processes. However, there is no direct evidence that caspase-3-like activity exists in xylem cell death. In this study, we showed that caspase-3-like activity is present and is associated with secondary xylem development in Populus tomentosa. The protease responsible for the caspase-3-like activity was purified from poplar secondary xylem using hydrophobic interaction chromatography (HIC), Q anion exchange chromatography and gel filtration chromatography. After identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS), it was revealed that the 20S proteasome (20SP) was responsible for the caspase-3-like activity in secondary xylem development. In poplar 20SP, there are seven a subunits encoded by 12 genes and seven beta subunits encoded by 12 genes. Pharmacological assays showed that Ac-DEVD-CHO, a caspase-3 inhibitor, suppressed xylem differentiation in the veins of Arabidopsis cotyledons. Furthermore, clasto-lactacystin beta-lactone, a proteasome inhibitor, inhibited PCD of tracheary element in a VND6-induced Arabidopsis xylogenic culture. In conclusion, the 20S proteasome is responsible for caspase-3-like activity and is involved in xylem development.

    DOI: 10.1111/j.1365-313X.2012.05070.x

    Web of Science

    PubMed

  33. Initiation of Cell Wall Pattern by a Rho- and Microtubule-Driven Symmetry Breaking Reviewed

    Yoshihisa Oda, Hiroo Fukuda

    SCIENCE   Vol. 337 ( 6100 ) page: 1333 - 1336   2012.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER ASSOC ADVANCEMENT SCIENCE  

    A specifically patterned cell wall is a determinant of plant cell shape. Yet, the precise mechanisms that underlie initiation of cell wall patterning remain elusive. By using a reconstitution assay, we revealed that ROPGEF4 (Rho of plant guanine nucleotide exchange factor 4) and ROPGAP3 [ROP guanosine triphosphatase (GTPase)-activating protein 3] mediate local activation of the plant Rho GTPase ROP11 to initiate distinct pattern of secondary cell walls in xylem cells. The activated ROP11 recruits MIDD1 to induce local disassembly of cortical microtubules. Conversely, cortical microtubules eliminate active ROP11 from the plasma membrane through MIDD1. Such a mutual inhibitory interaction between active ROP domains and cortical microtubules establishes the distinct pattern of secondary cell walls. This Rho-based regulatory mechanism shows how plant cells initiate and control cell wall patterns to form various cell shapes.

    DOI: 10.1126/science.1222597

    Web of Science

    PubMed

  34. Secondary cell wall patterning during xylem differentiation Reviewed

    Yoshihisa Oda, Hiroo Fukuda

    CURRENT OPINION IN PLANT BIOLOGY   Vol. 15 ( 1 ) page: 38 - 44   2012.2

     More details

    Language:English   Publisher:CURRENT BIOLOGY LTD  

    Xylem cell differentiation involves temporal and spatial regulation of secondary cell wall deposition. The cortical microtubules are known to regulate the spatial pattern of the secondary cell wall by orientating cellulose deposition. However, it is largely unknown how the microtubule arrangement is regulated during secondary wall formation. Recent findings of novel plant microtubule-associated proteins in developing xylem vessels shed new light on the regulation mechanism of the microtubule arrangement leading to secondary wall patterning. In addition, in vitro culture systems allow the dynamics of microtubules and microtubule-associated proteins during secondary cell wall formation to be followed. Therefore, this review focuses on novel aspects of microtubule dynamics leading to secondary cell wall patterning with a focus on microtubule-associated proteins.

    DOI: 10.1016/j.pbi.2011.10.005

    Web of Science

    PubMed

  35. Dynamics of Arabidopsis SUN proteins during mitosis and their involvement in nuclear shaping Reviewed

    Yoshihisa Oda, Hiroo Fukuda

    PLANT JOURNAL   Vol. 66 ( 4 ) page: 629 - 641   2011.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:WILEY-BLACKWELL  

    P>The nuclear envelope (NE) is a highly active structure with a specific set of nuclear envelope proteins acting in diverse cellular events. SUN proteins are conserved NE proteins among eukaryotes. Although they form nucleocytoplasmic linkage complexes in metazoan cells, their functions in the plant kingdom are unknown. To understand the function of plant SUN proteins, in this study we first investigated the dynamics of Arabidopsis SUN proteins during mitosis in Arabidopsis roots and cultured cells. For this purpose, we performed dual and triple visualization of these proteins, microtubules, chromosomes, and endoplasmic reticulum (ER) in cultured cells, and observed their dynamics during mitosis using a high-speed spinning disk confocal microscope. The localizations of SUN proteins changed dynamically during mitosis, tightly coupled with NE dynamics. Moreover, NE re-formation marked with SUN proteins is temporally and spatially coordinated with plant-specific microtubule structures such as phragmoplasts. Finally, the analysis with gene knockdowns of AtSUN1 and AtSUN2 indicated that they are necessary for the maintenance and/or formation of polarized nuclear shape in root hairs. These results suggest that Arabidopsis SUN proteins function in the maintenance or formation of nuclear shape as components of the nucleocytoskeletal complex.

    DOI: 10.1111/j.1365-313X.2011.04523.x

    Web of Science

    PubMed

  36. Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 Directly Regulates the Genes That Govern Programmed Cell Death and Secondary Wall Formation during Xylem Differentiation Reviewed

    Kyoko Ohashi-Ito, Yoshihisa Oda, Hiroo Fukuda

    PLANT CELL   Vol. 22 ( 10 ) page: 3461 - 3473   2010.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER SOC PLANT BIOLOGISTS  

    Xylem consists of three types of cells: tracheary elements (TEs), parenchyma cells, and fiber cells. TE differentiation includes two essential processes, programmed cell death (PCD) and secondary cell wall formation. These two processes are tightly coupled. However, little is known about the molecular mechanisms underlying these processes. Here, we show that VASCULAR-RELATED NAC-DOMAIN6 (VND6), a master regulator of TEs, regulates some of the downstream genes involved in these processes in a coordinated manner. We first identified genes that are expressed downstream of VND6 but not downstream of SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN1 (SND1), a master regulator of xylem fiber cells, using transformed suspension culture cells in microarray experiments. We found that VND6 and SND1 governed distinct aspects of xylem formation, whereas they regulated a number of genes in common, specifically those related to secondary cell wall formation. Genes involved in TE-specific PCD were upregulated only by VND6. Moreover, we revealed that VND6 directly regulated genes that harbor a TE-specific cis-element, TERE, in their promoters. Thus, we found that VND6 is a direct regulator of genes related to PCD as well as to secondary wall formation.

    DOI: 10.1105/tpc.110.075036

    Web of Science

    PubMed

  37. Wood Cell-Wall Structure Requires Local 2D-Microtubule Disassembly by a Novel Plasma Membrane-Anchored Protein Reviewed

    Yoshihisa Oda, Yuki Iida, Yuki Kondo, Hiroo Fukuda

    CURRENT BIOLOGY   Vol. 20 ( 13 ) page: 1197 - 1202   2010.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:CELL PRESS  

    Plant cells have evolved cortical microtubules, in a two-dimensional space beneath the plasma membrane [1, 2], that regulate patterning of cellulose deposition [3]. Although recent studies have revealed that several microtubule-associated proteins [4-8] facilitate self-organization of transverse cortical microtubules [9-11], it is still unknown how diverse patterns of cortical microtubules are organized in different xylem cells [12-17], which are the major components of wood. Using our newly established in vitro xylem cell differentiation system, we found that a novel microtubule end-tracking protein, microtubule depletion domain 1 (MIDD1), was anchored to distinct plasma membrane domains and promoted local microtubule disassembly, resulting in pits on xylem cell walls. The introduction of RNA interference for MIDD1 resulted in the failure of local microtubule depletion and the formation of secondary walls without pits. Conversely, the overexpression of MIDD1 reduced microtubule density. MIDD1 has two coiled-coil domains for the binding to microtubules and for the anchorage to plasma membrane domains, respectively. Combination of the two coils caused end tracking of microtubules during shrinkage and suppressed their rescue events. Our results indicate that MIDD1 integrates spatial information in the plasma membrane with cortical microtubule dynamics for determining xylem cell wall pattern.

    DOI: 10.1016/j.cub.2010.05.038

    Web of Science

    PubMed

  38. Dynamic Aspects of Ion Accumulation by Vesicle Traffic Under Salt Stress in Arabidopsis Reviewed

    Kohei Hamaji, Megumi Nagira, Katsuhisa Yoshida, Miwa Ohnishi, Yoshihisa Oda, Tomohiro Uemura, Tatsuaki Goh, Masa H. Sato, Miyo T. Morita, Masao Tasaka, Sei-ichiro Hasezawa, Akihiko Nakano, Ikuko Hara-Nishimura, Masayoshi Maeshima, Hidehiro Fukaki, Tetsuro Mimura

    PLANT AND CELL PHYSIOLOGY   Vol. 50 ( 12 ) page: 2023 - 2033   2009.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:OXFORD UNIV PRESS  

    The intracellular membrane dynamics of Arabidopsis cells under high salt treatment were investigated. When Arabidopsis was treated with high levels of NaCl in hydroponic culture, root tip cells showed rapid changes in the vacuolar volume, a decrease in the number of small acid compartments, active movement of vesicles and accumulation of Na(+) both in the central vacuole and in the vesicles around the main vacuole observed with the Na(+)-dependent fluorescence of Sodium Green. Detailed observation of Arabidopsis suspension-cultured cells under high salt treatment showed a similar pattern of response to that observed in root tip cells. Immunostaining of suspension-cultured cells with antibodies against AtNHX1 clearly showed the occurrence of dotted fluorescence in the cytoplasm only under salt treatment. We also confirmed the existence of AtNHX1 in the vacuolar membrane isolated from suspension-cultured cells with immunofluorescence. Knockout of the vacuolar Q(a)-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein VAM3/SYP22 caused an increase in salt tolerance. In mutant plants, the distribution of Na(+) between roots and shoots differed from that of wild-type plants, with Na(+) accumulating more in roots and less in the shoots of the mutant plants. The role of vesicle traffic under salt stress is discussed.

    DOI: 10.1093/pcp/pcp143

    Web of Science

    PubMed

  39. Microtubules Regulate Dynamic Organization of Vacuoles in Physcomitrella patens Reviewed

    Yoshihisa Oda, Aiko Hirata, Toshio Sano, Tomomichi Fujita, Yuji Hiwatashi, Yoshikatsu Sato, Akeo Kadota, Mitsuyasu Hasebe, Seiichiro Hasezawa

    PLANT AND CELL PHYSIOLOGY   Vol. 50 ( 4 ) page: 855 - 868   2009.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:OXFORD UNIV PRESS  

    Eukaryotic cells have developed several essential membrane components. In flowering plants, appropriate structures and distributions of the major membrane components are predominantly regulated by actin microfilaments. In this study, we have focused on the regulatory mechanism of vacuolar structures in the moss, Physcomitrella patens. The high ability of P. patens to undergo homologous recombination enabled us stably to express green fluorescent protein (GFP) or red fluorescent protein (RFP) fusion proteins, and the simple body structure of P. patens enabled us to perform detailed visualization of the intracellular vacuolar and cytoskeletal structures. Three-dimensional analysis and high-speed time-lapse observations revealed surprisingly complex structures and dynamics of the vacuole, with inner sheets and tubular protrusions, and frequent rearrangements by separation and fusion of the membranes. Depolymerization of microtubules dramatically affected these structures and movements. Dual observation of microtubules and vacuolar membranes revealed that microtubules induced tubular protrusions and cytoplasmic strands of the vacuoles, indicative of interactions between microtubules and vacuolar membranes. These results demonstrate a novel function of microtubules in maintaining the distribution of the vacuole and suggest a functional divergence of cytoskeletal functions in land plant evolution.

    DOI: 10.1093/pcp/pcp031

    Web of Science

    PubMed

  40. NEW INSIGHTS INTO PLANT VACUOLAR STRUCTURE AND DYNAMICS Reviewed

    Yoshihisa Oda, Takumi Higaki, Seiichiro Hasezawa, Natsumaro Kutsuna

    INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY, VOL 277   Vol. 277   page: 103 - 135   2009

     More details

    Language:English   Publishing type:Part of collection (book)   Publisher:ELSEVIER ACADEMIC PRESS INC  

    The plant vacuole is a multifunctional organelle and is essential for plant development and growth. The most distinctive feature of the plant vacuole is its size, which usually occupies over 80-90% of the cell volume in well-developed somatic cells, and is therefore highly involved in cell growth and plant body size. Recent progress in the visualization of the vacuole, together with developments in image analysis, has revealed the highly organized and complex morphology of the vacuole, as well as its dynamics. The plant vacuolar membrane (VM) forms not only a typically large vacuole but also other structures, such as tubular structures, transvacuolar strands, bulbs, and sheets. In higher plant cells, actin microfilaments are mainly located near the VM and are involved in vacuolar shape changes with the actin-myosin systems. Most recently, microtubule-dependent regulation of vacuolar structures in moss plant cells was reported, suggesting a diversity of mechanisms regulating vacuolar morphogenesis.

    DOI: 10.1016/S1937-6448(09)77003-0

    Web of Science

    PubMed

  41. An unidentified ultraviolet-B-specific photoreceptor mediates transcriptional activation of the cyclobutane pyrimidine dimer photolyase gene in plants Reviewed

    Motohide Ioki, Shinya Takahashi, Nobuyoshi Nakajima, Kohei Fujikura, Masanori Tamaoki, Hikaru Saji, Akihiro Kubo, Mitsuko Aono, Machi Kanna, Daisuke Ogawa, Jutarou Fukazawa, Yoshihisa Oda, Seiji Yoshida, Masakatsu Watanabe, Seiichiro Hasezawa, Noriaki Kondo

    PLANTA   Vol. 229 ( 1 ) page: 25 - 36   2008.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER  

    Cyclobutane pyrimidine dimers (CPDs) constitute a majority of DNA lesions caused by ultraviolet-B (UVB). CPD photolyase, which rapidly repairs CPDs, is essential for plant survival under sunlight containing UVB. Our earlier results that the transcription of the cucumber CPD photolyase gene (CsPHR) was activated by light have prompted us to propose that this light-driven transcriptional activation would allow plants to meet the need of the photolyase activity upon challenges of UVB from sunlight. However, molecular mechanisms underlying the light-dependent transcriptional activation of CsPHR were unknown. In order to understand spectroscopic aspects of the plant response, we investigated the wavelength-dependence (action spectra) of the light-dependent transcriptional activation of CsPHR. In both cucumber seedlings and transgenic Arabidopsis seedlings expressing reporter genes under the control of the CsPHR promoter, the action spectra exhibited the most predominant peak in the long-wavelength UVB waveband (around 310 nm). In addition, a 95-bp cis-acting region in the CsPHR promoter was identified to be essential for the UVB-driven transcriptional activation of CsPHR. Thus, we concluded that the photoperception of long-wavelength UVB by UVB photoreceptor(s) led to the induction of the CsPHR transcription via a conserved cis-acting element.

    DOI: 10.1007/s00425-008-0803-4

    Web of Science

    PubMed

  42. Semaphorin controls epidermal morphogenesis by stimulating mRNA translation via eIF2alpha in Caenorhabditis elegans.

    Nukazuka A, Fujisawa H, Inada T, Oda Y, Takagi S

    Genes & development   Vol. 22 ( 8 ) page: 1025 - 36   2008.4

     More details

  43. Cytoskeletal organization during xylem cell differentiation Reviewed

    Y Oda, S Hasezawa

    JOURNAL OF PLANT RESEARCH   Vol. 119 ( 3 ) page: 167 - 177   2006.5

     More details

    Language:English   Publisher:SPRINGER TOKYO  

    The water and mineral conductive tube, the xylem vessel and tracheid, is a highly conspicuous tissue due to its elaborately patterned secondary-wall deposition. One constituent of the xylem vessel and tracheid, the tracheary element, is an empty dead cell that develops secondary walls in the elaborate patterns. The wall pattern is appropriately regulated according to the developmental stage of the plant. The cytoskeleton is an essential component of this regulation. In fact, the cortical microtubule is well known to participate in patterned secondary cell wall formation. The dynamic rearrangement of the microtubules and actin filaments have also been recognized in the cultured cells differentiating into tracheary elements in vitro. There has recently been considerable progress in our understanding of the dynamics and regulation of cortical microtubules, and several plant microtubule associated proteins have been identified and characterized. The microtubules have been observed during tracheary element differentiation in living Arabidopsis thaliana cells. Based on this recently acquired information on the plant cytoskeleton and tracheary element differentiation, this review discusses the role of the cytoskeleton in secondary cell wall formation.

    DOI: 10.1007/s10265-006-0260-8

    Web of Science

    PubMed

  44. Appearance of actin microfilament 'twin peaks' in mitosis and their function in cell plate formation, as visualized in tobacco BY-2 cells expressing GFP-fimbrin Reviewed

    T Sano, T Higaki, Y Oda, T Hayashi, S Hasezawa

    PLANT JOURNAL   Vol. 44 ( 4 ) page: 595 - 605   2005.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:BLACKWELL PUBLISHING  

    The actin cytoskeleton of higher plants plays an essential role in plant morphogenesis and in maintaining various cellular activities. In this study we established a tobacco BY-2 cell line, stably transformed with a GFP-fimbrin actin-binding domain (ABD) 2 construct, that allows visualization of actin microfilaments (MFs) in living cells. Using this cell line, designated BY-GF11, we performed time-sequential observations of MF dynamics during cell-cycle progression. Detailed analyses revealed the appearance of a broad MF band in the late G(2) phase that separated to form a structure corresponding to the so-called actin-depleted zone (ADZ) in mitosis. In BY-GF11, the MF structure at the cell cortex in mitosis appeared to form two bands rather than the ADZ. Measurements of fluorescent intensities of the cell cortex indicated an MF distribution that resembled two peaks, and we therefore named the structure MF 'twin peaks' (MFTP). The cell plate formed exactly within the valley between the MFTP at cytokinesis, and this cell-plate guidance was distorted by disruption of the MFTP by an inhibitor of actin polymerization. These results suggest that the MFTP originates from the broad MF band in the G(2) phase and functions as a marker of cytokinesis.

    DOI: 10.1111/j.1365-313X.2005.02558.x

    Web of Science

    PubMed

  45. Regulation of secondary cell wall development by cortical microtubules during tracheary element differentiation in Arabidopsis cell suspensions Reviewed

    Y Oda, T Mimura, S Hasezawa

    PLANT PHYSIOLOGY   Vol. 137 ( 3 ) page: 1027 - 1036   2005.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER SOC PLANT BIOLOGISTS  

    Cortical microtubules participate in the deposition of patterned secondary walls in tracheary element differentiation. In this study, we established a system to induce the differentiation of tracheary elements using a transgenic Arabidopsis (Arabidopsis thaliana) cell suspension stably expressing a green fluorescent protein-tubulin fusion protein. Approximately 30% of the cells differentiated into tracheary elements 96 h after culture in auxin-free media containing 1 mu m brassinolide. With this differentiation system, we have been able to time-sequentially elucidate microtubule arrangement during secondary wall thickening. The development of secondary walls could be followed in living cells by staining with fluorescein-conjugated wheat germ agglutinin, and the three-dimensional structures of the secondary walls could be simultaneously analyzed. A single microtubule bundle first appeared beneath the narrow secondary wall and then developed into two separate bundles locating along both sides of the developing secondary wall. Microtubule inhibitors affected secondary wall thickening, suggesting that the pair of microtubule bundles adjacent to the secondary wall played a crucial role in the regulation of secondary wall development.

    DOI: 10.1104/pp.104.052613

    Web of Science

    PubMed

▼display all

Books 3

  1. Xylem: Methods and Protocols

    Yoshihisa Oda( Role: Contributor ,  Chapter6: VND6-induced Xylem Cell Differentiation in Arabidopsis Cell Cultures)

    Springer Nature  2017.1  ( ISBN:9781493967223

     More details

    Language:English Book type:Scholarly book

  2. 植物細胞壁実験法

    福田裕穂, 近藤侑貴, 小澤靖子, 岩本訓知, 小田祥久( Role: Contributor ,  5章ー1.木部細胞分化誘導)

    弘前大学出版  2016.2 

     More details

    Total pages:9   Responsible for pages:221-229   Language:Japanese

  3. The Plant Cell Wall Pattern and Cell Shape. 1st ed, by Hiroo Fukuda

    Yoshihisa Oda, Hiroo Fukuda( Role: Contributor ,  Chapter 7: Xylem cell wall pattern formation regulated by microtubule-associated proteins and ROP GTPases.)

    Wiley  2014.9 

     More details

    Responsible for pages:191-214   Language:English

MISC 2

  1. Cytoskeletal and vacuolar dynamics during plant cell division: Approaches using structure-visualized cells

    Toshio Sano, Natsumaro Kutsuna, Takumi Higaki, Yoshihisa Oda, Arata Yoneda, Fumi Kumagai-Sano, Seiichiro Hasezawa

    Plant Cell Monographs   Vol. 9   page: 125 - 140   2007.7

     More details

    Language:English  

    During cell cycle progression, intra-cellular cytoskeletal and membrane structures undergo dynamic changes in their form and localization, which in turn regulate further progress of the cell cycle. Despite the considerable insights into these intra-cellular structures obtained from immuno-fluorescence microscopy, the need for chemical fixation has limited the acquired images to only static ones. In contrast, more recent fluorescent protein techniques used to visualize these structures in living cell systems have allowed investigations of their dynamics. The visualization of microtubules (MTs) by using the green fluorescent protein (GFP) and the analysis of MT-associated proteins will be presented. In addition, to further understand plant cell cycle progression, dynamics of actin microfilaments (MFs) and vacuolar membranes (VMs) visualized with fluorescent proteins are also reviewed. © 2008 Springer-Verlag Berlin Heidelberg.

    DOI: 10.1007/7089_2007_125

    Scopus

  2. Recent progress in living cell imaging of plant cytoskeleton and vacuole using fluorescent-protein transgenic lines and three-dimensional imaging

    A. Yoneda, N. Kutsuna, T. Higaki, Y. Oda, T. Sano, S. Hasezawa

    PROTOPLASMA   Vol. 230 ( 3-4 ) page: 129 - 139   2007.4

     More details

    Language:English   Publishing type:Book review, literature introduction, etc.   Publisher:SPRINGER WIEN  

    In higher-plant cells, microtubules, actin microfilaments, and vacuoles play important roles in a variety of cellular events, including cell division, morphogenesis, and cell differentiation. These intracellular structures undergo dynamic changes in their shapes and functions during cell division and differentiation, and to analyse these sequential structural changes, the vital labelling technique, using the green-fluorescent protein or other fluorescent proteins, has commonly been used to follow the localisation and translocation of specific proteins. To visualise microtubules, actin filaments, and vacuoles, several strategies are available for selecting the appropriate fluorescent-protein fusion partner: microtubule-binding proteins, tubulin, and plus-end-tracking proteins are most suitable for microtubule labelling; the actin binding domain of mouse talin and plant fimbrin for actin microfilament visualisation; and the tonoplast-intrinsic proteins and syntaxin-related proteins for vacuolar imaging. In addition, three-dimensional reconstruction methods are indispensable for localising the widely distributed organelles within the cell. The maximum intensity projection method is suitable for cytoskeletal structures, while contour-based surface modelling possesses many advantages for vacuolar membranes. In this article, we summarise the recent progress in living cell imaging of the plant cytoskeleton and vacuoles using various fusions with green-fluorescent proteins and three-dimensional imaging techniques.

    DOI: 10.1007/s00709-006-0237-4

    Web of Science

Presentations 91

  1. 転写調節されるアクチン重合が木部道管にお ける細胞壁パターンを切り替える

    貴嶋紗久, 佐々木武馬, 近藤侑貴, 稲垣宗一, 山口雅利, 小田祥久

    第65回日本植物生理学会年会  2024.3.17 

     More details

    Event date: 2024.3

    Language:Japanese   Presentation type:Oral presentation (general)  

  2. 陸上植物におけるprospindle の形成機構と役割について

    佐々木武馬, 石崎公庸, 本瀬宏康, 小田祥久

    第65回日本植物生理学会年会  2024.3.17 

     More details

    Event date: 2024.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:神戸市  

  3. Exploring autolytic mechanisms of sieve elements with an improved phloem induction system Invited

    Yuki Sugiyama, Yoshihisa Oda

    2024.3.17 

     More details

    Event date: 2024.3

    Language:English   Presentation type:Oral presentation (invited, special)  

  4. 道管液フローを規定する細胞壁パターンの構築機構 Invited

    小田祥久

    第46回日本分子生物学会年会   2023.12.9 

     More details

    Event date: 2023.12

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

  5. 植物における細胞壁形成の時空間制御 Invited

    小田祥久

    第46回日本分子生物学会年会  2023.12.6 

     More details

    Event date: 2023.12

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

  6. Intracellular patterning in plant xylem vessels Invited International conference

    2023.11.14 

     More details

    Event date: 2023.11

    Language:English   Presentation type:Oral presentation (invited, special)  

  7. 陸上植物における紡錘体軸 および細胞分裂方向の制御機構

    佐々木 武馬, 石崎 公庸, 本瀬 宏康, 小田 祥久

    日本植物学会第87回大会   2023.9.7 

     More details

    Event date: 2023.9

    Language:Japanese   Presentation type:Oral presentation (general)  

  8. 道管において微小管に付随した相分離現象が細胞壁パターンを調節する

    比嘉 毅, 貴嶋 紗久, 佐々木 武馬, 高谷 彰吾, 近藤 洋平, 佐藤 繭子, 若崎 眞由美, 豊岡 公徳, 出村 拓, 福田 裕穂, 小田 祥久

    日本植物学会第87回大会   2023.9.7 

     More details

    Event date: 2023.9

    Language:Japanese   Presentation type:Oral presentation (general)  

  9. MIDD1凝集体による微小管脱重合機構の解析

    浅野僚介, 佐々木武馬, 高谷彰吾, 小田祥久

    日本植物学会第87回大会   2023.9.7 

     More details

    Event date: 2023.9

    Language:Japanese   Presentation type:Oral presentation (general)  

  10. 道管の細胞壁形成を制御するROPエフェクターの解析

    小林恒, 佐々木武馬, 小田祥久

    日本植物学会第87回大会   2023.9.7 

     More details

    Event date: 2023.9

    Language:Japanese   Presentation type:Oral presentation (general)  

  11. 道管の細胞壁パターンを制御する新規細胞骨格付随タンパク質の解析

    三宅陽穗, 杉山友希, 佐々木武馬, 小田祥久

    日本植物学会第87回大会   2023.9.7 

     More details

    Event date: 2023.9

    Language:Japanese   Presentation type:Oral presentation (general)  

  12. The role of G protein dynamics in microtubule organizaion during xylem development International conference

    2023.7.5 

     More details

    Event date: 2023.7

    Language:English   Presentation type:Poster presentation  

  13. Microtubule organization in xylem vessels Invited International conference

    2023.7.5 

     More details

    Event date: 2023.7

    Language:English   Presentation type:Oral presentation (invited, special)  

  14. 細胞壁の三次元微細構造を形づくる微小管制御機構

    佐々木武馬, 斎藤慧, 井上大介, 杉山友希, 島本勇太, 小田祥久

    第64回日本植物生理学会年会   2023.3.16 

     More details

    Event date: 2023.3

    Presentation type:Oral presentation (general)  

  15. 植物細胞における細胞壁蓄積制御メカニズムの視覚的解析と分子的理解 Invited

    佐々木 武馬, 大伏 仙泰, ゴメス ギリアン, 柏野 善大, 稲見 昌彦, 小田 祥久

    日本植物学会第86回大会  2022.9.17 

     More details

    Event date: 2022.9

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

  16. Revealing autolytic mechanisms of sieve element differentiation by improved phloem induction system International conference

    Yuki Sugiyama, Ilya Belevich, Satoshi Fujita, Kaori Furura, Bernhard Blob, Eija Jokitalo, Yoshihisa Oda, Ykä Herariutta

    Sixth international conference on Plant Vascular Biology 2022  2022.7.20 

     More details

    Event date: 2022.7

    Language:English   Presentation type:Poster presentation  

  17. イメージング共同研究から迫る植物細胞壁の構築機構 Invited

    小田祥久

    北海道大学ニコンイメージングセンター 学術講演会  2021.11.29  北海道大学ニコンイメージングセンター

     More details

    Event date: 2021.11

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:オンライン  

  18. PL-031シロイヌナズナvegetativeアクチン変異株の表現型解析

    貴嶋紗久, 光田展隆, 小田祥久

    第62回日本植物生理学会年会  2021.3.16 

     More details

    Event date: 2021.3

    Language:Japanese   Presentation type:Poster presentation  

  19. Molecular basis of cell wall patterning Invited

    Yoshihisa Oda

    2020.12.7 

     More details

    Event date: 2020.12

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

  20. 3aD05 CORTICAL MICROTUBULE DISORDERING1 (CORD1) は木部道管細胞において蓄積する細胞壁の構造を制御する

    佐々木武馬, 福田裕穂, 小田祥久

    第59回日本植物生理学会年会  2018.3.30  日本植物生理学会

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:札幌コンベンションセンター  

  21. 3aC01

    回日本植物生理学会年会

    2022.3.24 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

  22. 2pC08 微小管付随タンパク質CORD はゼニゴケにおいて細胞分裂面の決定に関与する

    佐々木武馬, 石崎公庸, 本瀬宏康, 小田祥久

    第63回日本植物生理学会年会  2022.3.23 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

  23. 2pC07 二次細胞壁パターンのねじれを抑制する細胞骨格因子の同定

    佐々木武馬, 山田萌恵, 貴嶋紗久, 比嘉毅, 佐藤繭子, 若崎眞由美, 豊岡公徳, 近藤洋平, 堤元佐, 大友康平, 村田隆, 根本知己, 小田祥久

    第63回日本植物生理学会年会  2022.3.23 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

  24. 2AS12-2 Geometry formation of the immobile plant xylem cell Invited

    Yoshihisa Oda

    The 39th Annual Meeting of The Molecular Biology Society of Japan  2016.12.1 

     More details

    Language:English   Presentation type:Oral presentation (invited, special)  

  25. 2aI11 微小管付随タンパク質CORD は細胞分裂におけるフラグモプラストの形成に必要である

    佐々木武馬, 村田隆, 大友康平, 堤元佐, 根本知己, 長谷部光泰, 小田祥久

    第60回日本植物生理学会年会  2019.3.14 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:名古屋大学、名古屋  

  26. 2aI04 新規-ROP アクチン経路による二次細胞壁沈着の制御

    杉山友希, 長島慶宜, 若崎眞由美, 佐藤繭子, 豊岡公徳, 福田裕穂, 小田祥久

    第60回日本植物生理学会年会  2019.3.14  (一社) 日本植物生理学会

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:名古屋大学・名古屋  

  27. 1pSA06 細胞壁の非対称性を生み出す分子システム Invited

    杉山友希, 長島慶宜, 若崎眞由美, 佐藤繭子, 豊岡公徳, 福田裕穂, 小田祥久

    日本植物学会第83回大会  2019.9.15  (公社) 日本植物学会

     More details

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:東北大学川内キャンパス・仙台  

  28. 1pI06 微小管付随タンパク質CORDの細胞分裂における機能

    佐々木武馬, 村田隆, 長谷部光泰, 小田祥久

    日本植物学会第82回年会  2018.9.14 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:広島国際会議場、広島市  

  29. 1pI06 二次細胞壁の形成を制御する新規アクチンシグナル経路の解析

    杉山友希, 長島慶宜, 若崎眞由美, 佐藤繭子, 豊岡公徳, 福田裕穂, 小田祥久

    日本植物学会第82回年会  2018.9.14 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:広島国際会議場、広島市  

  30. 1pI03 道管における新規ROP-アクチン経路の解析

    長島慶宜, 杉山友希, 福田裕穂, 小田祥久

    日本植物学会第82回年会  2018.9.14 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:広島国際会議場、広島市  

  31. 1pC09 直接的なアクチンイメージングを目指した機能的なアクチン修飾法の開発

    貴嶋紗久, 坂本真吾, 光田展隆, 小田祥久

    第63回日本植物生理学会年会  2022.3.22 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

  32. 1aSB01 植物細胞における細胞壁蓄積制御メカニズムの視覚的解析と分子的理解 Invited

    佐々木 武馬, 大伏 仙泰, ゴメス ギリアン, 柏野 善大, 稲見 昌彦, 小田 祥久

    日本植物学会第86回大会  2022.9.17 

     More details

    Presentation type:Oral presentation (invited, special)  

    Venue:京都、京都市  

  33. 1aI06 道管の壁孔パターンを制御する ROP GTPase の解析

    長島慶宜, 津川暁, 望月敦史, 佐々木武馬, 福田裕穂, 小田祥久

    第59回日本植物生理学会年会  2018.3.28  日本植物生理学会

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:札幌コンベンションセンター  

  34. 1aF02 微小管付随タンパク質CORDにより制御されるフラグモプラストの動態

    佐々木武馬, 堤元佐, 大友康平, 村田隆, 中村匡良, 根本知己, 長谷部光泰, 小田祥久

    2019.9.15  (公社) 日本植物学会

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:東北大学川内キャンパス・仙台  

  35. 1aE05 細胞膜ドメインの形を制御する新規の微小管付随タンパク質の解析

    杉山 友希, 福田 裕穂, 小田 祥久

    日本植物学会第81回大会  2017.9.8  日本植物学会

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:東京理科大学野田キャンパス  

  36. 1aD10 シロイヌナズナにおいて道管細胞の構造を制御する新規微小管局在因子の解析

    佐々木武馬, 福田裕穂, 小田祥久

    第58回日本植物生理学会年会  2017.3.16  日本植物生理学会

     More details

    Venue:鹿児島大学、鹿児島市  

  37. 1aC02 道管において二次細胞壁パターンを協調的に制御する ROP GTPase シグナルの解析

    長島 慶宜, 福田 裕穂, 小田 祥久

    第57回日本植物生理学会年会  2016.3.18 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:岩手大学、盛岡、岩手  

  38. 1aB09 道管において壁孔の形成を協調的に制御するROP GTPase シグナルの解析

    長島慶宜, 福田裕穂, 小田祥久

    第58回日本植物生理学会年会  2017.3.16  日本植物生理学会

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:鹿児島大学, 鹿児島市  

  39. 3aD06 IQD13 は微小管と細胞膜に相互作用し、二次細胞壁のパターン形成を制御する

    杉山友希, 福田裕穂, 小田祥久

    第59回日本植物生理学会年会  2018.3.30  日本植物生理学会

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:札幌コンベンションセンター  

  40. 道管分化における新規壁孔局在因子の解析

    長島慶宜, 小田祥久, 福田裕穂

    第55回 日本植物生理学会年会  2014.3.19 

     More details

    Language:Japanese   Presentation type:Poster presentation  

  41. 道管イメージングから迫る細胞内秩序形成 Invited

    小田祥久

    2019.9.13  (公財) 日本遺伝学会

     More details

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:福井大学文京キャンパス・福井  

  42. 道管の二次細胞壁パターンを制御する新規ROPシグナル因子の解析

    長島慶宜, 福田裕穂, 小田祥久

    日本植物学会第78回大会  2014.9.12 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

  43. 道管の二次細胞壁パターンを制御する新規ROP エフェクターの解析

    長島慶宜, 福田裕穂, 小田祥久

    第56回 日本植物生理学会年会  2015.3.16 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:東京農業大学世田谷キャンパス、世田谷区  

  44. 道管において壁孔の空間配置を制御するROP GTPaseシグナルの解析

    長島慶宜, 福田裕穂, 小田祥久

    日本植物学会第79回大会  2015.9.8 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:朱鷺メッセ、新潟市  

  45. Novel Coiled-Coil Proteins Regulate Exocyst Association with Cortical Microtubules in Xylem Cells

    Yoshihisa Oda, Yuki Iida, Yoshinobu Nagashima, Yuki Sugiyama, Hiroo Fukuda

    2015.3.15 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

  46. 表層微小管の動態制御に基いた二次細胞壁の空間構築

    杉山友希, 福田裕穂, 小田祥久

    日本植物学会第79回大会  2015.9.8 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:朱鷺メッセ、新潟市  

  47. Molecular basis of cell wall patterning Invited

    Yoshihisa Oda

    2020.10.14 

     More details

    Presentation type:Oral presentation (invited, special)  

  48. 細胞壁パターン形成 Invited

    小田祥久

    第九回定量生物学の会  2019.1.13  定量生物学の会

     More details

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:大阪大学吹田キャンパス  

  49. 細胞壁パターンを導く空間シグナルの動態 Invited

    小田祥久, 長島慶宜, 杉山友希, 福田裕穂

    第55回 日本植物生理学会年会  2014.3.18 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

  50. 植物細胞のライブセルイメージング 〜細胞内空間シグナルの実体を追う〜 Invited

    小田祥久

    日本植物学会年会第78回大会  2014.9.13 

     More details

    Language:Japanese   Presentation type:Public lecture, seminar, tutorial, course, or other speech  

    Venue:神奈川, 川崎市, 明治大学生田キャンパス  

  51. Molecular basis of cell wall patterning in plant xylem vessels Invited International conference

    Yoshihisa Oda

    The 43rd Annual Meeting of the Molecular Biology Society of Japan  2020.12.2 

     More details

    Language:English   Presentation type:Oral presentation (invited, special)  

  52. 木部道管分化にみる細胞の自立的な空間パターン形成

    小田祥久

    国立遺伝学研究所新分野創造センター創立10週年シンポジウム  2016.8.29 

     More details

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:東京大学本郷キャンパス、文京区、東京  

  53. 木部道管分化における自律的な細胞壁パターンの形成

    小田祥久

    MIMS「現象数理学拠点」共同研究集会 「時空間ダイナミクス~生命現象における時間変化を伴う空間秩序」  2017.6.3  MIMS「現象数理学拠点」

     More details

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:明治大学中野キャンパス  

  54. 木部道管への片道切符:細胞壁の不可逆的な機能転換

    小田祥久, 長島慶宜, 杉山友希, 佐々木武馬, 福田裕穂

    日本植物学会第79回大会  2015.9.6 

     More details

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:朱鷺メッセ、新潟市  

  55. 二次細胞壁形成時に機能する新規微小管付随タンパク質の同定

    杉山友希, 小田祥久, 福田裕穂

    第55回 日本植物生理学会年会  2014.3.18 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

  56. 二次細胞壁パターン形成の理解に向けた新規微小管付随タンパク質の解析

    杉山友希, 福田裕穂, 小田祥久

    第56回 日本植物生理学会年会  2015.3.16 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:東京農業大学世田谷キャンパス、世田谷区  

  57. 二次細胞壁のパターン構築を制御する新規微小管付随タンパク質の同定

    杉山友希, 福田裕穂, 小田祥久

    日本植物学会第78回大会  2014.9.12 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

  58. ライブイメージングから切り拓く細胞内秩序形成~オリンパスの共焦点技術と挑む~ Invited

    小田祥久

    第62回日本植物生理学会年会  2021.3.16 

     More details

    Language:Japanese  

  59. 3aSA01 Dissection and reconstruction of cell-wall patterning machinery Invited International conference

    Yoshihisa Oda

    JPR International Symposium:Semi-in-vivo developmental biology  2016.9.18 

     More details

    Language:English   Presentation type:Oral presentation (invited, special)  

  60. Analysis of vegetative actin isoforms’ mutants towards the understanding of the interaction between actin filaments and microtubules in Arabidopsis

    Saku Kijima, Nobutaka Mitsuda, Taro Uyeda, Yoshihisa Oda

    2020.12.4 

     More details

    Language:English   Presentation type:Poster presentation  

  61. Two-dimensional microtubule organization in plant xylem cells Invited International conference

    Yoshihisa Oda

    NIG International Symposium 2016 "Quantitative Biology: force, information and dynamics: X factors shaping living systems"  2016.1.12 

     More details

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Mishima, Shizuoka, Japan  

  62. The molecular basis of secondary cell wall patterns: Dynamic interplay of Rho GTPase and cortical cytoskeleton International conference

    Yoshihisa Oda, Yoshinobu Nagashima, Yuki Sugiyama, Hiroo Fukuda

    Naito Conference"Molecule-based biological systems"  2014.10.9 

     More details

    Language:English   Presentation type:Poster presentation  

    Venue:Gateaux kingdom SAPPORO, Sapporo, Hokkaido  

  63. Spontaneous pattern formation of Rho GTPase in xylem vessel cells International conference

    Yoshinobu Nagashima, Hiroo Fukuda, Yoshihisa Oda

    iCeMS International Symposium Hierarchical Dynamics in Soft Materials and Biological Matter  2015.9.24 

     More details

    Language:English   Presentation type:Poster presentation  

    Venue:Kyoto University, Kyoto, Japan  

  64. Self-organization of cell wall patterns through the Rho GTPase-cortical microtubule interplay Invited International conference

    Yoshihisa Oda

    EMBO/ESF Conference "Cell polarity and membrane trafficking"  2014.5.12 

     More details

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Polonia Castle (Dom Polonii), Pułtusk, Poland  

  65. Secondary cell wall patterning in metaxylem vessels Invited International conference

    Yoshihisa Oda

    Front Lines of Plant Cell Wall Research  2015.3.20 

     More details

    Language:English   Presentation type:Oral presentation (invited, special)  

  66. Secondary cell wall patterning in metaxylem vessels Invited International conference

    Yoshihisa Oda

    The 26th International Conference on Arabidopsis Research  2015.7.5 

     More details

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Palais Des Congres, Paris, France  

  67. Secondary cell wall patterning in metaxylem vessels Invited International conference

    Yoshihisa Oda

    TAIWAN-JAPAN Plant Biology  2017.11.4  TAIWAN-JAPAN Plant Biology

     More details

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Academia Sinica, Taipei, Taiwan  

  68. Secondary cell wall patterning in meaxylem vessels Invited International conference

    Yoshihisa Oda

    1st PSC Advanced Microscopic Imaging Symposium  2018.8.1 

     More details

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Shanghai Center for Plant Stress Biology, Shanghai  

  69. Secondary cell wall patterning by the microtubule-associated protein MIDD1 Invited International conference

    Yoshihisa Oda, Hiroo Fukuda

    10th International Congress on Molecular Plant Biology (IMPB)  2012.10.24 

     More details

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Korea  

  70. S14-4 局所的な細胞壁成分輸送を導く細胞骨格の動態 Invited

    小田祥久

    第61回日本植物生理学会年会  2020.3.21  日本植物生理学会

     More details

    Presentation type:Oral presentation (invited, special)  

    Venue:大阪大学吹田キャンパス、吹田市、大阪  

  71. PL-062 道管において二次細胞壁パターンを制御する協調的なROPシグナル分子の解析

    長島 慶宜, 福田 裕穂, 小田 祥久

    日本植物学会第81回大会  2017.9.10  日本植物学会

     More details

    Language:Japanese   Presentation type:Poster presentation  

    Venue:東京理科大学野田キャンパス  

  72. PL-059 表層微小管の脱配向性を促進する新規微小管局在性タンパク質の機能解析

    佐々木 武馬, 福田 裕穂, 小田 祥久

    日本植物学会第81回大会  2017.9.10  日本植物学会

     More details

    Language:Japanese   Presentation type:Poster presentation  

    Venue:東京理科大学野田キャンパス  

  73. PL-046 二次細胞壁のパターン形成において細胞膜ドメインの形は新規の細胞膜‐微小管付随タンパク質により制御される

    杉山友希, 若崎眞由美, 佐藤繭子, 豊岡公徳, 福田裕穂, 小田祥久

    第58回日本植物生理学会年会  2017.3.18  日本植物生理学会

     More details

    Language:Japanese   Presentation type:Poster presentation  

    Venue:鹿児島大学、鹿児島市  

  74. PF-088 新規木部細胞分化誘導系を用いた二次細胞壁パターン制御機構の解析

    小田 祥久, 佐々木 武馬

    日本植物学会第81回大会  2017.9.9  日本植物学会

     More details

    Language:Japanese   Presentation type:Poster presentation  

    Venue:東京理科大学野田キャンパス  

  75. PF-081葉緑体光定位運動における新規phot2相互作用因子の解析

    比嘉毅, 後藤栄治, 和田正三, 小田祥久, 中井正人

    第62回日本植物生理学会年会  2021.3.16 

     More details

    Language:Japanese   Presentation type:Poster presentation  

  76. PF-049新規ゴルジ局在タンパク質HOPはカロースの蓄積制御を介し細胞板の形成に寄与する

    佐々木武馬, 小田祥久

    第62回日本植物生理学会年会  2021.3.16 

     More details

    Language:Japanese   Presentation type:Poster presentation  

  77. P-1336 シロイヌナズナに おいて細胞の形態を制御する転写因 子の探索

    佐々木武馬, 松井南, 小田祥久

    日本植物学会第80回沖縄大会  2016.9.18 

     More details

    Language:Japanese   Presentation type:Poster presentation  

    Venue:那覇、沖縄  

  78. Moleular basis of secondary cell wall patterning Invited International conference

    Yoshihisa Oda

    GDRI Integrative Plant Biology "The Developing Plant in its Environment"  2017.10.23  GDRI Integrative Plant Biology

     More details

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Lyon, France  

  79. Molecular basis of plant cell wall patterning: a Rho GTPase-driven symmetry breaking in the two-dimensional microtubule organization Invited International conference

    Yoshihisa Oda

    iCeMS International Symposium Hierarchical Dynamics in Soft Materials and Biological Matter  2015.9.26 

     More details

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Kyoto University, Kyoto, Japan  

  80. Molecular basis of cell wall patterning in xylem vessels Invited International conference

    From cellular dynamics to morphology  2020.12.15 

     More details

    Language:English   Presentation type:Oral presentation (invited, special)  

  81. Live cell imaging of xylem differentiation: dissecting the molecular basis of secondary cell wall patterning Invited International conference

    Yoshihisa Oda

    International ERATO Higashiyama Live-Holonics Symposium 2014 “Plant Live-Cell Imaging and Microdevices”  2014.9.9 

     More details

    Language:English   Presentation type:Oral presentation (invited, special)  

  82. Cortical microtubule patterning in xylem cells Invited International conference

    Yoshihisa Oda

    Biochemistry and Moleclar Biology 2015 (BMB2015)  2015.12.4 

     More details

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Port Island, Kobe, Japan  

  83. A novel microtubule-localized protein regulates the structure of xylem vessels International conference

    Takema Sasaki, Hiroo Fukuda, Yoshihisa Oda

    The 1st IROAST Symposium: Plant Cell and Developmental Biology: Approaches to Multiscale Biosystems  2017.11.14  IROAST

     More details

    Language:English   Presentation type:Poster presentation  

    Venue:Kumamoto University, Kumamoto  

  84. A novel microtubule-associated protein, CORTICAL MICROTUBULE DISORDERING1 (CORD1), regulates the cell-wall structure of xylem vessels International conference

    Takema Sasaki, Hiroo Fukuda, Yoshihisa Oda

    Gordon Research Conference-Plant and Microbial Cytoskeleton-  2018.8.12 

     More details

    Language:English   Presentation type:Poster presentation  

    Venue:Proctor Academy, Andover, NH, USA  

  85. A novel actin microfilament-binding protein mediates spatial interaction between cortical microtubules and ROP GTPases in xylem cell wall patterning International conference

    Yuki Sugiyama, Hiroo Fukuda, 〇Yoshihisa Oda

    Gordon Research Conference ( Plant & Microbial Cytoskeleton 2014)  2014.8.10 

     More details

    Language:English   Presentation type:Poster presentation  

    Venue:Andover, NH, USA  

  86. Cell wall patterning in plant xylem vessels Invited

    Yoshihisa Oda

    ConBio2017  2017.12.8  ConBio2017

     More details

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

  87. 2光子共焦点顕微鏡による植物組織イメージング Invited

    2018.12.17 

     More details

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

  88. 道管分化にみる細胞内秩序の構築機構 Invited

    小田祥久

    植物科学シンポジウム2019「SDGsに向けた植物科学の展開」  2019.12.11  理化学研究所、産業技術総合研究所、農業・食品産業技術総合研究機構、大学植物科学研究者ネットワーク

     More details

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:東京大学、文京区、東京  

  89. 道管分化にみる細胞内秩序の構築機構 Invited

    小田祥久

    生物科学セミナー  2019.12.26  大阪大学理学部生物科学科

     More details

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:大阪府豊中市  

  90. 道管分化にみる細胞内秩序の構築機構 Invited

    小田祥久

    先端融合研究環・開拓プロジェクト 「⾼次⽣命現象におけるゲノムファンクション」学術講演会  2020.1.10  神戸大学理学部

     More details

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:神戸大学、神戸  

  91. 陸上植物における紡錘体軸 および細胞分裂方向の制御機構

    佐々木 武馬, 石崎 公庸, 本瀬 宏康, 小田 祥久

    日本植物学会第87回大会   2023.9.7 

▼display all

Research Project for Joint Research, Competitive Funding, etc. 3

  1. 液ー液相分離が駆動する細胞壁パターンの構築

    2022.10 - 2023.9

    自然科学研究助成 

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\12000000

  2. 細胞表層の微⼩管パターン構築機構の研究

    2020.9 - 2021.9

    内藤記念特定研究助成金 

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\1500000 ( Direct Cost: \1500000 )

  3. 細胞膜ドメインの境界構造とde novo形成過程の解明

    2015.10 - 2016.9

    自然科学研究助成 

      More details

    Grant amount:\6000000

KAKENHI (Grants-in-Aid for Scientific Research) 21

  1. 植物細胞骨格パターンの再構成

    Grant number:23K18126  2023.6 - 2026.3

    日本学術振興会   科学研究費助成事業 挑戦的研究(萌芽)  

      More details

    Authorship:Principal investigator 

    Grant amount:\6500000 ( Direct Cost: \5000000 、 Indirect Cost:\1500000 )

  2. Advanced Bioimaging Support

    Grant number:22H04926  2022.4 - 2028.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Transformative Research Areas (platforms for Advanced Technologies and Research Resources)  Grant-in-Aid for Transformative Research Areas (platforms for Advanced Technologies and Research Resources)

      More details

    Authorship:Coinvestigator(s) 

  3. 道管をモデルとした細胞壁グランドデザインの構築機構の研究

    Grant number:21H02514  2021.4 - 2024.3

    日本学術振興会  科学研究費助成事業 基盤研究(B)  基盤研究(B)

    小田 祥久

      More details

    Authorship:Principal investigator 

    Grant amount:\17290000 ( Direct Cost: \13300000 、 Indirect Cost:\3990000 )

    細胞の形は個々の細胞のはたらき、さらには個体の正常な発達に必須です。植物においては細胞壁の沈着パターンが細胞の形とはたらきを決定づけています。植物の発生過程ではいかにしてそれぞれの細胞が固有の細胞壁パターンをつくりだしているのでしょうか?本研究では特徴的な細胞壁パターンを作り分ける道管組織に着目し、細胞が固有の細胞壁パターンを作り出す仕組みの解明を目指します。

  4. 細胞表層の微⼩管パターン構築機構の研究

    2020.9 - 2021.9

    公益財団法人 内藤記念科学振興財団  内藤記念特定研究助成金 

    小田祥久

      More details

    Authorship:Principal investigator 

  5. 植物細胞のメカノセンシング機構の解析

    Grant number:20K21435  2020.7 - 2022.3

    日本学術振興会  科学研究費助成事業 挑戦的研究(萌芽)  挑戦的研究(萌芽)

    小田 祥久, 島本勇太

  6. 細胞膜ドメインの周期性とその変調が導出する植物の細胞壁パターン

    2019.7 - 2023.3

    科研費:新学術計画研究 

    小田祥久

      More details

    Authorship:Principal investigator  Grant type:Competitive

  7. 細胞膜ドメインの周期性とその変調が導出する植物の細胞壁パターン

    Grant number:19H05677  2019.6 - 2024.3

    科学研究費助成事業  新学術領域研究(研究領域提案型)

    小田 祥久

      More details

    Authorship:Principal investigator 

    Grant amount:\75140000 ( Direct Cost: \57800000 、 Indirect Cost:\17340000 )

    植物の体は様々なタイプの細胞が積み重なるようにして作られている。このような植物の組織の成長はそれぞれの細胞における細胞壁の沈着の仕方に大きく依存している。研究代表者はこれまでに植物体内で水を運ぶ役割を担う道管の細胞をモデルとして細胞壁の沈着の仕方を制御する仕組みを明らかにしてきた。その一方で細胞壁の沈着の仕方が一様にあるいは多様に制御される仕組みや、周辺の細胞と協調的に細胞壁の沈着の仕方を調節する仕組みほどんど分かっていない。本研究では道管の細胞に周期的な構造が生じる過程を解析し、細胞の自律的・協調的に細胞壁の沈着の仕方を制御する仕組みを明らかにする。
    植物は移動能をもたない細胞で構成されるため、植物の発生は個々の細胞が連携して分裂、成長、分化する一連の挙動の集積によって成し遂げられる。植物細胞の挙動は細胞表面に沈着する細胞壁の沈着パターンに依存しており、個々の細胞は細胞タイプごとに固有の細胞壁の沈着パターンを構築している。道管の細胞は植物が根から吸収した水を輸送するため、細胞表面に厚く丈夫な細胞壁を螺旋、網目、孔紋状などの秩序立ったパターンに沈着する。道管の細胞表層では微小管が形成する周期的な配列に、低分子量Gタンパク質ROPの活性化反応が変調を与えることによって細胞膜上に複合的な周期が生じ、これが道管に特徴的な細胞壁の周期パターンの鋳型となる。本研究ではこれまでに研究代表者が明らかにしてきた細胞壁パターンの制御を手掛かりに、研究代表者がもつ道管分化誘導系や周期ドメインの再構築実験系と、領域のイメージング技術、数理・情報工学を融合することにより、道管分化における周期ドメインの時空間的な変調を精密に解析してきた。今年度の研究では、昨年度開発した、機械学習を取り入れた細胞壁パターンの解析ソフトのプロトタイプに学習用画像の追加により完成させ、実際に変異体のスクリーニングを行った。その結果、昨年度のプロトタイプよりも高い精度で細胞壁のパターンを解析することが可能となり、新たな変異体を単利したほか、既存の変異体のより詳細な解析が可能となった。今後はさらにソフトに改良を加えハイスループット化するほか、単利した変異体の細胞壁パターンの周期性の解析を進める。
    いくつかの実験で若干の遅れが生じたがおおよそ計画通りに研究が進行しているため。
    計画通り研究を進める予定である。

  8. Intrinsic periodicity of cellular systems and its modulation as the driving force be

    Grant number:19H05670  2019.6 - 2024.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)  Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

      More details

    Authorship:Coinvestigator(s) 

  9. 先端バイオイメージング支援プラットフォーム (分担)

    2019.4 - 2022.3

    科研費:新学術領域研究 

    狩野 方伸

      More details

    Grant type:Competitive

  10. 細胞分化における細胞表層構造の力学的最適化

    2019.4 - 2021.3

    科研費:新学術公募研究 

    小田祥久

      More details

    Authorship:Principal investigator  Grant type:Competitive

  11. 2光子共焦点顕微鏡を駆使した植物組織の深部イメージング技術の開発

    2018.4 - 2022.3

    物質・デバイス領域共同研究拠点  COREラボ共同研究 

    小田祥久

      More details

    Authorship:Principal investigator  Grant type:Competitive

  12. 細胞内空間情報の構築原理の解明

    2018.4 - 2021.3

    科研費  基盤研究(B) 

    小田祥久

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\17290000 ( Direct Cost: \13300000 、 Indirect Cost:\3990000 )

  13. 木部道管分化をモデルとした転写因子による細胞形態形成制御機構の解明

    2016.4 - 2018.3

    科研費 新学術公募研究 

    小田祥久

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\10660000 ( Direct Cost: \8200000 、 Indirect Cost:\2460000 )

  14. 植物細胞の空間情報処理機構の階層的理解

    2016.4 - 2018.3

    科研費 若手研究(A) 

    小田祥久

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\25090000 ( Direct Cost: \19300000 、 Indirect Cost:\5790000 )

  15. 細胞膜ドメインの境界構造とde novo形成過程の解明

    2015.10 - 2016.9

    公益財団法人 三菱財団  自然科学研究助成 

    小田祥久

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\6000000 ( Direct Cost: \6000000 )

  16. 二次細胞壁のパターン形成を支配する空間シグナルの解明

    2015.4 - 2017.3

    科研費 新学術公募研究 

    小田祥久

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\9100 ( Direct Cost: \7000 、 Indirect Cost:\2100 )

  17. 木部細胞分化をモデルとした細胞内空間制御機構の解析

    2014.4 - 2016.3

    科研費 新学術公募研究 

    小田祥久

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\11440000 ( Direct Cost: \8800000 、 Indirect Cost:\2640000 )

  18. RopGTPaseと表層微小管の自己組織化に着目した細胞形態形成の基本原理の解析

    2013.4 - 2016.3

    科研費 基盤(C) 

    小田祥久

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\5330000 ( Direct Cost: \4100000 、 Indirect Cost:\1230000 )

  19. 二次細胞壁のパターン形成を支配する空間シグナルの解明

    2013.4 - 2015.3

    科研費 新学術公募研究 

    小田祥久

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\9880000 ( Direct Cost: \7600000 、 Indirect Cost:\2280000 )

  20. 細胞内自己組織化制御と生体ナノマシンの開発による新規木質バイオマス素材の創出

    2011.12 - 2015.3

    JST  さきがけ(二酸化炭素資源化領域) 

    小田祥久

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Direct Cost: \39990000 )

  21. 木部細胞分化を制御する細胞膜・細胞骨格間クロストークの分子実体の解明

    2010.10 - 2012.3

    科研費 スタート支援 

    小田祥久

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\3146 ( Direct Cost: \2420 、 Indirect Cost:\726 )

▼display all

 

Teaching Experience (On-campus) 4

  1. 理学概論

    2023

  2. 生体構築論講義

    2023

  3. 生体構築論講義2

    2022

  4. 生物学基礎IIα

    2022

 

Academic Activities 9

  1. Symposium "Unveil the enigma of plant actuators: exploring molecular and evolutionary mechanisms and engineering applications

    Role(s):Planning, management, etc.

    Moe Yamada, Daisuke Inoue, Yoshihisa Oda  2024.3

  2. シンポジウム「分⼦情報フローから迫る植物の流体⽣命システム」

    Role(s):Planning, management, etc.

    小田 祥久, 桧垣 匠  ( 神戸市 ) 2023.12

     More details

    Type:Competition, symposium, etc. 

  3. シンポジウム「超人植物学 リターンズ:人機共創がもたらす植物学の未来像」

    Role(s):Planning, management, etc.

    中島敬二, 小田祥久  2023.9

     More details

    Type:Competition, symposium, etc. 

  4. 国際会議 第49回内藤コンファレンス「微小管・分子モーター研究の最前線-分子構造から細胞機能、個体、疾患まで」 International contribution

    Role(s):Planning, management, etc.

    岡田 康志, 吉川 雅英, 丹羽 伸介, 小田 祥久, 大杉 美穂   2023.7

     More details

    Type:Academic society, research group, etc. 

  5. 新学術領域植物の周期と変調第3回若手ワークショップ

    Role(s):Planning, management, etc.

    小田祥久  2022.10 - 2022.11

     More details

    Type:Academic society, research group, etc. 

  6. シンポジウム「細胞メカニクス研究の最前線~拡張し続ける視覚と認知の到達点~」

    Role(s):Planning, management, etc.

    小田祥久、植田美那子  ( 京都、京都市 ) 2022.9

     More details

    日本植物学会第86回大会シンポジウム

  7. Multi-angle views of plant pluripotent stem cells

    Role(s):Planning, management, etc.

    Naoyuki Uchida, Yoshihisa Oda  2016.3

  8. シンポジウム「細胞機能の変容と循環を視る ~可逆性と不可逆性から探る細胞分化の本質~」

    Role(s):Planning, management, etc.

    小田祥久  ( 新潟、新潟市 ) 2015.9

     More details

    Type:Competition, symposium, etc. 

    日本植物学会第79会大会シンポジウム

  9. シンポジウム「植物の高次機能を支える 細胞表層の分子ダイナミクス」

    Role(s):Planning, management, etc.

    小田祥久, 藤本優  ( 駒場、東京 ) 2011.9

     More details

    Type:Competition, symposium, etc. 

    日本植物学会第75回大会シンポジウム

▼display all