Updated on 2024/03/22

写真a

 
ONODA Hiroki
 
Organization
Synchrotron Radiation Research Center Division of Synchrotron Radiation Assistant Professor
Title
Assistant Professor
External link

Degree 3

  1. Doctor of Science ( 2019.3   Nagoya University ) 

  2. Master of Science ( 2016.3   Nagoya University ) 

  3. Bachelor of Science ( 2014.3   Nagoya University ) 

Research Interests 3

  1. Structural biology

  2. cytochrome P450

  3. Enzyme engineering

Research Areas 2

  1. Life Science / Structural biochemistry

  2. Life Science / Applied microbiology

Current Research Project and SDGs 1

  1. 構造予測AIが見出すバイオ燃料変換酵素

Research History 5

  1. Nagoya University   Synchrotron Radiation Research Center   Assistant Professor

    2022.4

      More details

    Country:Japan

    researchmap

  2. 公益財団法人科学技術交流財団   あいちシンクロトロン光ビームライン課   研究員

    2022.4

  3. Yokohama City University   Graduate School of Medical Life Science

    2022.4 - 2023.3

      More details

  4. Yokohama City University   Graduate School of Medical Life Science   Designated assistant professor

    2020.1 - 2022.3

      More details

    Country:Japan

  5. MicroBiopharm Japan Co., Ltd.   Researcher

    2019.4 - 2019.12

      More details

Education 3

  1. Nagoya University   Graduate School of Science   Department of Chemistry

    2016.4 - 2019.3

      More details

    Country: Japan

    researchmap

  2. Nagoya University   Graduate School of Science   Department of Chemistry

    2014.4 - 2016.3

      More details

    Country: Japan

    researchmap

  3. Nagoya University   School of Science   Department of Chemistry

    2010.4 - 2014.3

      More details

    Country: Japan

    researchmap

Professional Memberships 5

  1. 日本農芸化学会

    2023.6

      More details

  2. 日本薬学会

    2023.6

      More details

  3. 日本薬物動態学会

    2023.4

      More details

  4. 日本蛋白質科学会

    2018.4

      More details

  5. 日本化学会

    2013.12

      More details

Awards 9

  1. Nagoya University Outstanding Graduate Student Award

    2018.6  

     More details

  2. 名古屋大学大学院理学研究科顕彰

    2016.3   名古屋大学大学院理学研究科  

     More details

  3. The President’s Award

    2015.6   The 19th International Conference on Cytochrome P450  

     More details

  4. Best Poster Award

    2014.9   The 12th International Symposium on Cytochrome P450  

     More details

  5. ポスター賞

    2018.9   第12回バイオ関連化学シンポジウム  

     More details

  6. 錯体化学若手の会夏の学校2017「優秀ポスター賞」

    2017.7   Young Coordination Chemist's Association Japan  

     More details

  7. 平成27年度優秀学位論文賞

    2016.2   名古屋大学大学院理学研究科物質理学専攻  

     More details

  8. 第27回サマースクール「ポスター賞」

    2015.7   Division of Biofunctional Chemistry, The chemical Society of Japan  

     More details

  9. Five Winners of Award Finalist

    2015.6   The 19th International Conference on Cytochrome P450  

     More details

▼display all

 

Papers 16

  1. Investigating the applicability of the CYP102A1-decoy-molecule system to other members of the CYP102A subfamily Reviewed

    Joshua Kyle Stanfield, Hiroki Onoda, Shinya Ariyasu, Chie Kasai, Eleanor Mary Burfoot, Hiroshi Sugimoto, Osami Shoji

    Journal of Inorganic Biochemistry   Vol. 245   page: 112235 - 112235   2023.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Elsevier {BV}  

    DOI: 10.1016/j.jinorgbio.2023.112235

    Scopus

    PubMed

    researchmap

  2. Structural basis for activation of DNMT1 Reviewed

    Kikuchi Amika, Hiroki Onoda, Kosuke Yamaguchi, Satomi Kori, Shun Matsuzawa, yoshie chiba, Shota Tanimoto, Sae Yoshimi, Hiroki Sato, Atsushi Yamagata, Mikako Shirouzu, Naruhiko Adachi, Jafar Sharif, Haruhiko Koseki, Atsuya Nishiyama, Makoto Nakanishi, Pierre-Antoine Defossez, Kyohei Arita

    Nature Communications   Vol. 13 ( 1 ) page: 7130   2022.11

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media {LLC}  

    Abstract

    DNMT1 is an essential enzyme that maintains genomic DNA methylation, and its function is regulated by mechanisms that are not yet fully understood. Here, we report the cryo-EM structure of nearly full-length human DNMT1 bound to its two natural activators: hemimethylated DNA and ubiquitinated histone H3. We find that a hitherto unstudied linker, between the RFTS and CXXC domains, plays a key role for activation. It contains a conserved α-helix which engages a crucial “Toggle” pocket, displacing a previously described inhibitory linker, and allowing the DNA recognition helix to spring into the active conformation. This is accompanied by large-scale reorganization of the inhibitory RFTS and CXXC domains, allowing the enzyme to gain full activity. Our results therefore provide a mechanistic basis for the activation of DNMT1, with consequences for basic research and drug design.

    DOI: 10.1038/s41467-022-34779-4

    Scopus

    PubMed

    researchmap

  3. Exploring hitherto uninvestigated reactions of the fatty acid peroxygenase CYP152A1: catalase reaction and Compound I formation Reviewed International journal

    Hiroki Onoda, Shota Tanaka, Yoshihito Watanabe, Osami Shoji

    Faraday Discussions   Vol. 234 ( 0 ) page: 304 - 314   2022

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Royal Society of Chemistry ({RSC})  

    CYP152A1 (cytochrome P450BSβ) is a fatty acid peroxygenase, which specifically catalyses the oxidation of long-chain fatty acids using hydrogen peroxide as an oxidant. We have found that CYP152A1 possesses catalase activity, which competes with the hydroxylation of long-chain fatty acids, the oxidation of non-native substrates, and haem degradation. Using hydrogen peroxide, Compound I of CYP152A1 could not be observed, due to its swift decomposition via catalase activity, where Compound I reacts with another molecule of hydrogen peroxide to form O2. In contrast, a clear spectral change indicative of Compound I formation was observed when mCPBA was employed as the oxidant. This work presents valuable insights into an important role for the catalase activity of CYP152A1 in avoiding enzyme deactivation when no substrate is available for oxidation.

    DOI: 10.1039/D1FD00065A

    Scopus

    PubMed

    researchmap

  4. Highly malleable haem-binding site of the haemoprotein HasA permits stable accommodation of bulky tetraphenylporphycenes Reviewed International journal

    Erika Sakakibara, Yuma Shisaka, Hiroki Onoda, Daiki Koga, Ning Xu, Toshikazu Ono, Yoshio Hisaeda, Hiroshi Sugimoto, Yoshitsugu Shiro, Yoshihito Watanabe, Osami Shoji

    RSC Advances   Vol. 9 ( 32 ) page: 18697 - 18702   2019

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Iron(iii)- and cobalt(iii)-9,10,19,20-tetraphenylporphycenes, which possess bulky phenyl groups at the four meso positions of porphycene, were successfully incorporated into the haem acquisition protein HasA secreted by Pseudomonas aeruginosa. Crystal structure analysis revealed that loops surrounding the haem-binding site are highly flexible, remodelling themselves to accommodate bulky metal complexes with significantly different structures from the native haem cofactor.

    DOI: 10.1039/C9RA02872B

    Scopus

    PubMed

    researchmap

  5. Efficient hydroxylation of cycloalkanes by co-addition of decoy molecules to variants of the cytochrome P450 CYP102A1. Reviewed

    Dezvarei S, Onoda H, Shoji O, Watanabe Y, Bell SG

    Journal of inorganic biochemistry   Vol. 183   page: 137 - 145   2018.6

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.jinorgbio.2018.03.001

    Scopus

    PubMed

    researchmap

  6. α-Oxidative decarboxylation of fatty acids catalysed by cytochrome P450 peroxygenases yielding shorter-alkyl-chain fatty acids Reviewed

    Hiroki Onoda, Osami Shoji, Kazuto Suzuki, Hiroshi Sugimoto, Yoshitsugu Shiro, Yoshihito Watanabe

    Catalysis Science & Technology   Vol. 8 ( 2 ) page: 434 - 442   2018

     More details

    Authorship:Lead author   Language:Japanese   Publishing type:Research paper (scientific journal)   Publisher:Royal Society of Chemistry ({RSC})  

    DOI: 10.1039/C7CY02263H

    Scopus

    researchmap

  7. Acetate anion-triggered peroxygenation of non-native substrates by wild-type cytochrome P450s Reviewed

    Hiroki Onoda, Osami Shoji, Yoshihito Watanabe

    Dalton Trans.   Vol. 44 ( 34 ) page: 15316 - 15323   2015

     More details

    Authorship:Lead author   Language:Japanese   Publishing type:Research paper (scientific journal)   Publisher:Royal Society of Chemistry ({RSC})  

    DOI: 10.1039/c5dt00797f

    Scopus

    PubMed

    researchmap

  8. The Blinking of Small-Angle X-ray Scattering Reveals the Degradation Process of Protein Crystals at Microsecond Timescale Reviewed

    Tatsuya Arai, Kazuhiro Mio, Hiroki Onoda, Leonard M. G. Chavas, Yasufumi Umena, Yuji C. Sasaki

    International Journal of Molecular Sciences   Vol. 24 ( 23 ) page: 16640 - 16640   2023.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:MDPI AG  

    X-ray crystallography has revolutionized our understanding of biological macromolecules by elucidating their three-dimensional structures. However, the use of X-rays in this technique raises concerns about potential damage to the protein crystals, which results in a quality degradation of the diffraction data even at very low temperatures. Since such damage can occur on the micro- to millisecond timescale, a development in its real-time measurement has been expected. Here, we introduce diffracted X-ray blinking (DXB), which was originally proposed as a method to analyze the intensity fluctuations of diffraction of crystalline particles, to small-angle X-ray scattering (SAXS) of a lysozyme single-crystal. This novel technique, called the small-angle X-ray blinking (SAXB) method, analyzes the fluctuation in SAXS intensity reflecting the domain fluctuation in the protein crystal caused by the X-ray irradiation, which could be correlated with the X-ray-induced damage on the crystal. There was no change in the protein crystal’s domain dynamics between the first and second X-ray exposures at 95K, each of which lasted 0.7 s. On the other hand, its dynamics at 295K increased remarkably. The SAXB method further showed a dramatic increase in domain fluctuations with an increasing dose of X-ray radiation, indicating the significance of this method.

    DOI: 10.3390/ijms242316640

    Scopus

    PubMed

    researchmap

  9. Catalytic Oxidation of Methane by Wild-Type Cytochrome P450BM3 with Chemically Evolved Decoy Molecules Reviewed

    Shinya Ariyasu, Kai Yonemura, Chie Kasai, Yuichiro Aiba, Hiroki Onoda, Yuma Shisaka, Hiroshi Sugimoto, Takehiko Tosha, Minoru Kubo, Takashi Kamachi, Kazunari Yoshizawa, Osami Shoji

    ACS Catalysis   Vol. 13 ( 13 ) page: 8613 - 8623   2023.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:American Chemical Society (ACS)  

    DOI: 10.1021/acscatal.3c01158

    Scopus

    researchmap

  10. Structural basis for the unique multifaceted interaction of DPPA3 with the UHRF1 PHD finger Reviewed

    Keiichi Hata, Naohiro Kobayashi, Keita Sugimura, Weihua Qin, Deis Haxholli, Yoshie Chiba, Sae Yoshimi, Gosuke Hayashi, Hiroki Onoda, Takahisa Ikegami, Christopher B Mulholland, Atsuya Nishiyama, Makoto Nakanishi, Heinrich Leonhardt, Tsuyoshi Konuma, Kyohei Arita

    Nucleic Acids Research     2022.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Cold Spring Harbor Laboratory  

    ABSTRACT

    Ubiquitin-like with PHD and RING finger domain-containing protein 1 (UHRF1)-dependent DNA methylation is essential for maintaining cell fate during cell proliferation. Developmental pluripotency-associated 3 (DPPA3) is an intrinsically disordered protein that specifically interacts with UHRF1 and promotes DNA demethylation by inhibiting UHRF1 chromatin localization. However, the molecular basis of how DPPA3 interacts with and inhibits UHRF1 remains unclear. We aimed to determine the solution nuclear magnetic resonance structure of the mouse UHRF1 plant homeodomain (PHD) complexed with DPPA3. Induced α-helices in DPPA3 upon binding of UHRF1 PHD contribute to stable complex formation with multifaceted interactions, unlike canonical ligand proteins of the PHD domain. Mutations in the binding interface and unfolding of the DPPA3 helical structure inhibited binding to UHRF1 and its chromatin localization. Our results provide structural insights into the mechanism and specificity underlying the inhibition of UHRF1 by DPPA3.

    DOI: 10.1093/nar/gkac1082

    PubMed

    researchmap

  11. Tetraphenylporphyrin Enters the Ring: First Example of a Complex between Highly Bulky Porphyrins and a Protein** Reviewed International journal

    Yuma Shisaka, Erika Sakakibara, Kazuto Suzuki, Joshua Kyle Stanfield, Hiroki Onoda, Garyo Ueda, Miu Hatano, Hiroshi Sugimoto, Osami Shoji

    ChemBioChem   Vol. 23 ( 14 ) page: e202200095   2022.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Tetraphenylporphyrin (TPP) is a symmetrically substituted synthetic porphyrin whose properties can be readily modified, providing it with significant advantages over naturally occurring porphyrins. Herein, we report the first example of a stable complex between a native biomolecule, the haemoprotein HasA, and TPP as well as its derivatives. The X-ray crystal structures of nine different HasA-TPP complexes were solved at high resolutions. HasA capturing TPP derivatives was also demonstrated to inhibit growth of the opportunistic pathogen Pseudomonas aeruginosa. Mutant variants of HasA binding FeTPP were shown to possess a different mode of coordination, permitting the cyclopropanation of styrene.

    DOI: 10.1002/cbic.202200095

    Scopus

    PubMed

    researchmap

  12. Preparation of the ubiquitination-triggered active form of SETDB1 in Escherichia coli for biochemical and structural analyses Reviewed International journal

    Tomoko Funyu, Yuka Kanemaru, Hiroki Onoda, Kyohei Arita

    The Journal of Biochemistry   Vol. 170 ( 5 ) page: 655 - 662   2021.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Oxford University Press ({OUP})  

    Trimethylation of histone H3 at K9 by the lysine methyltransferase, SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) plays a pivotal role in silencing tissue-specific genes and retrotransposable elements. In mammalian cells, SETDB1 undergoes monoubiquitination in the insertion region of the SET domain in an E3 ubiquitin ligase-independent manner. This ubiquitination has been shown to enhance the histone H3-K9 methyltransferase activity of SETDB1; however, the molecular mechanism underlying SETDB1 activation by ubiquitination is unknown. In this study, we developed an E. coli ubiquitination plasmid for the preparation of ubiquitinated SETDB1. Western blotting and mutational analyses showed that coexpression of the SET domain of SETDB1 with the proteins encoded by the ubiquitination plasmid led to site-specific monoubiquitination of the SET domain at K867. An in vitro histone H3 methylation assay demonstrated that the ubiquitinated SET domain of SETDB1 acquired enzymatic activity. Taken together, these findings demonstrate successful preparation of the active form of SETDB1 with the E. coli ubiquitination system, which will aid biochemical and structural studies of ubiquitinated SETDB1.

    DOI: 10.1093/jb/mvab087

    PubMed

    researchmap

  13. Systematic Evolution of Decoy Molecules for the Highly Efficient Hydroxylation of Benzene and Small Alkanes Catalyzed by Wild-Type Cytochrome P450BM3 Reviewed

    Kai Yonemura, Shinya Ariyasu, Joshua Kyle Stanfield, Kazuto Suzuki, Hiroki Onoda, Chie Kasai, Hiroshi Sugimoto, Yuichiro Aiba, Yoshihito Watanabe, Osami Shoji

    ACS Catalysis   Vol. 10 ( 16 ) page: 9136 - 9144   2020.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:American Chemical Society (ACS)  

    Highly effective dipeptidic decoy molecules, which stimulate the direct hydroxylation of benzene by wild-type cytochrome P4SOBM3, were successfully developed through a rationally designed screening method. Extensive synthesis and step-wise screening of over 600 dipeptide derivatives were performed for the efficient evolution of decoy molecules. In the presence of N-(3-cyclopentyl)propanoyl-L-pipecolyl-L-phenylalanine (3CPPA-Pip-Phe), one of the most effective decoy molecules discovered herein, the catalytic turnover frequency and total turnover number for benzene hydroxylation reached 405 min(-1) P450BM3(-1) and 54,500 P450BM3(-1), respectively. Furthermore, the decoy molecules developed in this work drastically accelerated the hydroxylation of other non-native substrates, such as anisole and toluene, as well as nonaromatic compounds, such as cyclohexane, propane, and ethane. Using N-enanthoyl-L-pipecolyl-L-phenylalanine (C7AM-Pip-Phe), the hydroxylation rate for ethane to ethanol reached 82.7 min(-1) P450BM3(-1).

    DOI: 10.1021/acscatal.0c01951

    Web of Science

    Scopus

    researchmap

  14. Control of microenvironment around enzymes by hydrogels Reviewed International journal

    Yuichiro Kobayashi, Kenji Kohara, Yusuke Kiuchi, Hiroki Onoda, Osami Shoji, Hiroyasu Yamaguchi

    Chemical Communications   Vol. 56 ( 49 ) page: 6723 - 6726   2020

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Royal Society of Chemistry ({RSC})  

    We prepared enzyme-immobilized hydrogels and investigated the effects of the cross-linking density and polymer properties on their oxidation reaction rate. The oxidation rate of enzyme-immobilized hydrogels increased as the cross-linking density in the hydrogels increased. In addition, we controlled the oxidation rate using hydrogels exhibiting an appropriate interaction with a decoy molecule in the hydrogel.

    DOI: 10.1039/D0CC01332C

    Scopus

    PubMed

    researchmap

  15. Reconstitution of full-length P450BM3 with an artificial metal complex by utilising the transpeptidase Sortase A Reviewed International journal

    Keita Omura, Yuichiro Aiba, Hiroki Onoda, Joshua Kyle Stanfield, Shinya Ariyasu, Hiroshi Sugimoto, Yoshitsugu Shiro, Osami Shoji, Yoshihito Watanabe

    Chemical Communications   Vol. 54 ( 57 ) page: 7892 - 7895   2018

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Royal Society of Chemistry ({RSC})  

    Haem substitution is an effective approach to tweak the function of haemoproteins. Herein, we report a facile haem substitution method for self-sufficient cytochrome P450BM3 (CYP102A1) from Bacillus megaterium utilising the transpeptidase Sortase A from Staphylococcus aureus. We successfully constructed Mn-substituted BM3 and investigated its catalytic activity.

    DOI: 10.1039/C8CC02760A

    Scopus

    PubMed

    researchmap

  16. A substrate-binding-state mimic of H2O2-dependent cytochrome P450 produced by one-point mutagenesis and peroxygenation of non-native substrates Reviewed

    Osami Shoji, Takashi Fujishiro, Kousuke Nishio, Yukiko Kano, Hiroshi Kimoto, Shih-Cheng Chien, Hiroki Onoda, Atsushi Muramatsu, Shota Tanaka, Ayumi Hori, Hiroshi Sugimoto, Yoshitsugu Shiro, Yoshihito Watanabe

    Catal. Sci. Technol.   Vol. 6 ( 15 ) page: 5806 - 5811   2016

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)   Publisher:Royal Society of Chemistry ({RSC})  

    DOI: 10.1039/c6cy00630b

    Scopus

    researchmap

▼display all

MISC 2

  1. Advancements and challenges in protein complex structure predictions facilitated by AlphaFold Invited

    Hiroki Onoda, George Chikenji, Leonard M.G. Chavas

        2023.9

     More details

    Authorship:Lead author   Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (trade magazine, newspaper, online media)  

    DOI: 10.18958/7335-00001-0000602-00

    researchmap

  2. Heme-containing proteins: Structures, functions, and engineering

    Osami Shoji, Yuichiro Aiba, Shinya Ariyasu, Hiroki Onoda

    Comprehensive Inorganic Chemistry III   Vol. 1-10   page: 194 - 214   2023

     More details

Presentations 20

  1. Finding suitable models for cryoEM reconstructions Invited

    Hiroki Onoda

    CCP4 School & Workshop  2023.11.7 

     More details

    Event date: 2023.11

    Language:English   Presentation type:Public lecture, seminar, tutorial, course, or other speech  

    researchmap

  2. ヘム蛋白質予測構造の分子動力学計算を駆使したバイオガソリン生産酵素の探索 Invited

    Hiroki Onoda

    2023.11.2 

     More details

    Event date: 2023.10 - 2023.11

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    researchmap

  3. Engineering of hydrogen peroxide driven Cytochrome P450

    Hiroki Onoda

    3rd Japan-Switzerland-Germany Workshop on Biocatalysis and Bioprocess Development  2023.9.13 

     More details

    Event date: 2023.9

    Language:English  

    researchmap

  4. X線結晶構造解析のみらい ~国内外4放射光施設パネルディスカッション。最新研究とこれからやりたいこと~ Invited

    梅名泰史, 小野田浩宜, 平田邦生, 松浦滉明, 山田悠介, 引田理英, 富崎孝司

    【第二回学術セミナー】構造生物学の最前線  2022.12.26 

     More details

    Event date: 2022.12

    Language:Japanese   Presentation type:Symposium, workshop panel (nominated)  

    File: 【第二回学術セミナー】構造生物学の最前線 _ AgroDesign Studios.pdf

    researchmap

  5. ColabFold Useage for Structual Biorogist Invited

    Hiroki Onoda, Shinya Fushinobu

    2022.11.24 

     More details

    Event date: 2022.11

    Language:Japanese   Presentation type:Public lecture, seminar, tutorial, course, or other speech  

    researchmap

  6. Application of Bio-Informatics to Protein Structure Analysis Invited

    Hiroki Onoda

    2022.8.27 

     More details

    Event date: 2022.8

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    researchmap

  7. CryoEM Reveals the Activation Motif of DNA Methyltransferase1

    2022.6.8 

     More details

    Event date: 2022.6

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  8. 生物化学者から見たAlphafoldの応用と予測条件の検討 Invited

    小野田 浩宜

    第434回CBI学会講演会「タンパク質立体構造予測の最前線~AlphaFold2は創薬に真のブレークスルーをもたらすのか~」  2022.5.26 

     More details

    Event date: 2022.5

    Language:Japanese   Presentation type:Public lecture, seminar, tutorial, course, or other speech  

    researchmap

  9. Current Status of AlphaFold2: Solutions for Difficult Protein Structure Predictions Invited

    Hiroki Onoda

    2022.3.15 

     More details

    Event date: 2022.3

    Language:Japanese   Presentation type:Public lecture, seminar, tutorial, course, or other speech  

    researchmap

  10. Alphafold及びColabfoldを用いた複合体予測のパラメーター設定 Invited

    小野田浩宜

    日本結晶学会2021年度年会若手の会  2021.11.18 

     More details

    Event date: 2021.11

    Presentation type:Symposium, workshop panel (nominated)  

    researchmap

  11. Development of Unspecific Peroxygenase Mimicked Substrate Binding State of Fatty Acid Specific Peroxygenase Invited

    Hiroki Onoda

    2016.9.1 

     More details

    Event date: 2016.9

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    researchmap

  12. Aromatic Hydroxylation Reactions by Long-alkyl-chain Fatty Acid Peroxygenases Accelerated by Acetic Acid Invited

    Hiroki Onoda, Osami Shoji, Yoshihito Watanabe

    The 19th International Conference on Cytochrome P450  2015.6.15 

     More details

    Event date: 2015.6

    Language:English   Presentation type:Oral presentation (invited, special)  

    researchmap

  13. Models for MR/cryoEM from AlphaFold2 Invited

    Hiroki Onoda

    CCP4 School & Workshop  2023.11.7 

     More details

    Event date: 2023.11

    Presentation type:Public lecture, seminar, tutorial, course, or other speech  

    researchmap

  14. Cryo-EMで捉えたタンパク質の構造変化を構造予測AIで追跡する方法 Invited

    小野田浩宜

    SPEED journal club  2023.1.27  学術変革領域研究 (B) 「高次機能性タンパク質集合体の設計法『SPEED』の確立」

     More details

    Event date: 2023.1

    Presentation type:Public lecture, seminar, tutorial, course, or other speech  

  15. BL8S3とBL2S1を用いた酵素活性化分子の機序解析と高度化

    小野田浩宜, 米村開, 有安真也, 中川洋, 元川竜平, 荘司長三

    2022年度 名古屋大学シンクロトロン光研究センターシンポジウム  2023.1.16 

     More details

    Event date: 2023.1

    Language:Japanese   Presentation type:Poster presentation  

    researchmap

  16. ヘムを内包する酵素のAlphaFold構造予測と複合体予測の最適化 Invited

    小野田浩宜

    メタルバイオサイエンス研究会2022  2022.10.20 

     More details

    Event date: 2022.10

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    researchmap

  17. Alphafold学習用パラメーター 「unknown type」や「gap token」を利用した ヘテロ複合体蛋白質の構造予測 Invited

    小野田 浩宜

    第44回日本分子生物学会年会  2021.12.1 

     More details

    Event date: 2021.12

    researchmap

  18. Analyzing Degradation Mechanism of Fatty Acid to The Next Shorter Fatty Acid Using Hydrogen Peroxide Activated by Cytochrome P450 Peroxygenase

     More details

    Event date: 2018.3

    Language:English   Presentation type:Oral presentation (general)  

    researchmap

  19. 長鎖脂肪酸と酢酸の誤認識を利用した脂肪酸ペルオキシゲナーゼの基質特異性変換

    小野田浩宜, 荘司長三, 加納由紀子, 渡辺芳人

    第43回生体分子科学討論会 

     More details

    Event date: 2016.6

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  20. 過酸化水素駆動型P450による脂肪酸の水酸化反応と炭素減炭反応

    日本化学会 第96春季年会 (2016) 

     More details

    Event date: 2016.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

▼display all

Research Project for Joint Research, Competitive Funding, etc. 5

  1. Exproling Biofuel Conversion Enzyme Using Structure Prediction AI

    2023.9 - 2025.4

    ACT-X 

      More details

    Grant amount:\7540000 ( Direct Cost: \5800000 、 Indirect Cost:\1740000 )

  2. 構造予測AIと動的構造解析を併用したバイオ燃料生産酵素の高度化

    2023.4 - 2024.3

    岩谷科学技術研究助成金 

      More details

    Authorship:Principal investigator 

  3. C3対称の環状タンパク質PCNAを分割タグとして用いたクライオ電顕のC3対称解析と粒子投影角度の制御

    2021.4 - 2022.2

    笹川科学研究助成 

      More details

    Authorship:Principal investigator 

  4. 脂肪酸酸化酵素を用いた脂肪酸短縮効果の検討

    2023.9 - 2024.9

    共同研究  共同研究

      More details

    Authorship:Principal investigator  Grant type:Collaborative (industry/university)

  5. Functional modification by directed evolution of fatty acid specific peroxygenase

    2017.1 - 2017.3

    Stephen Graham Bell

      More details

    Grant type:Other

KAKENHI (Grants-in-Aid for Scientific Research) 3

  1. 構造予測AIと動的構造解析を併用したバイオ燃料生産酵素の高度化

    2023.4 - 2024.3

    公益財団法人 岩谷直治記念財団  岩谷科学技術研究助成金 

      More details

    Authorship:Principal investigator 

    researchmap

  2. Exproling Biofuel Conversion Enzyme Using Structure Prediction AI

    2022.10 - 2025.3

    Japan Science and Technology Agency (JST)  ACT-X 

    Hiroki Onoda

      More details

    Authorship:Principal investigator 

    researchmap

  3. 天然基質の官能基の一部として誤認識される小分子を用いた酵素の誤作動と酵素反応制御

    Grant number:16J02846  2016.4 - 2019.3

    日本学術振興会  科学研究費助成事業 特別研究員奨励費  特別研究員奨励費

    小野田 浩宜

      More details

    多くの生体触媒は、特定の原料を効率的に目的の分子へ変換する為に、高い基質特性を示す。この高い基質特異性により、生体触媒の汎用的な応用が制限されていた。私は、過酸化水素を用いて長鎖脂肪酸を特異的に酸化するCYP152B1を、酢酸水溶液中で扱うだけで、長鎖脂肪酸とは構造の異なる非天然基質の酸化反応を触媒する「基質誤認識システム」を報告していた。本研究では、「汎用的な基質誤認識システム」の開発を目指した。
    2017年度までに、好熱性細菌Exiguobacterium sp. AT1bから発見されたCYP152N1の発現系、精製手法の確立と、結晶構造の解析に成功した。この酵素が、過酸化水素を等量的に用いて、1分間あたり1900回転の速さで長鎖脂肪酸のα-位を(S)-選択的に水酸化することを2017年度に報告した。CYP152N1は、脂肪酸特異的なペルオキシゲナーゼであるCYP152A1やCYP152B1と同様に、長鎖脂肪酸のカルボキシル基を認識するので、長鎖脂肪酸以外の基質を酸化することができない。私達は、CYP152B1の活性部位近傍にカルボキシル基を持つグルタミン酸を変異導入することで、A245E変異体が「グルタミン酸のカルボキシル基を長鎖脂肪酸のカルボキシル基と誤認識」し、長鎖脂肪酸以外の基質を酸化する事を2016年度に報告していた。2018年度は、活性部位にグルタミン酸を導入する手法の汎用性を確認するために、CYP152A1 A246E変異体とCYP152N1 A243E変異体を作成し、チオアニソールのスルホキシド化活性とスチレンのエポキシ化活性を評価した。いずれの変異体もスルホキシド化活性とエポキシ化活性を示した。特にCYP152N1 A243E変異体は、野生型の長鎖脂肪酸水酸化反応の触媒活性活性より効率的な、スルホキシド化反応の触媒活性を示した。

    researchmap

 

Social Contribution 3

  1. 2022年夏休み体験学習 タンパク質の結晶を作る、観る、調べる

    Role(s):Lecturer, Advisor, Organizing member

    名古屋大学シンクロトロン光研究センター  あいちサイエンス・コミュニケーション・ネットワーク  2022.7

     More details

    Audience: High school students

    Type:Seminar, workshop

  2. 2023年夏休み体験学習 タンパク質の結晶を作る! 観る! 調べる!

    Role(s):Lecturer, Advisor, Planner, Organizing member

    名古屋大学シンクロトロン光研究センター  あいちサイエンス・コミュニケーション・ネットワーク  2022.7

     More details

    Audience: High school students

    Type:Seminar, workshop

  3. 2023年 夏休み体験学習 タンパク質の結晶を作る!観る!調べる!

    Role(s):Lecturer, Planner, Organizing member

    名古屋大学シンクロトロン光研究センター  あいちサイエンス・コミュニケーション・ネットワーク  2023.7

     More details

    Type:Seminar, workshop

    researchmap