2025/10/22 更新

写真a

タケウチ リョウスケ
竹内 遼介
TAKEUCHI Ryosuke
所属
大学院創薬科学研究科 基盤創薬学専攻 創薬生物科学 助教
大学院担当
大学院創薬科学研究科
職名
助教
外部リンク

学位 1

  1. 博士(理学) ( 2018年3月   大阪大学 ) 

研究キーワード 4

  1. 神経科学

  2. 神経回路

  3. 神経イメージング

  4. バーチャルリアリティ

研究分野 2

  1. ライフサイエンス / 生体医工学

  2. ライフサイエンス / 神経科学一般

所属学協会 2

  1. 日本神経科学学会

      詳細を見る

  2. 日本神経回路学会

      詳細を見る

委員歴 1

  1. 日本神経科学学会   将来計画委員  

    2021年4月 - 2022年3月   

      詳細を見る

    団体区分:学協会

受賞 3

  1. 日本神経回路学会最優秀研究賞

    2018年12月   日本神経回路学会   自然動画に含まれる画像特徴量に対するサルV1野およびV4野の神経細胞群の応答

    畑中岳 , 池添貢司 , 竹内遼介 , 稲垣未来男 , 西本伸志 , 藤田一郎

     詳細を見る

    受賞区分:国内学会・会議・シンポジウム等の賞  受賞国:日本国

  2. NSR Excellent Paper Award

    2023年3月   日本神経科学学会  

    正木 佑治, 山口 真広, 竹内 遼介, 小坂田 文隆

     詳細を見る

  3. NSR Excellent Paper Award

    2022年3月   日本神経科学学会  

    恩田 将成, 竹内 遼介, 磯部 圭佑, 鈴木 俊章, 正木 佑治, 森本 菜央, 小坂田 文隆

     詳細を見る

 

論文 12

  1. An extension module for a two-photon microscope enables flexible<i> in</i><i> vivo</i> imaging and all-optical physiology 査読有り 国際誌 Open Access

    Takeuchi, RF; Ishida, R; Kamaguchi, R; Nishimura, M; Tsutsumi, K; Ito, KN; Adachi, S; Isobe, K; Osakada, F

    ISCIENCE   28 巻 ( 10 ) 頁: 113525   2025年10月

     詳細を見る

    担当区分:筆頭著者, 責任著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Iscience  

    Two-photon imaging is essential for revealing the structure, function, and interaction of various cell types. However, conventional two-photon microscopes have limitations in sample accessibility and optogenetic manipulation during imaging. Here, we present Ex2p/Ex2pO, an open-source extension module that adds an objective lens rotation axis and one-photon optical stimulation synchronized with the non-imaging intervals of resonant scanning to a two-photon microscope. The Ex2p/Ex2pO can be seamlessly integrated into existing microscopes by simply replacing the standard objective lens assembly without any modifications. It enables imaging of curved structures while maintaining the subject's natural posture and simultaneous imaging and one-photon stimulation with low crosstalk between stimulation and fluorescent light. We demonstrate one-photon stimulation during two-photon imaging of mice behaving in a virtual reality environment and pluripotent stem cell-derived cortical organoids. Thus, Ex2p/Ex2pO expands the versatility to investigate neural circuit motifs in behaving animals and organoids, enabling all-optical physiology in existing two-photon imaging systems.

    DOI: 10.1016/j.isci.2025.113525

    Open Access

    Web of Science

    Scopus

    PubMed

  2. YORU: social behavior detection based on user-defined animal appearance using deep learning 国際誌

    Hayato M Yamanouchi, Ryosuke F Takeuchi, Naoya Chiba, Koichi Hashimoto, Takashi Shimizu, Ryoya Tanaka, Azusa Kamikouchi

        2024年11月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(大学,研究機関等紀要)  

    DOI: 10.1101/2024.11.12.623320

    researchmap

  3. Posteromedial cortical networks encode visuomotor prediction errors. 国際誌

    Ryosuke F. Takeuchi, Akinori Y. Sato, Kei N. Ito, Hiroshi Yokoyama, Reiji Miyata, Rumina Ueda, Konosuke Kitajima, Riki Kamaguchi, Toshiaki Suzuki, Keisuke Isobe, Naoki Honda, Fumitaka Osakada

        2024年8月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(大学,研究機関等紀要)   出版者・発行元:Cold Spring Harbor Laboratory  

    Predicting future events based on internal models is essential for animal survival. Predictive coding postulates that errors between prediction and observation in lower-order areas update predictions in higher-order areas through the hierarchy. However, it is unclear how predictive coding is implemented in the hierarchy of the brain. Herein, we report the neural mechanism of the hierarchical processing and transmission of bottom-up prediction error signals in the mouse cortex. Ca2+ imaging and electrophysiological recording in virtual reality revealed responses to visuomotor mismatches in the retrosplenial, dorsal visual, and anterior cingulate cortex. These mismatch responses were attenuated when mismatches became predictable through experience. Optogenetic inhibition of bottom-up signals reduced a behavioral indicator for prediction errors. Moreover, cellular-level mismatch responses were modeled by Bayesian inference using a state-space model. This study demonstrates hierarchical circuit organization underlying prediction error propagation, advancing the understanding of predictive coding in sensory perception and learning in the brain.

    DOI: 10.1101/2022.08.16.504075

    researchmap

  4. Conversion of silent synapses to AMPA receptor-mediated functional synapses in human cortical organoids 査読有り 国際誌 Open Access

    Nishimura, M; Kodera, T; Adachi, S; Sato, AY; Takeuchi, RF; Nonaka, H; Hamachi, I; Osakada, F

    NEUROSCIENCE RESEARCH   212 巻   頁: 20 - 30   2025年3月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Neuroscience Research  

    Despite the crucial role of synaptic connections and neural activity in the development and organization of cortical circuits, the mechanisms underlying the formation of functional synaptic connections in the developing human cerebral cortex remain unclear. We investigated the development of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission using human cortical organoids (hCOs) derived from induced pluripotent stem cells. Two-photon Ca<sup>2</sup>⁺ imaging revealed an increase in the frequency and amplitude of spontaneous activity in hCOs on day 80 compared to day 50. Additionally, spontaneous neural activity in late-stage hCOs, but not in early-stage hCOs, was blocked by N-methyl-D-aspartate receptor (NMDAR) and AMPAR antagonists. However, transsynaptic circuit tracing with G-deleted rabies viral vectors indicated a similar number of synaptic connections in early- and late-stage hCOs. Notably, chemical labeling demonstrated a significant increase in AMPAR expression on the postsynaptic membrane and colocalization with NMDARs in late-stage hCOs. These results suggest that hCOs progressively organize excitatory synaptic transmission, concurrent with the transition from silent synapses lacking AMPARs to functional synapses containing NMDARs and AMPARs. This in vitro model of human cortical circuits derived from induced pluripotent stem cells reflects the developmental programs underlying physiological transitions, providing valuable insights into human corticogenesis and neurodevelopmental disorders.

    DOI: 10.1016/j.neures.2024.12.008

    Open Access

    Web of Science

    Scopus

    PubMed

  5. Evolutionary engineering and characterization of Sendai virus mutants capable of persistent infection and autonomous production 査読有り 国際誌 Open Access

    Iwata, M; Kawabata, R; Morimoto, N; Takeuchi, RF; Sakaguchi, T; Irie, T; Osakada, F

    FRONTIERS IN VIROLOGY   4 巻   2024年4月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Frontiers in Virology  

    Persistent virus infection involves modifying the host immune response and maintaining viral infection. Acute infection with Mononegavirales, such as Sendai viruses (SeVs), can give rise to viruses capable of persistent infection. SeVs establish persistent infection through generating copyback-type defective interfering (cbDI) genomes or acquiring temperature-sensitive mutations. Herein, we identify novel mutations associated with persistent infection and recombinant SeV mutants capable of persistent infection and autonomous production at physiological body temperature, independent of cbDI genomes or temperature-sensitive mutations. Diverse SeV populations were generated by passing the cDNA-recovered SeV Z strain 19 times through embryonated chicken eggs and subsequently infecting LLC-MK2 cells with the SeV populations to finally obtain SeV mutants capable of persistent infection and autonomous production in several types of cultured cells. Sequence analysis identified 4 or 5 mutations in the genome of the persistently infectious SeVs, distinguishing them from other existing strains with persistent infection. Recombinant SeVs carrying 4 or 5 mutations in the Z strain genome (designated SeV-Zpi or SeV-Zpi2, respectively) exhibited persistent infection and autonomous production in LLC-MK2, BHK-21, and Neuro2a cells at 37°C. SeV-Zpi and SeV-Zpi2 consistently produced viral particles even after long-term passages without cbDI particles or temperature-sensitive phenotypes. These results highlight the ability of acute infections of SeVs to spontaneously acquire mutations during replication, thereby endowing persistent infection and autonomous production at body temperature. The vectorization of SeV-Zpi and SeV-Zpi2 will contribute to both basic research and medical applications.

    DOI: 10.3389/fviro.2024.1363092

    Open Access

    Web of Science

    Scopus

  6. A mosaic adeno-associated virus vector as a versatile tool that exhibits high levels of transgene expression and neuron specificity in primate brain 査読有り 国際誌

    Kei Kimura, Yuji Nagai, Gaku Hatanaka, Yang Fang, Soshi Tanabe, Andi Zheng, Maki Fujiwara, Mayuko Nakano, Yukiko Hori, Ryosuke F. Takeuchi, Mikio Inagaki, Takafumi Minamimoto, Ichiro Fujita, Ken-ichi Inoue, Masahiko Takada

    Nature Communications   14 巻 ( 1 )   2023年8月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Springer Science and Business Media LLC  

    Abstract

    Recent emphasis has been placed on gene transduction mediated through recombinant adeno-associated virus (AAV) vector to manipulate activity of neurons and their circuitry in the primate brain. In the present study, we created a novel vector of which capsid was composed of capsid proteins derived from both of the AAV serotypes 1 and 2 (AAV1 and AAV2). Following the injection into the frontal cortex of macaque monkeys, this mosaic vector, termed AAV2.1 vector, was found to exhibit the excellence in transgene expression (for AAV1 vector) and neuron specificity (for AAV2 vector) simultaneously. To explore its applicability to chemogenetic manipulation and in vivo calcium imaging, the AAV2.1 vector expressing excitatory DREADDs or GCaMP was injected into the striatum or the visual cortex of macaque monkeys, respectively. Our results have defined that such vectors secure intense and stable expression of the target proteins and yield conspicuous modulation and imaging of neuronal activity.

    DOI: 10.1038/s41467-023-40436-1

    researchmap

    その他リンク: https://www.nature.com/articles/s41467-023-40436-1

  7. 生体イメージングの最前線--絶え間ない技術革新と生命医科学の新展開 イメージングで神経活動を解析する 神経回路機能解析のための細胞種特異的な標識と光学イメージング

    竹内 遼介, 小坂田 文隆

    医学のあゆみ   286 巻 ( 5 ) 頁: 372 - 379   2023年7月

     詳細を見る

    担当区分:筆頭著者   掲載種別:論文集(書籍)内論文   出版者・発行元:医歯薬出版  

    DOI: 10.32118/ayu28605372

    CiNii Research

  8. Modeling the marmoset brain using embryonic stem cell-derived cerebral assembloids Open Access

    Kodera T., Takeuchi R.F., Takahashi S., Suzuki K., Kassai H., Aiba A., Shiozawa S., Okano H., Osakada F.

    Biochemical and Biophysical Research Communications   657 巻   頁: 119 - 127   2023年5月

     詳細を見る

    記述言語:英語   出版者・発行元:Biochemical and Biophysical Research Communications  

    Studying the non-human primate (NHP) brain is required for the translation of rodent research to humans, but remains a challenge for molecular, cellular, and circuit-level analyses in the NHP brain due to the lack of in vitro NHP brain system. Here, we report an in vitro NHP cerebral model using marmoset (Callithrix jacchus) embryonic stem cell-derived cerebral assembloids (CAs) that recapitulate inhibitory neuron migration and cortical network activity. Cortical organoids (COs) and ganglionic eminence organoids (GEOs) were induced from cjESCs and fused to generate CAs. GEO cells expressing the inhibitory neuron marker LHX6 migrated toward the cortical side of CAs. COs developed their spontaneous neural activity from a synchronized pattern to an unsynchronized pattern as COs matured. CAs containing excitatory and inhibitory neurons showed mature neural activity with an unsynchronized pattern. The CAs represent a powerful in vitro model for studying excitatory and inhibitory neuron interactions, cortical dynamics, and their dysfunction. The marmoset assembloid system will provide an in vitro platform for the NHP neurobiology and facilitate translation into humans in neuroscience research, regenerative medicine, and drug discovery.

    DOI: 10.1016/j.bbrc.2023.03.019

    Scopus

    PubMed

  9. Processing of visual statistics of naturalistic videos in macaque visual areas V1 and V4. 査読有り 国際誌 Open Access

    Hatanaka G, Inagaki M, Takeuchi RF, Nishimoto S, Ikezoe K, Fujita I

    Brain structure & function   227 巻 ( 4 ) 頁: 1385 - 1403   2022年5月

     詳細を見る

  10. Monosynaptic rabies virus tracing from projection-targeted single neurons 査読有り 国際誌 Open Access

    Masaki Yuji, Yamaguchi Masahiro, Takeuchi Ryosuke F., Osakada Fumitaka

    NEUROSCIENCE RESEARCH   178 巻   頁: 20 - 32   2022年5月

     詳細を見る

    記述言語:英語   出版者・発行元:Neuroscience Research  

    A single neuron integrates inputs from thousands of presynaptic neurons to generate outputs. Circuit tracing using G-deleted rabies virus (RVΔG) vectors permits the brain-wide labeling of presynaptic inputs to targeted single neurons. However, the experimental procedures are complex, and the success rate of circuit labeling is low because of the lack of validation to increase the accuracy and efficiency of monosynaptic RVΔG tracing from targeted single neurons. We established an efficient RVΔG tracing method from projection target-defined single neurons using TVA950, a transmembrane isoform of TVA receptors, for initial viral infection. Presynaptic neurons were transsynaptically labeled from 80 % of the TVA950-expressing single starter neurons that survived after infection with EnvA-pseudotyped RVΔG in the adult mouse brain. We labeled single neuronal networks in the primary visual cortex (V1) and higher visual areas, namely the posteromedial area (PM) and anteromedial area (AM), as well as the single neuronal networks of PM-projecting V1 single neurons. Monosynaptic RVΔG tracing from projection-targeted single neurons revealed the input–output organization of single neuronal networks. Single-neuron network analysis based on RVΔG tracing will help dissect the heterogeneity of neural circuits and link circuit motifs and large-scale networks across scales, thereby clarifying information processing and circuit computation in the brain.

    DOI: 10.1016/j.neures.2022.01.007

    Web of Science

    Scopus

    PubMed

  11. Temporally multiplexed dual-plane imaging of neural activity with four-dimensional precision 査読有り 国際誌 Open Access

    Onda Masanari, Takeuchi Ryosuke F., Isobe Keisuke, Suzuki Toshiaki, Masaki Yuji, Morimoto Nao, Osakada Fumitaka

    NEUROSCIENCE RESEARCH   171 巻   頁: 9 - 18   2021年10月

     詳細を見る

    記述言語:日本語   出版者・発行元:Neuroscience Research  

    Spatiotemporal patterns of neural activity generate brain functions, such as perception, memory, and behavior. Four-dimensional (4-D: x, y, z, t) analyses of such neural activity will facilitate understanding of brain functions. However, conventional two-photon microscope systems observe single-plane brain tissue alone at a time with cellular resolution. It faces a trade-off between the spatial resolution in the x-, y-, and z-axes and the temporal resolution by a limited point-by-point scan speed. To overcome this trade-off in 4-D imaging, we developed a holographic two-photon microscope for dual-plane imaging. A spatial light modulator (SLM) provided an additional focal plane at a different depth. Temporal multiplexing of split lasers with an optical chopper allowed fast imaging of two different focal planes. We simultaneously recorded the activities of neurons on layers 2/3 and 5 of the cerebral cortex in awake mice in vivo. The present study demonstrated the proof-of-concept of dual-plane two-photon imaging of neural circuits by using the temporally multiplexed SLM-based microscope. The temporally multiplexed holographic microscope, combined with in vivo labeling with genetically encoded probes, enabled 4-D imaging and analysis of neural activities at cellular resolution and physiological timescales. Large-scale 4-D imaging and analysis will facilitate studies of not only the nervous system but also of various biological systems.

    DOI: 10.1016/j.neures.2021.02.001

    Web of Science

    Scopus

    PubMed

  12. Cell type- and layer-specific convergence in core and shell neurons of the dorsal lateral geniculate nucleus 査読有り 国際誌

    Okigawa S., Yamaguchi M., Ito K.N., Takeuchi R.F., Morimoto N., Osakada F.

    Journal of Comparative Neurology   529 巻 ( 8 ) 頁: 2099 - 2124   2021年6月

     詳細を見る

    記述言語:日本語   出版者・発行元:Journal of Comparative Neurology  

    Over 40 distinct types of retinal ganglion cells (RGCs) generate parallel processing pathways in the visual system. In mice, two subdivisions of the dorsal lateral geniculate nucleus (dLGN), the core and the shell, organize distinct parallel channels to transmit visual information from the retina to the primary visual cortex (V1). To investigate how the dLGN core and shell differentially integrate visual information and other modalities, we mapped synaptic input sources to each dLGN subdivision at the cell-type level with G-deleted rabies viral vectors. The monosynaptic circuit tracing revealed that dLGN core neurons received inputs from alpha-RGCs, Layer 6 neurons of the V1, the superficial and intermediate layers of the superior colliculus (SC), the internal ventral LGN, the lower layer of the external ventral LGN (vLGNe), the intergeniculate leaf, the thalamic reticular nucleus (TRN), and the pretectal nucleus (PT). Conversely, shell neurons received inputs from alpha-RGCs and direction-selective ganglion cells of the retina, Layer 6 neurons of the V1, the superficial layer of the SC, the superficial and lower layers of the vLGNe, the TRN, the PT, and the parabigeminal nucleus. The present study provides anatomical evidence of the cell type- and layer-specific convergence in dLGN core and shell neurons. These findings suggest that dLGN core neurons integrate and process more multimodal information along with visual information than shell neurons and that LGN core and shell neurons integrate different types of information, send their own convergent information to discrete populations of the V1, and differentially contribute to visual perception and behavior.

    DOI: 10.1002/cne.25075

    Scopus

    PubMed

▼全件表示

MISC 2

  1. 神経回路機能解析のための細胞種特異的な標識と光学イメージング

    竹内遼介, 小坂田文隆  

    医学のあゆみ   2023年7月

     詳細を見る

    担当区分:筆頭著者   記述言語:日本語   掲載種別:記事・総説・解説・論説等(学術雑誌)  

    researchmap

  2. 背側視覚経路の機能と回路構造

    佐藤 彰典, 竹内 遼介, 小坂田 文隆  

    Clinical Neuroscience40 巻 ( 1 ) 頁: 21 - 25   2022年1月

     詳細を見る

    記述言語:日本語   掲載種別:記事・総説・解説・論説等(学術雑誌)   出版者・発行元:(株)中外医学社  

    researchmap

講演・口頭発表等 1

  1. 背側皮質経路における予測符号化情報の階層的情報伝達 招待有り

    NEURO2024  2024年7月27日 

     詳細を見る

    開催年月日: 2024年 - 2024年7月

    会議種別:シンポジウム・ワークショップ パネル(公募)  

    researchmap

科研費 2

  1. 広域機能イメージングと投影光遺伝学による大域的神経活動の因果的分析

    研究課題/研究課題番号:22K15620  2022年4月 - 2025年3月

    科学研究費助成事業  若手研究

    竹内 遼介

      詳細を見る

    担当区分:研究代表者  資金種別:競争的資金

    配分額:4680000円 ( 直接経費:3600000円 、 間接経費:1080000円 )

    脳内で離れた領域同士の情報連絡は,認知や運動,またその連合機能の発現に重要である.
    申請者は,本研究で構築する光学顕微鏡により,課題を遂行中のマウスにおいて,①大域的神経活動パターンの観察・同定,②大域的 / 局所的神経活動操作,③ 活動操作によって起きた行動の観察・定量
    を行う.これらの解析を通し,脳領域間の相互作用がどのように行動に寄与するかを明らかにする.
    今年度は光感受性チャネルタンパクの発現最適化,カルシウムイメージングデータの信号処理法の最適化,電気生理学的手法による活動操作の validation のための準備,行動評価系の最適化などを行った.
    まず,大脳皮質の光遺伝学にしようするチャネルタンパクの発現を誘導するためのウイルスベクター条件について最適化を行った.複数種類のAAV-PHP.eBベクターをカクテルすることで,単一野生型マウス個体の大脳皮質においてGCaMPとChRmine を広く発現させることに成功した.また,ノイズを多分に含む広域カルシウムイメージングデータから,神経活動に関連性が低い成分を除くアルゴリズムを実装し,アーティファクトを除去することに成功している.大脳皮質の広範囲を高解像度で観察可能にする観察窓の手術法についても確立し,二光子顕微鏡による細胞レベルでの観察が可能なこと,上記信号処理法により血管由来アーティファクトを軽減できることも確認した.投影光遺伝学法では,投影光により実際に神経活動が誘発されたかどうかをカルシウムイメージング法だけでなく,細胞外電位記録法による validation を計画している.今年度はシリコンプローブを用いて覚醒下,ヴァーチャルリアリティ内で行動中のマウスから高精度で活動電位および Local Field Potential を記録できる手法の確立に成功しており,今後投影光との組み合わせて投影光遺伝学法の評価を行う予定である.また,蛍光観察・電気生理学的手法による神経活動記録,光刺激,行動観察をすべて同時に行うシステムとして次年度の学会報告および学術誌への発表を目指す.
    光学部品等の都合上,顕微鏡の設備更新に時間を要している.当初使用予定にしていたDigital mirror device およびレーザーモジュールが長期に亘り欠品状態のため,別途使用可能な部品を選定中である.また,光感受性チャネルを広域発現させた生体の行動変容および致死が見受けられたため,その最適化にも時間を要した.
    細胞外電位記録法による記録,解析および評価法確立やカルシウムイメージング法の解析法開発に関しては当初の予定通り進行しており,研究遂行において深刻な遅れには至っていないと判断している.
    2023年度早期に代替の光学部品を入手し,観察装置,光刺激装置およびその制御系を完成させ,実証実験にすすみたい.レーザープロジェクタの入手が困難であった場合は一旦ガルバノミラーデバイス等による光刺激法を導入し,同一固体,多波長での光刺激・蛍光観察が可能であるかをまず検証する.同時に,電気生理学的記録とそれらが組み合わせられるよう,視覚刺激ディスプレイ等との同期制御システムなどを最適化し,最終的には光刺激・蛍光観察・電気生理学的記録がすべて同時に行える実験系を構築する.

  2. マルチスケールイメージングによる視覚運動統合過程の神経回路基盤解明

    研究課題/研究課題番号:20K16464  2020年4月 - 2022年3月

    日本学術振興会  科学研究費助成事業 若手研究  若手研究

    竹内 遼介

      詳細を見る

    担当区分:研究代表者  資金種別:競争的資金

    配分額:4160000円 ( 直接経費:3200000円 、 間接経費:960000円 )

    感覚運動予測誤差は正確な知覚・運動を実行するために重要な情報である.本研究では,視覚-運動統合過程の神経回路基盤を解明するために,広域カルシウムイメージング法を用いた解析を行った.マウス用にバーチャルリアリティを独自開発し,マウスが運動中の視覚フィードバックを実験者が操作することで,人工的に予測誤差を呈示した.その結果,マウスの後頭葉内側領域において経験依存的に特異的な神経活動が観察された.

    researchmap