2022/05/12 更新

写真a

タケウチ リョウスケ
竹内 遼介
TAKEUCHI Ryosuke
所属
大学院創薬科学研究科 基盤創薬学専攻 創薬生物科学 助教
大学院担当
大学院創薬科学研究科
職名
助教

学位 1

  1. 博士(理学) ( 2018年3月   大阪大学 ) 

委員歴 1

  1. 日本神経科学学会   将来計画委員  

    2021年4月 - 現在   

      詳細を見る

    団体区分:学協会

 

論文 4

  1. Processing of visual statistics of naturalistic videos in macaque visual areas V1 and V4. 査読有り 国際誌

    Hatanaka G, Inagaki M, Takeuchi RF, Nishimoto S, Ikezoe K, Fujita I

    Brain structure & function   227 巻 ( 4 ) 頁: 1385 - 1403   2022年5月

     詳細を見る

    記述言語:英語  

    DOI: 10.1007/s00429-022-02468-z

    PubMed

  2. Monosynaptic rabies virus tracing from projection-targeted single neurons 査読有り 国際誌

    Masaki Y., Yamaguchi M., Takeuchi R.F., Osakada F.

    Neuroscience Research   178 巻   頁: 20 - 32   2022年5月

     詳細を見る

    記述言語:日本語   出版者・発行元:Neuroscience Research  

    A single neuron integrates inputs from thousands of presynaptic neurons to generate outputs. Circuit tracing using G-deleted rabies virus (RVΔG) vectors permits the brain-wide labeling of presynaptic inputs to targeted single neurons. However, the experimental procedures are complex, and the success rate of circuit labeling is low because of the lack of validation to increase the accuracy and efficiency of monosynaptic RVΔG tracing from targeted single neurons. We established an efficient RVΔG tracing method from projection target-defined single neurons using TVA950, a transmembrane isoform of TVA receptors, for initial viral infection. Presynaptic neurons were transsynaptically labeled from 80 % of the TVA950-expressing single starter neurons that survived after infection with EnvA-pseudotyped RVΔG in the adult mouse brain. We labeled single neuronal networks in the primary visual cortex (V1) and higher visual areas, namely the posteromedial area (PM) and anteromedial area (AM), as well as the single neuronal networks of PM-projecting V1 single neurons. Monosynaptic RVΔG tracing from projection-targeted single neurons revealed the input–output organization of single neuronal networks. Single-neuron network analysis based on RVΔG tracing will help dissect the heterogeneity of neural circuits and link circuit motifs and large-scale networks across scales, thereby clarifying information processing and circuit computation in the brain.

    DOI: 10.1016/j.neures.2022.01.007

    Scopus

    PubMed

  3. Temporally multiplexed dual-plane imaging of neural activity with four-dimensional precision 査読有り 国際誌

    Onda Masanari, Takeuchi Ryosuke F., Isobe Keisuke, Suzuki Toshiaki, Masaki Yuji, Morimoto Nao, Osakada Fumitaka

    NEUROSCIENCE RESEARCH   171 巻   頁: 9 - 18   2021年10月

     詳細を見る

    記述言語:日本語   出版者・発行元:Neuroscience Research  

    Spatiotemporal patterns of neural activity generate brain functions, such as perception, memory, and behavior. Four-dimensional (4-D: x, y, z, t) analyses of such neural activity will facilitate understanding of brain functions. However, conventional two-photon microscope systems observe single-plane brain tissue alone at a time with cellular resolution. It faces a trade-off between the spatial resolution in the x-, y-, and z-axes and the temporal resolution by a limited point-by-point scan speed. To overcome this trade-off in 4-D imaging, we developed a holographic two-photon microscope for dual-plane imaging. A spatial light modulator (SLM) provided an additional focal plane at a different depth. Temporal multiplexing of split lasers with an optical chopper allowed fast imaging of two different focal planes. We simultaneously recorded the activities of neurons on layers 2/3 and 5 of the cerebral cortex in awake mice in vivo. The present study demonstrated the proof-of-concept of dual-plane two-photon imaging of neural circuits by using the temporally multiplexed SLM-based microscope. The temporally multiplexed holographic microscope, combined with in vivo labeling with genetically encoded probes, enabled 4-D imaging and analysis of neural activities at cellular resolution and physiological timescales. Large-scale 4-D imaging and analysis will facilitate studies of not only the nervous system but also of various biological systems.

    DOI: 10.1016/j.neures.2021.02.001

    Web of Science

    Scopus

    PubMed

  4. Cell type- and layer-specific convergence in core and shell neurons of the dorsal lateral geniculate nucleus 査読有り 国際誌

    Okigawa S., Yamaguchi M., Ito K.N., Takeuchi R.F., Morimoto N., Osakada F.

    Journal of Comparative Neurology   529 巻 ( 8 ) 頁: 2099 - 2124   2021年6月

     詳細を見る

    記述言語:日本語   出版者・発行元:Journal of Comparative Neurology  

    Over 40 distinct types of retinal ganglion cells (RGCs) generate parallel processing pathways in the visual system. In mice, two subdivisions of the dorsal lateral geniculate nucleus (dLGN), the core and the shell, organize distinct parallel channels to transmit visual information from the retina to the primary visual cortex (V1). To investigate how the dLGN core and shell differentially integrate visual information and other modalities, we mapped synaptic input sources to each dLGN subdivision at the cell-type level with G-deleted rabies viral vectors. The monosynaptic circuit tracing revealed that dLGN core neurons received inputs from alpha-RGCs, Layer 6 neurons of the V1, the superficial and intermediate layers of the superior colliculus (SC), the internal ventral LGN, the lower layer of the external ventral LGN (vLGNe), the intergeniculate leaf, the thalamic reticular nucleus (TRN), and the pretectal nucleus (PT). Conversely, shell neurons received inputs from alpha-RGCs and direction-selective ganglion cells of the retina, Layer 6 neurons of the V1, the superficial layer of the SC, the superficial and lower layers of the vLGNe, the TRN, the PT, and the parabigeminal nucleus. The present study provides anatomical evidence of the cell type- and layer-specific convergence in dLGN core and shell neurons. These findings suggest that dLGN core neurons integrate and process more multimodal information along with visual information than shell neurons and that LGN core and shell neurons integrate different types of information, send their own convergent information to discrete populations of the V1, and differentially contribute to visual perception and behavior.

    DOI: 10.1002/cne.25075

    Scopus

    PubMed

科研費 2

  1. 広域機能イメージングと投影光遺伝学による大域的神経活動の因果的分析

    研究課題/研究課題番号:22K15620  2022年4月 - 2025年3月

    科学研究費助成事業  若手研究

    竹内 遼介

      詳細を見る

    担当区分:研究代表者 

    配分額:4680000円 ( 直接経費:3600000円 、 間接経費:1080000円 )

  2. マルチスケールイメージングによる視覚運動統合過程の神経回路基盤解明

    研究課題/研究課題番号:20K16464  2020年4月 - 2022年3月

    科学研究費助成事業  若手研究

    竹内 遼介

      詳細を見る

    担当区分:研究代表者 

    配分額:4160000円 ( 直接経費:3200000円 、 間接経費:960000円 )

    本研究では,「視覚・運動情報の統合を担う神経基盤解明」を目的とする.本研究では,マルチスケールな脳機能イメージングと脳内の回路を可視化する手法を組み合わせたアプローチにより,視覚・運動の情報統合における各ステップが,それぞれどの脳領域・神経経路により実現されるのかについて,これまでに着目されなかった領域・経路の貢献を大域的なスケールの活動から,個々の細胞が織りなす回路レベルまで,対応づけて明らかにする.
    本研究では,「視覚・運動情報の統合を担う神経基盤解明」を目的とする.本研究では,マルチスケールな脳機能イメージングと脳内の回路を可視化する手法を組み合わせたアプローチにより,視覚・運動の情報統合における各ステップが,それぞれどの脳領域・神経経路により実現されるのかについて,これまでに着目されなかった領域・経路の貢献を大域的なスケールの活動から,個々の細胞が織りなす回路レベルまで,対応づけて明らかにする.
    <BR>
    今年度は,マクロスケールなイメージング手法を用いることで,予測符号化に関わる神経回路を,脳領域レベルで明らかにした.発見した脳活動パターンは予測誤差の階層的伝播を示すと考えている.
    今年度は,マクロスケールなイメージング手法を用いることで,予測符号化に関わる神経回路を,脳領域レベルで明らかにした.現在4頭のマウスで再現性のある脳活動パターンを同定している.
    今後は同定した脳領域について,二光子カルシウムイメージング法をもちいて細胞レベルでの予測誤差を符号化する神経活動を解析する.また,現在同定したマクロスケールな活動パターンについてより詳細な解析をすすめる.