Updated on 2022/05/12

写真a

 
TAKEUCHI Ryosuke
 
Organization
Graduate School of Pharmaceutical Sciences Department of Basic Medicinal Sciences Bioscience Assistant Professor
Graduate School
Graduate School of Pharmaceutical Sciences
Title
Assistant Professor

Degree 1

  1. 博士(理学) ( 2018.3   大阪大学 ) 

Committee Memberships 1

  1. 日本神経科学学会   将来計画委員  

    2021.4   

      More details

    Committee type:Academic society

 

Papers 4

  1. Processing of visual statistics of naturalistic videos in macaque visual areas V1 and V4. Reviewed International journal

    Hatanaka G, Inagaki M, Takeuchi RF, Nishimoto S, Ikezoe K, Fujita I

    Brain structure & function   Vol. 227 ( 4 ) page: 1385 - 1403   2022.5

     More details

    Language:English  

    DOI: 10.1007/s00429-022-02468-z

    PubMed

  2. Monosynaptic rabies virus tracing from projection-targeted single neurons Reviewed International journal

      Vol. 178   page: 20 - 32   2022.5

     More details

  3. Temporally multiplexed dual-plane imaging of neural activity with four-dimensional precision Reviewed International journal

    Onda Masanari, Takeuchi Ryosuke F., Isobe Keisuke, Suzuki Toshiaki, Masaki Yuji, Morimoto Nao, Osakada Fumitaka

    NEUROSCIENCE RESEARCH   Vol. 171   page: 9 - 18   2021.10

     More details

    Language:Japanese   Publisher:Neuroscience Research  

    Spatiotemporal patterns of neural activity generate brain functions, such as perception, memory, and behavior. Four-dimensional (4-D: x, y, z, t) analyses of such neural activity will facilitate understanding of brain functions. However, conventional two-photon microscope systems observe single-plane brain tissue alone at a time with cellular resolution. It faces a trade-off between the spatial resolution in the x-, y-, and z-axes and the temporal resolution by a limited point-by-point scan speed. To overcome this trade-off in 4-D imaging, we developed a holographic two-photon microscope for dual-plane imaging. A spatial light modulator (SLM) provided an additional focal plane at a different depth. Temporal multiplexing of split lasers with an optical chopper allowed fast imaging of two different focal planes. We simultaneously recorded the activities of neurons on layers 2/3 and 5 of the cerebral cortex in awake mice in vivo. The present study demonstrated the proof-of-concept of dual-plane two-photon imaging of neural circuits by using the temporally multiplexed SLM-based microscope. The temporally multiplexed holographic microscope, combined with in vivo labeling with genetically encoded probes, enabled 4-D imaging and analysis of neural activities at cellular resolution and physiological timescales. Large-scale 4-D imaging and analysis will facilitate studies of not only the nervous system but also of various biological systems.

    DOI: 10.1016/j.neures.2021.02.001

    Web of Science

    Scopus

    PubMed

  4. Cell type- and layer-specific convergence in core and shell neurons of the dorsal lateral geniculate nucleus Reviewed International journal

    Okigawa S., Yamaguchi M., Ito K.N., Takeuchi R.F., Morimoto N., Osakada F.

    Journal of Comparative Neurology   Vol. 529 ( 8 ) page: 2099 - 2124   2021.6

     More details

    Language:Japanese   Publisher:Journal of Comparative Neurology  

    Over 40 distinct types of retinal ganglion cells (RGCs) generate parallel processing pathways in the visual system. In mice, two subdivisions of the dorsal lateral geniculate nucleus (dLGN), the core and the shell, organize distinct parallel channels to transmit visual information from the retina to the primary visual cortex (V1). To investigate how the dLGN core and shell differentially integrate visual information and other modalities, we mapped synaptic input sources to each dLGN subdivision at the cell-type level with G-deleted rabies viral vectors. The monosynaptic circuit tracing revealed that dLGN core neurons received inputs from alpha-RGCs, Layer 6 neurons of the V1, the superficial and intermediate layers of the superior colliculus (SC), the internal ventral LGN, the lower layer of the external ventral LGN (vLGNe), the intergeniculate leaf, the thalamic reticular nucleus (TRN), and the pretectal nucleus (PT). Conversely, shell neurons received inputs from alpha-RGCs and direction-selective ganglion cells of the retina, Layer 6 neurons of the V1, the superficial layer of the SC, the superficial and lower layers of the vLGNe, the TRN, the PT, and the parabigeminal nucleus. The present study provides anatomical evidence of the cell type- and layer-specific convergence in dLGN core and shell neurons. These findings suggest that dLGN core neurons integrate and process more multimodal information along with visual information than shell neurons and that LGN core and shell neurons integrate different types of information, send their own convergent information to discrete populations of the V1, and differentially contribute to visual perception and behavior.

    DOI: 10.1002/cne.25075

    Scopus

    PubMed

KAKENHI (Grants-in-Aid for Scientific Research) 2

  1. 広域機能イメージングと投影光遺伝学による大域的神経活動の因果的分析

    Grant number:22K15620  2022.4 - 2025.3

    科学研究費助成事業  若手研究

    竹内 遼介

      More details

    Authorship:Principal investigator 

    Grant amount:\4680000 ( Direct Cost: \3600000 、 Indirect Cost:\1080000 )

  2. マルチスケールイメージングによる視覚運動統合過程の神経回路基盤解明

    Grant number:20K16464  2020.4 - 2022.3

    科学研究費助成事業  若手研究

    竹内 遼介

      More details

    Authorship:Principal investigator 

    Grant amount:\4160000 ( Direct Cost: \3200000 、 Indirect Cost:\960000 )

    本研究では,「視覚・運動情報の統合を担う神経基盤解明」を目的とする.本研究では,マルチスケールな脳機能イメージングと脳内の回路を可視化する手法を組み合わせたアプローチにより,視覚・運動の情報統合における各ステップが,それぞれどの脳領域・神経経路により実現されるのかについて,これまでに着目されなかった領域・経路の貢献を大域的なスケールの活動から,個々の細胞が織りなす回路レベルまで,対応づけて明らかにする.
    本研究では,「視覚・運動情報の統合を担う神経基盤解明」を目的とする.本研究では,マルチスケールな脳機能イメージングと脳内の回路を可視化する手法を組み合わせたアプローチにより,視覚・運動の情報統合における各ステップが,それぞれどの脳領域・神経経路により実現されるのかについて,これまでに着目されなかった領域・経路の貢献を大域的なスケールの活動から,個々の細胞が織りなす回路レベルまで,対応づけて明らかにする.
    <BR>
    今年度は,マクロスケールなイメージング手法を用いることで,予測符号化に関わる神経回路を,脳領域レベルで明らかにした.発見した脳活動パターンは予測誤差の階層的伝播を示すと考えている.
    今年度は,マクロスケールなイメージング手法を用いることで,予測符号化に関わる神経回路を,脳領域レベルで明らかにした.現在4頭のマウスで再現性のある脳活動パターンを同定している.
    今後は同定した脳領域について,二光子カルシウムイメージング法をもちいて細胞レベルでの予測誤差を符号化する神経活動を解析する.また,現在同定したマクロスケールな活動パターンについてより詳細な解析をすすめる.