Updated on 2022/06/06

写真a

 
OYA Manami
 
Organization
Graduate School of Medicine Center for Research of Laboratory Animals and Medical Research Engineering Division for Advanced Medical Research Assistant Professor
Graduate School
Graduate School of Medicine
Undergraduate School
School of Medicine Department of Medicine
Title
Assistant Professor

Degree 1

  1. 博士(学術) ( 2015.3   東京大学 ) 

Research Areas 1

  1. Life Science / Physiology

Current Research Project and SDGs 1

  1. メラノコルチン受容体発現神経細胞の加齢性変容の解析

Research History 4

  1. Nagoya University   Graduate School of Medicine Center for Research of Laboratory Animals and Medical Research Engineering Division for Advanced Medical Research   Assistant Professor

    2021.4

  2. Japan Society for Promotion of Science   Researcher

    2020.4 - 2021.3

  3. Nagoya University   Researcher

    2016.4 - 2020.3

  4. 上原記念科学財団ポスドクフェロー   イギリス エクセター大学   研究員

    2015.4 - 2016.3

      More details

    Country:United Kingdom

Education 3

  1. The University of Tokyo

    2012.4 - 2015.3

  2. The University of Tokyo

    2010.4 - 2012.3

  3. The University of Tokyo

    2006.4 - 2010.3

 

Papers 1

  1. Combi-CRISPR: combination of NHEJ and HDR provides efficient and precise plasmid-based knock-ins in mice and rats

    Yoshimi K., Oka Y., Miyasaka Y., Kotani Y., Yasumura M., Uno Y., Hattori K., Tanigawa A., Sato M., Oya M., Nakamura K., Matsushita N., Kobayashi K., Mashimo T.

    Human Genetics   Vol. 140 ( 2 ) page: 277 - 287   2021.2

     More details

    Language:Japanese   Publisher:Human Genetics  

    CRISPR-Cas9 are widely used for gene targeting in mice and rats. The non-homologous end-joining (NHEJ) repair pathway, which is dominant in zygotes, efficiently induces insertion or deletion (indel) mutations as gene knockouts at targeted sites, whereas gene knock-ins (KIs) via homology-directed repair (HDR) are difficult to generate. In this study, we used a double-stranded DNA (dsDNA) donor template with Cas9 and two single guide RNAs, one designed to cut the targeted genome sequences and the other to cut both the flanked genomic region and one homology arm of the dsDNA plasmid, which resulted in 20–33% KI efficiency among G0 pups. G0 KI mice carried NHEJ-dependent indel mutations at one targeting site that was designed at the intron region, and HDR-dependent precise KIs of the various donor cassettes spanning from 1 to 5 kbp, such as EGFP, mCherry, Cre, and genes of interest, at the other exon site. These findings indicate that this combinatorial method of NHEJ and HDR mediated by the CRISPR-Cas9 system facilitates the efficient and precise KIs of plasmid DNA cassettes in mice and rats.

    DOI: 10.1007/s00439-020-02198-4

    Scopus

    PubMed

KAKENHI (Grants-in-Aid for Scientific Research) 2

  1. メラノコルチン受容体発現神経細胞の加齢性変容による代謝量調節機構の解明

    Grant number:21K15343  2021.4 - 2025.3

    科学研究費助成事業  若手研究

    大屋 愛実

      More details

    Authorship:Principal investigator 

    Grant amount:\4680000 ( Direct Cost: \3600000 、 Indirect Cost:\1080000 )

    人間を含む恒温動物は成長に伴い代謝型熱産生量を調節することで適切な体温調節が可能になるが、発達や加齢に応じた代謝調節のメカニズムは不明である。代謝調節の中枢神経システムにおいてはメラノコルチン系が重要な役割を担っており、4型メラノコルチン受容体 (MC4R)の異常は代謝量を減少させ、肥満につながる。本研究では、発達に応じて変化する代謝調節における、視床下部神経細胞のMC4Rの機能を生理学・組織学・遺伝学的手法によって調べる。

  2. メラノコルチン受容体発現神経細胞の形態変容と肥満発症の連関機構

    Grant number:20J40056  2020.4 - 2023.3

    科学研究費助成事業  特別研究員奨励費

    大屋 愛実

      More details

    Authorship:Other 

    加齢性肥満の発症機構の解明は現代社会における重要課題である。加齢性肥満の発症の原因の一つとして代謝量の減少が考えられるが、加齢による代謝量の低下メカニズムは明らかにされていない。4型メラノコルチン受容体(MC4R)は摂食・代謝調節において重要な役割を担っており、MC4Rの機能不全は肥満につながる。また、MC4Rは褐色脂肪組織における代謝熱産生を制御する視床下部背内側部に発現している。そこで研究代表者は「視床下部背内側部のMC4Rを介した褐色脂肪熱産生を調節する神経回路が加齢により変容するため、代謝機能が低下する」との仮説を立て、加齢性肥満発症メカニズムの解明を目指す。

 

Teaching Experience (On-campus) 1

  1. 生理学実習(筋紡錘からの求心性放電)

    22