Updated on 2024/09/25

写真a

 
ITOYAMA Noboru
 
Organization
Institute of Materials and Systems for Sustainability Division of Systems Research (DS) Assistant Professor
Graduate School
Graduate School of Engineering
Title
Assistant Professor

Degree 1

  1. 博士(工学) ( 2020.3   東京大学 ) 

Research Interests 7

  1. Catalyst engineering

  2. Combustion engineering

  3. Propulsion engineering

  4. Reaction engineering

  5. Analytical chemistry

  6. Satefy engineering

  7. 流体力学

Research Areas 6

  1. Frontier Technology (Aerospace Engineering, Marine and Maritime Engineering) / Aerospace engineering  / Propulsion engineering

  2. Manufacturing Technology (Mechanical Engineering, Electrical and Electronic Engineering, Chemical Engineering) / Thermal engineering

  3. Social Infrastructure (Civil Engineering, Architecture, Disaster Prevention) / Safety engineering

  4. Manufacturing Technology (Mechanical Engineering, Electrical and Electronic Engineering, Chemical Engineering) / Chemical reaction and process system engineering

  5. Nanotechnology/Materials / Energy chemistry

  6. Nanotechnology/Materials / Analytical chemistry  / 機器分析化学

▼display all

Current Research Project and SDGs 1

  1. 高エネルギ反応場の化学的制御

Research History 4

  1. 名古屋大学 工学系研究科 航空宇宙工学専攻   助教

    2023.4

  2. 名古屋大学 未来材料・システム研究所 システム創成部門   助教

    2023.4

  3. Nagoya University   Institute of Materials and Systems for Sustainability Division of Systems Reserch   Designated assistant professor

    2020.4 - 2023.3

      More details

    Country:Japan

  4. Japan Society for Promotion of Science   Research Fellowship for Young Scientist

    2018.4 - 2020.3

      More details

    Country:Japan

Education 1

  1. The University of Tokyo   The Graduate School of Engineering   Department of Chemical System Engineering

    2016.4 - 2020.4

      More details

    Country: Japan

Professional Memberships 4

  1. American institute of aeronautics and astronautics

    2021.12

  2. 日本燃焼学会

    2020.4

  3. 日本航空宇宙学会

    2020.4

  4. Japan Explosive Society

    2016.4

Awards 8

  1. 2022 AIAA Pressure Gain Combustion Best Paper Award

    2023.1   Flight Demonstration of Detonation EngineSystem Using Sounding Rocket S-520-31: Performance of Rotating Detonation Engine

  2. 火薬学会秋季講演会 優秀講演賞

    2022.11   火薬学会   高エネルギイオン液体のレーザ着火を応用したスラスタ概念と基礎作動特性

  3. 火薬学会 2022年度春季研究発表会 優秀講演賞

    2022.6   一般社団法人火薬学会   レーザ輻射加熱による高エネルギーイオン液体推進薬の点火特性評価

  4. 2021年『美しい炎』の写真展 最優秀作品賞

    2021.12   日本燃焼学会   世界初!デトネーションエンジン宇宙実証

    笠原次郎, 松山行一, 松岡健, 川﨑央, 渡部広吾輝, 伊東山登, 後藤啓介, 石原一輝, ブヤコフバレンティン, 野田朋之, 松尾亜紀子, 船木一幸, 羽生宏人, 竹内伸介, 荒川聡, 増田純一, 前原健次, 山田和彦, 中尾達郎, 中村秀一, 豊永慎治, 原田修, 河野秀文, 山本文孝, 川本昌司, 東野和幸, 中田大将, 内海政春, 味田直也, 神藤博実, 堂山一郎, 加藤辰哉, 観測ロケットS, 号機実験班

  5. 2020年 『美しい炎』の写真展 最優秀作品賞

    2020.12   日本燃焼学会   デトネーションエンジン宇宙へ(Detonation Engine to Space)

    笠原次郎, 松山行一, 松岡健, 川﨑央, 渡部広吾輝, 伊東山登, 後藤啓介, 石原一輝, ブヤコフバレンティン, 野田朋之, 松尾亜紀子, 船木一幸, 羽生宏人, 竹内伸介, 荒川聡, 増田純一, 前原健次, 和田明哲, 岩崎祥大, 中村秀一, 豊永慎治, 原田修, 河野秀文, 山本文孝, 川本昌司, 東野和幸, 中田大将, 内海政春, 味田直也, 神藤博実, 堂山一郎, 加藤辰哉

  6. Japan Explosive Society Award

    2019.5   Japan Explosive Society   Investigation for real-time analysis of HAN-decomposed gas with/without Ir-based catalyst by MPI/TOF-MS

    Noboru Itouyama

  7. Best Poster Award on The 6th International Symposium on Energetic Materials and their Applications (ISEM2017)

    2017.11   Japan Explosive Society  

    Noboru Itouyama, Mamoru Hayata, Yu-ichiro Izato, Atsumi Miyake, Hiroto Habu

  8. Best Presentation Award on the 2017's conference of JES

    2017.5   Japan Explosive Society   Evaluation of direct ignition energy input method to electric conductive liquid propellant

    Noboru Itouyama, Hiroto Habu

▼display all

 

Papers 70

  1. Assessment of the sensitivity to detonation of the gaseous pyrolytic products formed during the thermal decomposition of ammonium dinitramide and its related ionic liquids Reviewed

    N. Itouyama, X. Huang, R. Mével, K. Matsuoka, J. Kasahara, H. Habu

    Shock Waves     2024.1

     More details

    Authorship:Lead author, Corresponding author  

  2. Screening of effective catalysts for the ignition of high-energy ionic liquid propellants: Narrowing down of candidate catalysts and their investigation based on thermal analysis Reviewed

    Noboru Itouyama, Asato Wada, Hiroki Matsunaga, Jiro Kasahara, Hiroto Habu

    Science and Technology of Energetic Materials   Vol. 84 ( 3-4 ) page: 33 - 39   2023.10

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  3. Conceptual Design of Small-Sized Thruster Using Laser Ignition of High-Energy Monopropellant

    Noboru Itouyama, Asato Wada, Hiroto Habu, Yoshimichi Sago

    JOURNAL OF PROPULSION AND POWER   Vol. 39 ( 3 ) page: 416 - 425   2023.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER INST AERONAUTICS ASTRONAUTICS  

    Ammonium dinitramide (ADN)-based energetic ionic liquid propellants (ADN-EILPs) present considerable potential as monopropellants due to high energy density, high thermal/chemical stability, and low toxicity. Consequently, a chemical thruster system based on ADN-EILPs can be employed in the development of high-performance ultrasmall/small satellites. However, the characteristics of the ADN-EILPs present various problems in their ignition during the thruster development. To solve this problem, the authors have previously achieved the continuous-wave (CW) laser ignition of ADN-EILPs using laser absorbers composed of carbon wools. However, the conventional propellant injection of ADN-EILPs with carbon wool using high-pressure gas faces several limitations. Therefore, a propellant feed system suited for the ignition method is proposed here, as well as a conceptual model of a 0.5 U/0.5 N-class thruster operated by the CW laser ignition of ADN-EILPs (1U=100 x 100 x 100 mm). Additionally, an attempt is made to manufacture a laboratory model (LM) thruster, and its fundamental operation properties are determined. The future research implications of this study include the further observation of the combustion of the decomposed gas before its emission from the throat of the LM thruster, along with the further development of the propellant feeding system proposed in this study and the hot-fire tests performed for the feeding systems.

    DOI: 10.2514/1.B38880

    Web of Science

  4. Analysis of Dispersibility Effect of Carbon Additives on Ignitability of Ammonium-Dinitramide-Based Ionic Liquid Propellants Using Continuous Wave Laser Heating

    Noboru Itouyama, Hiroto Habu

    Combustion Science and Technology     2022

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:TAYLOR & FRANCIS INC  

    Ammonium dinitramide-based ionic liquids (ADN-EILPs) are a promising alternative to hydrazine monopropellants. Continuous wave (CW) laser heating using carbon wools is an effective approach to attain the rapid ignition of ADN-EILPs. This study aims to verify the influence of the dispersibility of carbon additives in ADN-EILPs on their ignition. The investigation was performed by performing fluorescence microscopy of samples imitating the mixture of ADN-EILPs with carbon additives and CW laser ignition tests of ADN-EILPs with several yarn-lengths of carbon wools. Based on these results, the dispersity mechanism of carbon additives in ADN-EILPs is proposed, which indicates that the use of high-power laser is not an effective approach to ignite ADN-EILPs consisting of carbon additives with high dispersibility. During sample preparation for the ignition tests, it was verified that the difference in the length of carbon yarns affects the bulk density and morphology of the prepared samples, and dispersibility of carbons. The results of the ignition tests indicate that samples whose morphology altered into a liquid-like morphology cannot be ignited and the ones who retained their original one can be ignited. The physical distribution of the residue of samples with a liquid-like morphology, observed after the ignition tests, agrees with the discussion regarding the dispersibility mechanism of carbon additives, obtained through fluorescence microscopy. Moreover, for the samples exhibiting an ignition capacity, the bulk density of additives would be crucial to be considered to achieve the effective ignition.

    DOI: 10.1080/00102202.2022.2112954

    Web of Science

    Scopus

  5. Characterization of Continuous-Wave Laser Heating Ignition of Ammonium Dinitramide-Based Ionic Liquids with Carbon Fibers Reviewed

    Noboru Itouyama, Hiroki Matsunaga, Hiroto Habu

    PROPELLANTS EXPLOSIVES PYROTECHNICS   Vol. 45 ( 6 ) page: 988 - 996   2020.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:WILEY-V C H VERLAG GMBH  

    Ammonium dinitramide-based energetic ionic liquid propellants (ADN-EILPs) exhibit the advantages of high energy density, low toxicity, and handling safety, and are therefore promising monopropellants. Herein, we characterized the ignition of ADN-EILPs induced by CW laser heating in the presence of carbon fibers, clarifying the effect of laser power and suggesting that ignition reproducibility is influenced by the difference of ADN-EILP osmotic state in carbon fibers or carbon fiber configuration. The observed ignition behavior allowed one to conclude that (i) high-power CW laser heating causes the formation of bubbles on the surface, which disturbs further heating; and (ii) an Arrhenius-type relationship exists between ignition delay and heating rate, suggesting that the strategy of foreshortening ADN-EILP ignition delay by increasing CW laser power has certain limits.

    DOI: 10.1002/prep.201900352

    Web of Science

  6. Construction and validation of a detailed gas-phase chemical reaction model for ammonium-dinitramide based ionic liquids

    Noboru Itouyama, Yu-ichiro Izato, Atsumi Miyake, Hiroto Habu

    SCIENCE AND TECHNOLOGY OF ENERGETIC MATERIALS   Vol. 81 ( 2 ) page: 53 - 66   2020

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:JAPAN EXPLOSIVES SOC  

    Ammonium dinitramide (ADN)-based energetic ionic liquid propellants (ADN-EILPs) are promising monopropellants with high energy density, high thermal/chemical stability, and low toxicity. To predict the ignition and combustion characteristics of ADN-EILPs, this study aimed to construct a detailed reaction model of ADN-EILPs in the gas phase by combining conventional thermal decomposition models of the components in ADN-EILPs, the NO2 chain-growth reaction cycle, and additional reactions based on hydrogen abstraction between component species of ADN-EILPs and two radicals, NO2 and OH. The additional reactions were computed using quantum chemistry calculations. The structures of the reactants, products, and transition states were optimized at the omega B97XD/6-311G++(d,p) level of theory, and the total electron energies of these optimized structures were determined at the CBS-QB3 level. The simulated results with the constructed detailed chemical reaction model (EILPs-G-01 model) agreed with the experimental results at approximately 1.2 MPa. The EILPs-G-01 model revealed that the gas-phase combustion of ADN-EILPs has three reaction cycles depending on the radical-related reactions. Moreover, the EILPs-G-01 model clarifies the relationships between the pressure deflagration limit of ADN-EILPs and the weight ratio of methylamine nitrate in the ADN-EILPs.

    Web of Science

  7. Continuous-wave Laser Ignition of Non-solvent Ionic Liquids Based on High Energetic Salts with Carbon Additives

    Noboru Itouyama, Hiroto Habu

    PROPELLANTS EXPLOSIVES PYROTECHNICS   Vol. 44 ( 9 ) page: 1107 - 1118   2019.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:WILEY-V C H VERLAG GMBH  

    The ignition system for ammonium dinitramide-based non-solvent ionic liquids (ADN-EILPs) with a continuous-wave (CW) laser was investigated. The efficiency of conversion from CW laser power to ignition energy for ADN-EILPs is important, and carbon additives are expected to enhance the efficiency of conversion. The impact of additive shapes on ADN-EILP ignition by CW lasers is discussed herein by comparing the results of the ignition behavior observation using a high-speed infrared camera. The shapes of the carbon additives are of two different types: fine fiber mass, called carbon wool, and powder of graphite. The ignition delay of carbon wool mixed ADN-EILPs is shorter than that of the sample with graphite powder. The difference in these results might depend on the low dispersibility in ADN-EILPs of carbon wools and the presence of local heat spots owing to the CW laser. The addition of carbon wools in ADN-EILPs is expected to facilitate their ignition by CW laser heating.

    DOI: 10.1002/prep.201900063

    Web of Science

  8. Investigation for Ignition of ADN-based Ionic Liquid with Visible Pulse Laser

    Noboru ITOUYAMA, Hiroto HABU

    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN   Vol. 16 ( 3 ) page: 291 - 298   2018

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Japan Society for Aeronautical and Space Sciences  

    DOI: 10.2322/tastj.16.291

  9. Real-time analysis of decomposed gas from HAN(aq.) with/without Ir-based catalyst by thruster-simulation/MPI/TOF-MS

    Noboru Itouyama, Totaro Imasaka, Keiichi Hori

    SCIENCE AND TECHNOLOGY OF ENERGETIC MATERIALS   Vol. 79 ( 3-4 ) page: 102 - 107   2018

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:JAPAN EXPLOSIVES SOC  

    Using multiphoton ionization/time-of-flight mass spectrometry, we evaluated the validity of the conventional mechanism for thermal decomposition of hydroxylammonium nitrate (HAN) and investigated the corresponding catalytic reaction to determine the decomposed gases in real time, through a pathway that models a real thruster. HAN with a hot catalyst can provide a low-toxicity, high-performance alternative to hydrazine for use in thruster systems. Our results show that the decomposition of HAN mostly follows the conventional model, but some further reactions need to be considered. We found that the catalyst facilitated the reaction of NH2OH with HONO in the catalytic reaction of HAN and propose a new decomposition pathway.

    Web of Science

  10. Nitrous Oxide/Ethanol Cylindrical Rotating Detonation Engine for Sounding Rocket Space Flight

    Kazuki Ishihara, Tomoki Sato, Tomoaki Kimura, Kosuke Nakajima, Kotaro Nakata, Noboru Itouyama, Akira Kawasaki, Ken Matsuoka, Koichi Matsuyama, Jiro Kasahara, Hikaru Eguchi, Daisuke Nakata, Masaharu Uchiumi, Akiko Matsuo, Ikkoh Funaki

    Journal of Spacecraft and Rockets     page: 1 - 11   2024.5

     More details

    Publishing type:Research paper (scientific journal)   Publisher:American Institute of Aeronautics and Astronautics (AIAA)  

    There are few experimental studies on rotating detonation engines (RDEs) with liquid propellants. This study reveals the static thrust performance of a cylindrical RDE with ethanol and liquid nitrous oxide as propellants under atmospheric pressure. This RDE had an inner diameter of 40 mm, a maximum combustor length of 230 mm, a nozzle contraction ratio of 1.7, and a nozzle expansion ratio of 9.1. Nineteen experiments were conducted at total mass flow rates of [Formula: see text], mixture ratios of 3.6–5.9, and combustion pressures of 0.35–0.46 MPa, resulting in a maximum detonation velocity of [Formula: see text] (approximately 80% of the theoretical detonation velocity, [Formula: see text]), maximum thrust at sea level of 294 N, and maximum specific impulse at sea level of 148 s. In addition, the maximum characteristic exhaust velocity, [Formula: see text], was [Formula: see text], which was 99% of the theoretical value. The characteristic length of the combustion chamber at this time was 0.15 m. Since conventional rocket combustion requires 1.57 m to achieve the same [Formula: see text] efficiency, this study shows that detonation combustion can reduce the combustor size by 88%.

    DOI: 10.2514/1.a35824

  11. Effect of Channel Expansion Angle near Injector Outlet on a Rotating Detonation Engine Performance Reviewed

    K. Nakajima, K. Matsuoka, N. Itouyama, J. Kasahara, A. Kawasaki, A. Matsuo

    Shock Waves     2024.3

  12. Combustion Structure of a Cylindrical Rotating Detonation Engine with Liquid Ethanol and Nitrous Oxide Reviewed

    T. Sato, K. Nakata, K. Ishihara, N. Itouyama, K. Matsuoka, J. Kasahara, A. Kawasaki, D. Nakata, H. Eguchi, M. Uchiumi, A. Matsuo, I. Funaki

    Combustion and Flame     2024.3

  13. Space Demonstration of Small Thruster using High-Energy Ionic Liquid Propellants

    MATSUMOTO Kotaro, ITOUYAMA Noboru, MATSUNAGA Hiroki, KATSUMI Toshiyuki, SHIOTA Kento, IZATO Yu-ichiro, HABU Hiroto

    Proceedings of Sounding Rocket Symposium 2023     2024.2

     More details

    Language:Japanese  

    CiNii Research

  14. Experimental demonstration on detonation initiation by laser ignition and shock focusing in elliptical cavity

    T. Sato, K. Matsuoka, A. Kawasaki, N. Itouyama, H. Watanabe, J. Kasahara

    Shock Waves     2024.1

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media LLC  

    DOI: 10.1007/s00193-023-01151-4

    Other Link: https://link.springer.com/article/10.1007/s00193-023-01151-4/fulltext.html

  15. ADN系イオン液体の電圧印加型燃焼器を用いた燃焼試験 Reviewed

    大森稜介, 伊東山登, 塩田謙人, 伊里友一朗, 三宅淳巳

    宇宙航空研究開発機構研究開発報告: 高エネルギー物質研究会令和5年度研究成果報告書   Vol. JAXA-RR-23-005   page: 17 - 20   2024.1

     More details

    Language:Japanese   Publishing type:Research paper (bulletin of university, research institution)  

  16. 高エネルギーイオン液体推進剤を適用した化学スラスタの開発 Reviewed

    松本幸太郎, 勝身俊之, 伊東山登, 松永浩貴, 羽生宏人

    宇宙航空研究開発機構研究開発報告: 高エネルギー物質研究会令和5年度研究成果報告書   Vol. JAXA-RR-23-005   page: 5 - 7   2024.1

     More details

    Language:Japanese   Publishing type:Research paper (bulletin of university, research institution)  

  17. 超小型衛星を見据えた高エネルギーイオン液体推進系の研究開発 Reviewed

    松永浩貴, 伊東山登, 松本幸太郎, 塩田謙人, 伊里友一朗, 勝身俊之, 羽生宏人, 野田賢, 三宅淳巳

    宇宙航空研究開発機構研究開発報告: 高エネルギー物質研究会令和5年度研究成果報告書   Vol. JAXA-RR-23-005   page: 1 - 5   2024.1

     More details

    Language:Japanese   Publishing type:Research paper (bulletin of university, research institution)  

  18. 画像処理に基づいた高粘性一液推進剤の微粒化現象の時空間分解 Reviewed

    伊東山登, 佐藤寛, 伊藤尚義, 勝身俊之, 松岡健, 笠原次郎

    宇宙航空研究開発機構研究開発報告: 高エネルギー物質研究会令和5年度研究成果報告書   Vol. JAXA-RR-23-005   page: 9 - 12   2024.1

     More details

    Language:Japanese   Publishing type:Research paper (bulletin of university, research institution)  

  19. Evaluation of Pressure-Flow Characteristics of Electro-osmotic pumps and its application to thrusters

    HASEGAWA Ryota, SUZUKI Yamato, ITOUYAMA Noboru, MATSUOKA Ken, KASAHARA Jiro, KAWASAKI Akira, UCHIDA Keisuke

    Proceedings of Space Transportation Symposium FY2023     2024.1

     More details

    Language:Japanese  

    CiNii Research

  20. The circumferential force on a cylindrical rotating detonation engine

    Satoru Sawada, Kazuki Ishihara, Noboru Itouyama, Hiroaki Watanabe, Akira Kawasaki, Ken Matsuoka, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki

    Proceedings of the Combustion Institute   Vol. 40 ( 1-4 ) page: 105490 - 105490   2024

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Elsevier BV  

    DOI: 10.1016/j.proci.2024.105490

  21. A Story of "World First! Detonation Engine Space Demonstration"

    KASAHARA Jiro, MATSUYAMA Koichi, MATSUOKA Ken, KAWASAKI Akira, WATANABE Hiroaki, ITOUYAMA Noboru, GOTO Keisuke, ISHIHARA Kazuki, BUYAKOFU Valentin, NODA Tomoyuki, MATSUO Akiko, FUNAKI Ikkoh, HABU Hiroto, TAKEUCHI Shinsuke, ARAKAWA Satoshi, MASUDA Junichi, MAEHARA Kenji, YAMADA Kazuhiko, NAKAO Tatsuro, NAKAMURA Shuichi, TOYONAGA Shinji, HARADA Osamu, KAWANO Hidefumi, YAMAMOTO Fumitaka, KAWAMOTO Syouji, HIGASHINO Kazuyuki, NAKATA Daisuke, UCHIUMI Masaharu, MITA Naoya, JINDO Hiromi, DOYAMA Ichiro, KATO Tatsuya, Sounding Rocket S-520-31 Experiment Team

    Journal of the Combustion Society of Japan   Vol. 65 ( 214 ) page: 220 - 223   2023.11

     More details

    Language:Japanese   Publisher:Combustion Society of Japan  

    <p>A detonation engine in space flight has been successfully demonstrated. This is the world's first successful demonstration of a detonation engine in space. The detonation engine system developed in this study was loaded onto the mission section of the sounding rocket S-520-31 and launched from the JAXA Uchinoura Space Center at 5:30 a.m. on July 27, 2021. After the separation of the first stage rocket, the rotating detonation engine and pulse detonation engine were successfully operated in space, and photo images, pressure, temperature, vibration, position, and attitude data were acquired by telemetry and RATS (Reentry and Recovery Module with Deployable Aeroshell Technology for Sounding Rocket Experiment). The fuel is methane and the oxidizer is oxygen. The detonation engine generates detonation and compression waves at extremely high frequencies (1-100 kHz) to drastically increase reaction speed, leading to radical reduction of rocket engine weights and high performance by easy generation of thrust. The success of this space flight demonstration will bring the detonation engine much closer to practical use as a kick motor for deep space exploration, and as a first and second stage engine for rockets.</p>

    DOI: 10.20619/jcombsj.65.214_220

    CiNii Research

  22. Study on Ionic-Liquid Propellant for Low-Toxic Space Propulsion System

    KATSUMI Toshiyuki, MATSUNAGA Hiroki, ITOYAMA Noboru, MATSUMOTO Kotaro, SHIOTA Kento, IZATO Yu-ichiro, HABU Hiroto, MIYAKE Atsumi

    Journal of the Combustion Society of Japan   Vol. 65 ( 214 ) page: 233 - 238   2023.11

     More details

    Language:Japanese   Publisher:Combustion Society of Japan  

    <p>An overview of research on high-energetic ionic-liquid propellants (EILPs) in Japan to realize a green space propulsion system is reported in this paper. First, two kinds of propellant compositions consisting of ammonium dinitramide/monomethylamine nitrate/urea were selected as candidates as the compositions with sufficiently low melting temperature and higher propulsion performance than conventional hydrazine. For innovative combustion control methods to solve the problems of catalyst ignition, thermal and catalytic reaction characteristics were investigated, and laser heating ignition and electrolytic ignition were experimentally studied. The results show the feasibility of both laser heating ignition and electrolytic ignition and provide knowledge of the influences of several design parameters on the ignition characteristics.</p>

    DOI: 10.20619/jcombsj.65.214_233

    CiNii Research

  23. 世界初!デトネーションエンジン宇宙実証」を語る—2021年最優秀作品賞受賞作品— Invited Reviewed

    笠原 次郎, 松山 行一, 松岡 健, 川﨑 央, 渡部 広吾輝, 伊東山 登, 後藤 啓介, 石原 一輝, ブヤコフ バレンティン, 野田 朋之, 松尾 亜紀子, 船木 一幸, 羽生 宏人, 竹内 伸介, 荒川 聡, 増田 純一, 前原 健次, 山田 和彦, 中尾 達郎, 中村 秀一, 豊永 慎治, 原田 修, 河野 秀文, 山本 文孝, 川本 昌司, 東野 和幸, 中田 大将, 内海 政春, 味田 直也, 神藤 博実, 堂山 一郎, 加藤 辰哉, 観測ロケットS, 号機実験班

    日本燃焼学会誌   Vol. 65 ( 214 ) page: 220 - 223   2023.10

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

  24. 低毒宇宙推進系のためのイオン液体推進剤に関する研究 Invited Reviewed

    勝身俊之, 松永浩貴, 伊東山登, 松本幸太郎, 塩田謙人, 伊里友一朗, 羽生宏人, 三宅淳巳

    日本燃焼学会誌   Vol. 65 ( 214 ) page: 233 - 238   2023.10

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

  25. Lagrangian dispersion and averaging behind a two-dimensional gaseous detonation front

    Hiroaki Watanabe, Akiko Matsuo, Ashwin Chinnayya, Noboru Itouyama, Akira Kawasaki, Ken Matsuoka, Jiro Kasahara

    Journal of Fluid Mechanics   Vol. 968   2023.8

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Cambridge University Press (CUP)  

    Two-dimensional numerical simulations with the particle tracking method were conducted to analyse the dispersion behind the detonation front and its mean structure. The mixtures were 2H$_2$–O$_2$–7Ar and 2H$_2$–O$_2$ of increased irregularity in ambient conditions. The detonation could be described as a two-scale phenomenon, especially for the unstable case. The first scale is related to the main heat release zone, and the second where some classical laws of turbulence remain relevant. The dispersion of the particles was promoted by the fluctuations of the leading shock and its curvature, the presence of the reaction front, and to a lesser extent transverse waves, jets and vortex motion. Indeed, the dispersion and the relative dispersion could be scaled using the reduced activation energy and the $\chi$ parameter, respectively, suggesting that the main mechanism driving the dispersion came from the one-dimensional leading shock fluctuations and heat release. The dispersion within the induction time scale was closely related to the cellular structure, particles accumulating along the trajectory of the triple points. Then, after a transient where the fading transverse waves and the vortical motions coming from jets and slip lines were present, the relative dispersion relaxed towards a Richardson–Obukhov regime, especially for the unstable case. Two new Lagrangian Favre average procedures for the gaseous detonation in the instantaneous shock frame were proposed and the mean profiles were compared with those from Eulerian procedure. The characteristic lengths for the detonation were similar, meaning that the Eulerian procedure gave the mean structure with a reasonable accuracy.

    DOI: 10.1017/jfm.2023.535

  26. Impact of mixture mass flux on hydrodynamic blockage ratio and mach number of rotating detonation combustor

    Tomoyuki Noda, Ken Matsuoka, Keisuke Goto, Akira Kawasaki, Hiroaki Watanabe, Noboru Itouyama, Jiro Kasahara, Akiko Matsuo

    Acta Astronautica   Vol. 207   page: 219 - 226   2023.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Elsevier BV  

    To analyze non-ideal phenomena, such as burned gas backflow and non-detonation combustion, which affect the rotating detonation wave Mach number, simultaneous self-luminous visualization, time-averaged static pressure, fluctuating pressure, and thrust measurements with gaseous ethylene and oxygen were performed. Consequently, by doubling the number density of the fuel injectors, the hydrodynamic blockage ratio at the oxidizer inlet increased approximately 1.7-fold under the same oxidizer inlet area conditions. This may be attributed to the increase in the detonation propagation Mach number owing to the enhanced mixing of fuel and oxidizer. The relationship between the parasitic combustion fraction in front of the rotating detonation wave and the Mach number was also investigated by using a distributed heat release model. Consequently, it was suggested that experimental Mach number decreased from approximately 4.1 to 2.8 with increase in a mixture mass flux, and the theoretical detonation wave propagation Mach number was 7.3.

    DOI: 10.1016/j.actaastro.2023.03.013

    Web of Science

  27. Thrust Performance of Converging Rotating Detonation Engine Compared with Steady Rocket Engine

    Kazuki Ishihara, Kentaro Yoneyama, Hiroaki Watanabe, Noboru Itouyama, Akira Kawasaki, Ken Matsuoka, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki, Kazuyuki Higashino

    Journal of Propulsion and Power   Vol. 39 ( 3 ) page: 1 - 11   2023.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:American Institute of Aeronautics and Astronautics (AIAA)  

    Rotating detonation engines (RDEs) have been actively researched around the world for application to next-generation aerospace propulsion systems because detonation combustion has theoretically higher thermal efficiency than conventional combustion. Moreover, because cylindrical RDEs have simpler combustors, further miniaturization of conventional combustors is expected. Therefore, in this study, with the aim of applying RDEs to space propulsion systems, a cylindrical RDE with a converging–diverging nozzle was manufactured; the combustor length [Formula: see text] was changed to 0, 10, 30, 50, and 200 mm; and the thrust performance and combustion mode with the different combustor lengths were compared. As a result, four combustion modes were confirmed. Detonation combustion occurred with a combustor length of [Formula: see text]: that is, a converging rotating detonation engine. The thrust performance of this engine was 94 to 100% of the theoretical rocket thrust performance, which is equivalent to the thrust performance of conventional rocket combustion generated at [Formula: see text]. This study shows that detonation combustion can significantly reduce engine weight while maintaining thrust performance.

    DOI: 10.2514/1.b38784

    Web of Science

  28. Visualization and Performance Evaluation of a Liquid-Ethanol Cylindrical Rotating Detonation Combustor

    Kazuki ISHIHARA, Kentaro YONEYAMA, Tomoki SATO, Hiroaki WATANABE, Noboru ITOUYAMA, Akira KAWASAKI, Ken MATSUOKA, Jiro KASAHARA, Akiko MATSUO, Ikkoh FUNAKI

    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES   Vol. 66 ( 2 ) page: 46 - 58   2023

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Japan Society for Aeronautical and Space Sciences  

    Rotating detonation combustors (RDCs) are among the combustors that use supersonic combustion waves known as detonation waves, and are expected to simplify engine systems and improve thermal efficiency due to their supersonic combustion and compression performance using shock waves. Research is also being actively conducted worldwide on a cylindrical RDC; a RDC without an inner cylinder, which is expected to simplify and downsize the combustor. However, most of the research was performed using gas propellants, and liquid propellants were rarely used. Since liquid propellants are used in many combustors, it is important to evaluate the performance of RDCs with liquid propellants. In this study, a cylindrical RDC with a liquid ethanol-gas oxygen mixture was constructed and tested at a flow rate of 31.5 +/- 5.0 g/s, an equivalence ratio of 0.46-1.39, and a back pressure of 14.5 +/- 2.5 kPa. The thrust was shown to depend strongly on the combustor bottom pressure history. In addition, the start-up process of the cylindrical RDC with liquid fuel was clarified by self-luminous and CH+ radical visualizations. It was found that the detonation wavefront propagated at a distance of 2-3 mm from the combustor bottom, and the main combustion region was 10-15 mm in height.

    DOI: 10.2322/tjsass.66.46

    Web of Science

  29. 超小型推進系への適用を見据えた高エネルギーイオン液体推進剤の合成および推進システムの研究開発 Reviewed

    伊東山 登

    宇宙航空研究開発機構研究開発報告: 高エネルギー物質研究会: 令和4年度研究成果報告書   Vol. JAXA-RR-22-006   page: 1 - 5   2023

     More details

  30. Research and Development of Synthesis and Thruster of High Energetic Ionic Liquid Propellants for Micro Propulsion System Reviewed

    松永浩貴, 伊東山登, 松本幸太郎, 塩田謙人, 伊里友一朗, 勝身俊之, 羽生宏人, 野田賢, 三宅淳巳

    宇宙航空研究開発機構研究開発報告 JAXA-RR-(Web)   Vol. JAXA-RR-22-006 ( 22-006 ) page: 1 - 6   2023

     More details

    Language:Japanese   Publishing type:Research paper (bulletin of university, research institution)  

    J-GLOBAL

  31. Investigation of Fundamental Operating Characteristics of Laser Radiation Heating Ignited Thrusters Using High-Energetic Ionic Liquid Propellant

    伊東山登, 羽生宏人, 笠原次郎

    宇宙航空研究開発機構研究開発報告 JAXA-RR-(Web)   ( 22-006 )   2023

     More details

  32. Measurement of In-situ Image, Temperature, and Current of ADN-based Ionic Liquids Voltage-applied

    久保田悠斗, 大森稜介, 伊東山登, 塩田謙人, 伊里友一朗, 三宅淳巳

    宇宙航空研究開発機構研究開発報告 JAXA-RR-(Web)   ( 22-006 )   2023

     More details

  33. Summary of Detonation Engine System Demonstration in Space by Using Sounding Rocket S-520-31

    松岡健, 後藤啓介, BUYAKOFU Valentin, 松山行一, 川崎央, 伊東山登, 渡部広吾輝, 石原一輝, 野田朋之, 笠原次郎, 松尾亜紀子, 船木一幸, 中田大将, 内海政春, 羽生宏人, 竹内伸介, 荒川聡, 増田純一, 前原健次, 中尾達郎, 山田和彦

    日本航空宇宙学会誌   Vol. 70 ( 11 ) page: 224 - 233   2022.11

     More details

    Language:Japanese   Publisher:THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES  

    DOI: 10.14822/kjsass.70.11_224

    CiNii Research

    J-GLOBAL

  34. Experimental investigation of inner flow of a throatless diverging rotating detonation engine

    Kotaro Nakata, Kazuki Ishihara, Keisuke Goto, Noboru Itouyama, Hiroaki Watanabe, Akira Kawasaki, Ken Matsuoka, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki, Kazuyuki Higashino, James Braun, Terrence Meyer, Guillermo Paniagua

    Proceedings of the Combustion Institute     2022.11

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Elsevier BV  

    DOI: 10.1016/j.proci.2022.08.089

  35. Experimental study on detonation-diffraction reflection point distances in hydrogen and gaseous hydrocarbon reactive systems Reviewed

    Han Sun, Akira Kawasaki, Noboru Itouyama, Ken Matsuoka, Jiro Kasahara

    Combustion and Flame   Vol. 245   2022.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ELSEVIER SCIENCE INC  

    In this study, the critical conditions of diffracted detonation waves expressed in terms of reflection point distances in Kawasaki and Kasahara (2020) were investigated for a wider range of fuel-oxidizer mixtures. In H-2/O-2, C2H2/O-2, C2H4/O-2, C2H6/O-2, C3H6/O-2, C2H6/N2O, and C3H6/N2O mixtures, these mixtures are used to measure the reflection point distance through the modification of the initial pressure and equivalence ratio of the mixture at room temperature. Moreover, the critical ideal reflection point distance divided by the channel width, which this dimensionless parameter was identified in the critical condition region of detonation diffraction. The results revealed that this region was in the range of 3.8 +/- 0.8 for all investigated mixtures even though the equivalence ratio varied. The parameter l(r,i) p(0) is the product of the ideal reflection point distance and the initial pressure, which is proportional to the energy (work) per unit area required for re-initiation. The larger the product of the reflection point distance and the initial pressure, the more difficult the mixture is to re-initiate, and the inverse of this parameter represents the ease of re-initiation, which can be considered an index of detonability. Detonability, which is the objective of clarification in this study, was found to have the order C2H2/O-2 > C2H4/O-2 > C3H6/O-2 > C2H6/O-2 > H-2/O-2 in the vicinity of the stoichiometric ratio, which is similar to the case using Matsui and Lee's critical initiation energy. (C) 2022 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.combustflame.2022.112329

    Web of Science

    Scopus

  36. Space Flight Demonstration of Rotating Detonation Engine Using Sounding Rocket S-520-31 Reviewed

    Keisuke Goto, Ken Matsuoka, Koichi Matsuyama, Akira Kawasaki, Hiroaki Watanabe, Noboru Itouyama, Kazuki Ishihara, Valentin Buyakofu, Tomoyuki Noda, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki, Daisuke Nakata, Masaharu Uchiumi, Hiroto Habu, Shinsuke Takeuchi, Satoshi Arakawa, Junichi Masuda, Kenji Maehara, Tatsuro Nakao, Kazuhiko Yamada

    Journal of Spacecraft and Rockets   Vol. 60 ( 1 ) page: 273 - 285   2022.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:American Institute of Aeronautics and Astronautics (AIAA)  

    To create a new flyable detonation propulsion system, a detonation engine system (DES) that can be stowed in sounding rocket S-520-31 has been developed. This paper focused on the first flight demonstration in the space environment of a DES-integrated rotating detonation engine (RDE) using S-520-31. The flight result was compared with ground-test data to validate its performance. In the flight experiment, the stable combustion of the annulus RDE with a plug-shaped inner nozzle was observed by onboard digital and analog cameras. With a time-averaged mass flow of [Formula: see text] and an equivalence ratio of [Formula: see text], the RDE generated a time-averaged thrust of 518 N and a specific impulse of [Formula: see text], which is almost identical to the ideal value of constant pressure combustion. Due to the RDE combustion, the angular velocity increased by [Formula: see text] in total, and the time-averaged torque from the rotational component of the exhaust during 6 s of operation was [Formula: see text]. The high-frequency sampling data identified the detonation frequency during the recorded time as 20 kHz in the flight, which was confirmed by the DES ground test through high-frequency sampling data analysis and high-speed video imaging.

    DOI: 10.2514/1.a35401

    Web of Science

  37. Flight Demonstration of Pulse Detonation Engine Using Sounding Rocket S-520-31 in Space

    Valentin Buyakofu, Ken Matsuoka, Koichi Matsuyama, Akira Kawasaki, Hiroaki Watanabe, Noboru Itouyama, Keisuke Goto, Kazuki Ishihara, Tomoyuki Noda, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki, Daisuke Nakata, Masaharu Uchiumi, Hiroto Habu, Shinsuke Takeuchi, Satoshi Arakawa, Junichi Masuda, Kenji Maehara, Tatsuro Nakao, Kazuhiko Yamada

    Journal of Spacecraft and Rockets     page: 1 - 9   2022.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:American Institute of Aeronautics and Astronautics (AIAA)  

    A detonation engine system is successfully demonstrated for the first time in space using sounding rocket S-520-31 of the Japan Aerospace Exploration Agency/Institute of Space Astronautical Science. Detailed flight results of an S-shaped pulse detonation engine (PDE) installed in the rocket are presented herein. The flight is conducted to confirm that the PDE and its system operate at scheduled sequences in space, confirm the reproducibility of the PDE cycle, and despin the rocket around its axis. It is confirmed that the PDE operated successfully for 14 cycles in space. The experimental plateau pressure of 2.0 +/- 0.1MPa is 80 +/- 3% of the calculated plateau pressure, which suggests that detonation occurred in 14 cycles. The pressure profiles of the cycles are similar, and the pressure integrals are 2.0 +/- 0.1kN.s/m2, confirming the excellent reproducibility of the PDE cycle. A probability statistical approach assuming a Gaussian distribution is applied to determine the average angular acceleration difference between processes of the PDE operation, mixture supply, and oxygen supply. The results suggested that the PDE despun the rocket via the thrust produced via detonation combustion, which is consistent with a quasi-steady-state model with an accuracy of 101 +/- 15%.

    DOI: 10.2514/1.a35394

    Web of Science

  38. Supersonic Exhaust from a Rotating Detonation Engine with Throatless Diverging Channel

    Kotaro Nakata, Kosei Ota, Shiro Ito, Kazuki Ishihara, Keisuke Goto, Noboru Itouyama, Hiroaki Watanabe, Akira Kawasaki, Ken Matsuoka, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki, Kazuyuki Higashino, James Braun, Terrence Meyer, Guillermo Paniagua

    AIAA Journal   Vol. 60 ( 7 ) page: 1 - 9   2022.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:American Institute of Aeronautics and Astronautics (AIAA)  

    Converging-diverging nozzles are common in rocket engine systems to increase the exhaust velocity and improve thrust performance. In this study, we focused on the acceleration of subsonic burned gas without a structural throat via detonation to realize a simple and compact engine. We developed and tested a rotating detonation engine (RDE) without a throat and with a diverging channel (constant diverging angle alpha=5 deg). Gaseous C2H4 and O-2 were used as the propellants, and the mass flow rate ranged from 62 to 134 g/s in the combustion tests under low back-pressure conditions. We measured pressure and thrust, as well as high-speed imaging of self-luminescence of the combustion and imaging of the exhaust plume. The pressure at the exit was less than one-fifth of the maximum pressure in the RDE, significantly below the value for a sonic flow. The results suggested that the exhaust flow was supersonic, with values up to Mach 1.7, without the need of a converging section within the engine. In addition to the estimated Mach number from the measured pressure, the exhaust plume images coherently indicated the existence of supersonic exhaust.

    DOI: 10.2514/1.j061300

    Web of Science

  39. Investigation of reflective shuttling detonation cycle by schlieren and chemiluminescence photography

    Tomoya Taguchi, Masato Yamaguchi, Ken Matsuoka, Akira Kawasaki, Hiroaki Watanabe, Noboru Itouyama, Jiro Kasahara

    Combustion and Flame   Vol. 236   page: 111826 - 111826   2022.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Elsevier BV  

    A reflective shuttling detention combustor (RSDC) is a two-dimensional combustor with two reflection walls. Unlike a rotating detonation combustor (RDC), an RSDC can visualize the entire area of the combustor via an optical technique. In addition, the RSDC can reproduce the counter-rotating detonation mode in RDC. In present study, CH * luminescence and schlieren image were observed to investigate the dynamics of the RSDC. The reflective wall distance was set to 45 mm (Type L ) and 25 mm (Type S ). As the results, the wave speed of 1226 +/- 64 m / s in the single wave mode in Type S was 76% of that in Type L . It was found that the detonation propagation speed decreased with a reduction in the reflection wall distance. Superimposing the luminescence images on the schlieren images revealed that the mixture was mainly burned by deflagration behind shock wave. In addition, the experimental mixture fill height was in good agreement with model in which the mixture filling process was temporarily stopped by detonation and refilled at a constant speed. Using the maximum fill height obtained by the model, it was found that the detonation mode was in the region of 3 +/- 0 . 6 of the dimensionless quantity (the reflection wall distance divided by the wave number and maximum value of the mixture fill height). (c) 2021 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.combustflame.2021.111826

    Web of Science

  40. Flight Demonstration of Detonation Engine System Using Sounding Rocket S-520-31: Flight Path and Attitude

    Hiroaki Watanabe, Koichi Matsuyama, Ken Matsuoka, Akira Kawasaki, Noboru Itouyama, Keisuke Goto, Kazuki Ishihara, Valentin Buyakofu, Tomoyuki Noda, Shiro Ito, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki, Daisuke Nakata, Masaharu Uchiumi, Hiroto Habu, Shinsuke Takeuchi, Satoshi Arakawa, Junichi Masuda, Kenji Maehara, Tatsuro Nakao, Kazuhiko Yamada

    AIAA SCITECH 2022 Forum     2022.1

     More details

    Publishing type:Research paper (international conference proceedings)   Publisher:American Institute of Aeronautics and Astronautics  

    DOI: 10.2514/6.2022-0231

  41. Development of an S-Shaped Pulse Detonation Engine for a Sounding Rocket

    Valentin Buyakofu, Ken Matsuoka, Koichi Matsuyama, Akira Kawasaki, Hiroaki Watanabe, Noboru Itouyama, Keisuke Goto, Kazuki Ishihara, Tomoyuki Noda, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki, Daisuke Nakata, Masaharu Uchiumi, Hiroto Habu, Shinsuke Takeuchi, Satoshi Arakawa, Junichi Masuda, Kenji Maehara

    Journal of Spacecraft and Rockets   Vol. 59 ( 3 ) page: 1 - 11   2022.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:American Institute of Aeronautics and Astronautics (AIAA)  

    This paper presents the results of an S-shaped pulse detonation engine (PDE) ground firing test in the form of a detonation engine system. The world's first technology demonstration of PDE in space using a sounding rocket is planned, and the aim is to control the rocket spin rate in the axial direction using pulsed detonation. The PDE operation at full sequence was successful. The despin rate change of the rocket between continuous oxygen supply and successful PDE operation is expected to be 0.95 deg/s per run. This change in despin rate can be measured by an onboard gyro sensor, making the system flyable. The test results were compared with data from thrust measurement tests conducted in a laboratory, the results of which confirmed the thrust generation under an ambient pressure of 0.5 & PLUSMN;0.1 kPa. The average thrust values in the thrust measurement experiments showed good agreement of 101 & PLUSMN;3% with a quasi-steady-state model introduced to predict the PDE thrust. These results demonstrate the feasibility of the newly developed PDE and its system as the world's first technology demonstration of detonation propulsion in space.

    DOI: 10.2514/1.a35200

    Web of Science

  42. Flight Demonstration of Detonation Engine System Using Sounding Rocket S-520-31: System Design

    Akira Kawasaki, Koichi Matsuyama, Ken Matsuoka, Hiroaki Watanabe, Noboru Itouyama, Keisuke Goto, Kazuki Ishihara, Valentin Buyakofu, Tomoyuki Noda, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki, Daisuke Nakata, Masaharu Uchiumi, Hiroto Habu, Shinsuke Takeuchi, Satoshi Arakawa, Junichi Masuda, Kenji Maehara, Tatsuro Nakao, Kazuhiko Yamada

    AIAA SCITECH 2022 Forum     2022.1

     More details

    Publishing type:Research paper (international conference proceedings)   Publisher:American Institute of Aeronautics and Astronautics  

    DOI: 10.2514/6.2022-0229

  43. Flight Demonstration of Detonation Engine System Using Sounding Rocket S-520-31: Performance of Rotating Detonation Engine

    Keisuke Goto, Ken Matsuoka, Koichi Matsuyama, Akira Kawasaki, Hiroaki Watanabe, Noboru Itouyama, Kazuki Ishihara, Valentin Buyakofu, Tomoyuki Noda, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki, Daisuke Nakata, Masaharu Uchiumi, Hiroto Habu, Shinsuke Takeuchi, Satoshi Arakawa, Junichi Masuda, Kenji Maehara, Tatsuro Nakao, Kazuhiko Yamada

    AIAA SCITECH 2022 Forum     2022.1

     More details

    Publishing type:Research paper (international conference proceedings)   Publisher:American Institute of Aeronautics and Astronautics  

    DOI: 10.2514/6.2022-0232

  44. Flight Demonstration of Detonation Engine System Using Sounding Rocket S-520-31: Performance of Pulse Detonation Engine

    Valentin Buyakofu, Ken Matsuoka, Koichi Matsuyama, Keisuke Goto, Akira Kawasaki, Hiroaki Watanabe, Noboru Itouyama, Kazuki Ishihara, Tomoyuki Noda, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki, Daisuke Nakata, Masaharu Uchiumi, Hiroto Habu, Shinsuke Takeuchi, Satoshi Arakawa, Junichi Masuda, Kenji Maehara, Tatsuro Nakao, Kazuhiko Yamada

    AIAA SCITECH 2022 Forum     2022.1

     More details

    Publishing type:Research paper (international conference proceedings)   Publisher:American Institute of Aeronautics and Astronautics  

    DOI: 10.2514/6.2022-0233

  45. Flight Demonstration of Detonation Engine System Using Sounding Rocket S-520-31: History from Development to Flight

    Noboru Itouyama, Koichi Matsuyama, Ken Matsuoka, Akira Kawasaki, Hiroaki Watanabe, Keisuke Goto, Kazuki Ishihara, Valentin Buyakofu, Tomoyuki Noda, Jiro Kasahara, Akiko Matsuo, Daisuke Nakata, Masaharu Uchiumi, Ikkoh Funaki, Hiroto Habu, Shinsuke Takeuchi, Satoshi Arakawa, Junichi Masuda, Kenji Maehara, Tatsuro Nakao, Kazuhiko Yamada

    AIAA SCITECH 2022 Forum     2022.1

     More details

    Publishing type:Research paper (international conference proceedings)   Publisher:American Institute of Aeronautics and Astronautics  

    DOI: 10.2514/6.2022-0230

  46. 高エネルギイオン液体推進剤の小型スラスタ概念設計 Reviewed

    伊東山 登

    宇宙航空研究開発機構研究開発報告: 高エネルギー物質研究会: 令和3年度研究成果報告書   Vol. JAXA-RR-21-002   page: 6 - 8   2022

     More details

  47. 超小型推進系への利用を見据えた高エネルギーイオン液体の研究

    伊東山 登

    宇宙航空研究開発機構研究開発報告: 高エネルギー物質研究会: 令和3年度研究成果報告書   Vol. JAXA-RR-21-002   page: 1 - 5   2022

     More details

  48. Experimental Clarification on Detonation Phenomena of Liquid Ethanol Rotating Detonation Combustor

    Kentaro Yoneyama, Kazuki Ishihara, Shiro Ito, Hiroaki Watanabe, Noboru Itouyama, Akira Kawasaki, Ken Matsuoka, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki

    AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022     2022

     More details

    Publishing type:Research paper (international conference proceedings)  

    Rotating detonation combustion was successfully tested for liquid ethanol and gaseous oxygen heterogeneous mixture in a cylindrical combustor for the first time. The rotating detonation combustor (RDC) we operated has a diameter of 20 mm and variable lengths of 60, 210 mm. Pure ethanol and industrial ethanol were selected as liquid fuels. Under the conditions of ethanol and oxygen mass flow rate of 26-40 g/s, equivalence ratio of 0.4-1.7, and backpressure of 10-17 kPa, we confirmed detonation combustion and deflagration combustion. In detonation combustion, as the ethanol manifold supply temperature increases, the detonation propagation speeds, and luminance of combustion were enhanced. It is possible to say enhanced evaporation behavior resulted in stable detonation and showed high peaks in luminance value. Utilizing the control surface method to evaluate experimental thrust, estimated thrust showed good agreement with experimental thrust. For liquid-fueled cylindrical RDCs, the control surface methods can also be used to evaluate thrust.

    DOI: 10.2514/6.2022-1454

    Scopus

  49. 高エネルギイオン液体推進剤を用いたレーザ輻射加熱点火式小型スラスタの基礎動作特性の実験評価 Reviewed

    伊東山 登

    宇宙航空研究開発機構研究開発報告: 高エネルギー物質研究会: 令和4年度研究成果報告書   Vol. JAXA-RR-22-006   page: 7 - 9   2022

     More details

  50. 電圧印加時におけるADN系イオン液体の可視化および温度・電流同時測定 Reviewed

    伊東山 登

    宇宙航空研究開発機構研究開発報告: 高エネルギー物質研究会: 令和4年度研究成果報告書   Vol. JAXA-RR-22-006   page: 11 - 14   2022

     More details

  51. Experimental Research on Thrust Performance of Rotating Detonation Engine with Liquid Ethanol and Gaseous Oxygen

    Tomoki Sato, Kazuki Ishihara, Kentaro Yoneyama, Shiro Ito, Noboru Itouyama, Hiroaki Watanabe, Akira Kawasaki, Ken Matsuoka, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki

    AIAA AVIATION 2022 Forum     2022

     More details

    Publishing type:Research paper (international conference proceedings)  

    Rotating detonation combustor (RDC) is one of the combustors using detonation waves, which are hypersonic combustion waves, and is expected to simplify the system and improve thermal efficiency due to their hypersonic combustion and compression performance by shock waves. Most of these studies use gas propellants, and liquid propellants are rarely used. Since liquid propellants are used in many combustors such as aircraft engines, it is important to evaluate the performance of RDC with liquid propellants. In this study, a cylindrical RDC, which is an RDC without inner cylinder, with a liquid ethanol and gaseous oxygen was tested at a mass flow rate of 31.3 ± 3.2 g/s, an equivalent ratio of 0.46-1.42 ± 0.12, a back pressure of 13.2 ± 0.9 kPa, and fuel injector with 24×φ0.2 or 6×φ0.4 to evaluate the performance and visualize the inside of the combustion chamber. As a result, when fuel injector was 24×φ0.2, detonation waves were observed, and high propagation velocity and high thrust performance were achieved. From the internal self-luminous and CH* radicals visualization from side wall, a circumferential DDT (deflagration to detonation transition) was observed. In addition, it was found that the detonation wave lifted about 2-3 mm from the combustor bottom, the main combustion region was occurred at 20 mm from the bottom, and the combustion region, including the main combustion region, requires about 50-70 mm from the bottom, which is correlated with the internal pressure, brightness distributions, and the image of acrylic damage. When fuel injector was 6×φ0.4, transition of detonation wave was not observed. The deflagration wave lifted about 10 mm, main combustion occurred up to 45 mm, and partial combustion continued to more downstream compared to detonation combustion. Acrylic damage began to occur downstream from the area with the highest pressure and brightness.

    DOI: 10.2514/6.2022-4143

    Scopus

  52. Research of High Energetic Ionic Liquid Propellants for Micro Propulsion System

    松永浩貴, 伊東山登, 松本幸太郎, 塩田謙人, 伊里友一朗, 勝身俊之, 羽生宏人, 野田賢, 三宅淳巳

    宇宙航空研究開発機構研究開発報告 JAXA-RR-(Web)   ( 21-002 )   2022

     More details

  53. A Concept of the Small Chemical Thruster with High Energetic Ionic Liquids

    伊東山登, 和田明哲, 羽生宏人

    宇宙航空研究開発機構研究開発報告 JAXA-RR-(Web)   ( 21-002 )   2022

     More details

  54. Experimental Study on Truncated Conical Rotating Detonation Engine with Diverging Flows

    Kotaro Nakata, Kosei Ota, Shiro Ito, Kazuki Ishihara, Keisuke Goto, Noboru Itouyama, Hiroaki Watanabe, Akira Kawasaki, Ken Matsuoka, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki

    AIAA Propulsion and Energy 2021 Forum     2021.8

     More details

    Publishing type:Research paper (international conference proceedings)   Publisher:American Institute of Aeronautics and Astronautics  

    DOI: 10.2514/6.2021-3657

  55. Study of Cylindrical Rotating Detonation Engine with Propellant Injection Cooling System

    Kosei Ota, Keisuke Goto, Noboru Itouyama, Hiroaki Watanabe, Akira Kawasaki, Ken Matsuoka, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki

    AIAA Propulsion and Energy 2021 Forum   Vol. 38 ( 3 ) page: 410 - 420   2021.8

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:American Institute of Aeronautics and Astronautics  

    A cylindrical rotating detonation engine (24 mm diameter) with multiple injector holes on the combustor side wall for both propellant injection and cooling by injector gas flow was designed and tested. As each set of injectors created its own detonations, the synchronized detonation waves propagated along the three injector rows. From the axial view, those detonation combustion regions stood off from the injector surface as the non-well-mixed propellant existed between the wall and the combustion zone. This combustion region tended to broaden in lateral and radial directions as the mass flow rate increased by pushing its region with the injected propellant. Wall heat flux and heat balance were evaluated by a one-dimensional unsteady heat transfer model with propellant injection cooling. Even when the flow rate was doubled, the increase in the wall heat flux was only 18-25%. This heat trend and the image of standoff self-chemiluminescence from the injector surface implied that a non-well-mixed unburned propellant acted as a heat-reduction layer to ease heat load into the combustor. Measurements and thermal analysis verified the flow structure near the injector and heat-exchange mechanism due to the propellant gas flow, which has a potential for thermal steady operation.

    DOI: 10.2514/6.2021-3650

    Web of Science

  56. Research of High Energetic Ionic Liquid Propellants for Future Space Applications Reviewed

    松永浩貴, 伊東山登, 和田明哲, 松本幸太郎, 塩田謙人, 伊里友一朗, 伊里友一朗, 勝身俊之, 羽生宏人, 羽生宏人, 野田賢, 三宅淳巳

    宇宙航空研究開発機構研究開発報告 JAXA-RR-(Web)   Vol. JAXA-RR-20-007 ( 20-007 ) page: 1 - 4   2021.2

     More details

  57. 高エネルギー物質の気相爆轟に関する基礎検証 Reviewed

    伊東山登

    宇宙航空研究開発機構研究開発報告: 高エネルギー物質研究会令和2年度研究成果報告書   Vol. JAXA-RR-20-007   page: 30 - 32   2021.2

     More details

    Authorship:Lead author   Language:Japanese  

  58. Study on Innovative Micro-Propulsion System Technologies for Micro-Space Probes Reviewed

    和田明哲, 渡邊裕樹, 伊東山登, 月崎竜童, 池田知行, 飯塚俊明, 佐原宏典, 各務聡, 松永浩貴, 伊里友一朗, 塩田謙人, 松本幸太郎, 勝身俊之, 三宅淳巳, 笠原次郎, 志田真樹, 船瀬龍, 船木一幸, 羽生宏人, 羽生宏人

    宇宙航空研究開発機構研究開発報告 JAXA-RR-(Web)   Vol. JAXA-RR-20-008 ( 20-008 ) page: 1 - 5   2021.2

     More details

    Publishing type:Research paper (conference, symposium, etc.)  

    J-GLOBAL

  59. 将来宇宙利用に向けた高エネルギーイオン液体推進剤の研究 Reviewed

    伊東山 登

    宇宙航空研究開発機構研究開発報告: 高エネルギー物質研究会令和2年度研究成果報告書   Vol. JAXA-RR-20-007   page: 1 - 10   2021

     More details

  60. 超小型探査機搭載に向けた革新的超小型推進系技術に関する研究 Reviewed

    伊東山 登

    将来深宇宙探査に向けた革新的超小型推進系研究グループ 2020年度研究成果報告書   Vol. JAXA-RR-20-008   page: 1 - 5   2021

     More details

  61. 高エネルギー物質の気相爆轟に関する基礎検証 Reviewed

    伊東山 登

    宇宙航空研究開発機構研究開発報告: 高エネルギー物質研究会令和2年度研究成果報告書   Vol. JAXA-RR-20-007   page: 30 - 32   2021

     More details

  62. Effect on dispersibility of carbon-absorbents heated by CW laser in liquids Reviewed

    伊東山登, 伊東山登, 羽生宏人

    宇宙航空研究開発機構研究開発報告 JAXA-RR-(Web)   Vol. JAXA-RR-19-003 ( 19-003 ) page: 23 - 26   2020.2

     More details

    Authorship:Lead author  

    J-GLOBAL

  63. Research and development of new propulsion system with high energetic ionic liquid propellants Reviewed

    松永浩貴, 伊東山登, 和田明哲, 松本幸太郎, 塩田謙人, 伊里友一朗, 勝身俊之, 羽生宏人, 羽生宏人, 野田賢, 三宅淳巳

    宇宙航空研究開発機構研究開発報告 JAXA-RR-(Web)   Vol. JAXA-RR-19-003 ( 19-003 ) page: 1 - 10   2020.2

     More details

  64. Trade-Off Evaluation of the Mono-Propulsion Systems for the Micro-Spacecrafts Reviewed

    和田明哲, 伊東山登, 伊東山登, 羽生宏人

    宇宙航空研究開発機構研究開発報告 JAXA-RR-(Web)   Vol. JAXA-RR-19-003 ( 19-003 ) page: 11 - 16   2020.2

     More details

  65. Study for Ignition of ADN-based Ionic Liquid with Carbon-absorption/CW Laser heating method

    伊東山登, 伊東山登, 羽生宏人

    宇宙航空研究開発機構研究開発報告 JAXA-RR-(Web)   ( 18-006 )   2019

     More details

  66. Research and development of thruster with high energetic ionic liquid and laser ignition

    松永浩貴, 伊東山登, 塩田謙人, 伊里友一朗, 伊里友一朗, 勝身俊之, 羽生宏人, 羽生宏人, 野田賢, 三宅淳巳

    宇宙航空研究開発機構研究開発報告 JAXA-RR-(Web)   ( 18-006 )   2019

     More details

  67. Construction of detailed chemical reaction model for ADN-EILPs in gas-phase

    伊東山登, 伊東山登, 伊里友一朗, 伊里友一朗, 三宅淳巳, 三宅淳巳, 羽生宏人

    宇宙航空研究開発機構研究開発報告 JAXA-RR-(Web)   ( 18-006 )   2019

     More details

  68. Chemical kinetics evaluation of ionic liquid propellant composition

    伊東山登, 伊里友一朗, 伊里友一朗, 三宅淳巳, 羽生宏人

    宇宙航空研究開発機構研究開発報告 JAXA-RR-(Web)   ( 17-008 )   2018

     More details

  69. Study for Ignition of ADN-based Solvent-free Ionic Liquid with Pulse Laser

    伊東山登, 羽生宏人

    宇宙航空研究開発機構研究開発報告 JAXA-RR-(Web)   ( 16-006 )   2017

     More details

  70. Research of Conductive Ionic Liquid Propellant with Electric Ignition

    伊東山登, 羽生宏人

    宇宙航空研究開発機構研究開発報告 JAXA-RR-(Web)   ( 16-006 )   2017

     More details

▼display all

MISC 96

  1. 反射往復デトネーション燃焼器における不均一混合気中を伝播するデトネー ション波の挙動に関する可視化実験

    井上晴菜, 川崎央, 永岡祐, 伊東山登, 松岡健, 笠原次郎, 松尾亜紀子, 船木一幸

    第63回航空原動機・宇宙推進講演会   Vol. 3D06   2024.3

     More details

    Language:Japanese   Publishing type:Research paper, summary (national, other academic conference)  

  2. シングルピントルインジェクタを有する回転デトネーションエンジンに関する実験的研究

    大山竜生, 高木淳, 佐藤寛, 伊東山登, 松岡健, 笠原次郎

    2023年度衝撃波シンポジウム   Vol. 2C1-2   2024.3

     More details

    Language:Japanese   Publishing type:Research paper, summary (national, other academic conference)  

  3. 燃焼器底部拡大角が回転デトネーション波伝播構造に与える影響

    松岡健, 中島滉介, 佐和田拓史, 伊東山登, 笠原次郎, 川﨑央, 松尾亜紀子

    第63回航空原動機・宇宙推進講演会   Vol. 2D19   2024.3

     More details

    Language:Japanese   Publishing type:Research paper, summary (national, other academic conference)  

  4. 液体推進剤デトネーションエンジンシステムの宇宙作動実証に向けたBBM試験

    川﨑央, 中田耕太郎, 佐藤寛, 澤田 悟, 工藤祐介, 鈴木大登, 伊東山登, 松岡 健, 松山行一, 笠原次郎, 中田大将, 奈女良実央, 江口光, 内海政春, 松尾亜紀子, 船木一幸, 中村秀一, 東野和幸, 平嶋秀俊

    第63回航空原動機・宇宙推進講演会   Vol. 3D04   2024.3

     More details

    Language:Japanese   Publishing type:Research paper, summary (national, other academic conference)  

  5. 液体推進剤を用いた回転デトネーションエンジンの宇宙実証に向けた研究

    佐藤寛, 中田耕太郎, 澤田悟, 中島滉介, 鈴木大登, 伊東山登, 松岡健, 松山行一, 笠原次郎, 川﨑央, 中田大将, 奈女良実央, 江口光, 内海政春, 松尾亜紀子, 船木一幸, 東野和幸, 平嶋秀俊

    第63回航空原動機・宇宙推進講演会   Vol. 2D20   2024.3

     More details

    Language:Japanese   Publishing type:Research paper, summary (national, other academic conference)  

  6. 拡大流路を持つ単円筒回転デトネーションエンジンの数値解析

    佐田拓巳, 松尾亜紀子, 嶋英志, 伊東山登, 川﨑央, 松岡健, 笠原次郎

    2023年度衝撃波シンポジウム   Vol. 2C2-1   2024.3

     More details

    Language:Japanese   Publishing type:Research paper, summary (national, other academic conference)  

  7. 可視化アクリルタンクを用いた高圧酸化剤のスピン回転時排出特性の観察

    武子賀, 岡野裕, Jason Nathanael, 中田大将, 江口光, 内海政春, 川崎央, 笠原次郎, 松岡健, 伊東山登

    第63回航空原動機・宇宙推進講演会   Vol. 3D08   2024.3

     More details

    Language:Japanese   Publishing type:Research paper, summary (national, other academic conference)  

  8. 可燃性固体内壁を有する単円筒回転デトネーションエンジンの作動特性

    西田響喜, 伊東山登, 中田耕太郎, 川﨑央, 松岡健, 笠原次郎

    2023年度衝撃波シンポジウム   Vol. 2C1-4   2024.3

     More details

    Language:Japanese   Publishing type:Research paper, summary (national, other academic conference)  

  9. 反射往復型デトネーション燃焼器における排気流の特性解明

    宮下萌乃, 松尾亜紀子, 嶋英志, 伊東山登, 川﨑央, 松岡健, 笠原次郎

    第63回航空原動機・宇宙推進講演会   Vol. 3D02   2024.3

     More details

    Language:Japanese   Publishing type:Research paper, summary (national, other academic conference)  

  10. 反射往復デトネーション燃焼器のシュリーレン光学可視化研究

    永岡佑, 松岡健, 伊東山登, 川﨑央, 渡部広吾輝, 笠原次郎, 松尾亜紀子

    2023年度衝撃波シンポジウム   Vol. 2C3-2   2024.3

     More details

    Language:Japanese   Publishing type:Research paper, summary (national, other academic conference)  

  11. 二重円筒回転デトネーション燃焼器の排気噴流と超音速流の干渉に関する数値解析

    田原淳一, 松尾亜紀子, 嶋英志, 伊東山登, 川﨑央, 松岡健, 笠原次郎

    第63回航空原動機・宇宙推進講演会   Vol. 2D14   2024.3

     More details

    Language:Japanese   Publishing type:Research paper, summary (national, other academic conference)  

  12. 予混合気回転デトネーションエンジン作動に向けた多孔質インジェクタの基礎研究

    小山雄太郎, 須藤直太郎, 松岡健, 伊東山登, 川﨑央, 渡部広吾輝, 笠原次郎

    2023年度衝撃波シンポジウム   Vol. 2C1-3   2024.3

     More details

    Language:Japanese   Publishing type:Research paper, summary (national, other academic conference)  

  13. 予混合回転デトネーション燃焼器システムの研究開発

    須藤直太郎, 小山雄太郎, 松岡健, 伊東山登, 川﨑央, 渡部広吾輝, 笠原次郎

    2023年度衝撃波シンポジウム   Vol. 2C1-1   2024.3

     More details

    Language:Japanese   Publishing type:Research paper, summary (national, other academic conference)  

  14. スクラムジェットエンジン用デトネーショントーチの実験的研究

    角田将淳, 鈴木颯太, 伊東山登, 松岡健, 笠原次郎, 乗松慧生, 早川晃弘

    2023年度衝撃波シンポジウム   Vol. 2C3-1   2024.3

     More details

    Language:Japanese   Publishing type:Research paper, summary (national, other academic conference)  

  15. 観測ロケット S-520 を用いた軽量・長秒作動デトネーションキックモーターシステム飛行実証実験

    笠原次郎, 松山 行一, 松岡健, 川﨑央, 伊東山登, 澤田悟, 中田耕太郎, 佐藤寛, 松尾亜紀子, 船木一幸, 中田大将, 内海政春, 江口光, 羽生宏人, 荒川聡, 増田純一, 前原健次, 臼杵智章, 山田和彦, 中尾達郎

    第6回観測ロケットシンポジウム   Vol. III-7   2024.2

     More details

    Publishing type:Research paper, summary (national, other academic conference)  

  16. 高エネルギーイオン液体を推進剤とする小型スラスタの宇宙実証

    松本幸太郎, 伊東山登, 松永浩貴, 勝身俊之, 塩田謙人, 伊里友一朗, 羽生宏人

    第6回観測ロケットシンポジウム   Vol. III-4   2024.2

     More details

    Publishing type:Research paper, summary (national, other academic conference)  

  17. 観測ロケット S-520-34 号機による液体推進剤回転デトネーションエンジンシステム飛行実証実験

    松岡健, 笠原次郎, 松山行一, 川﨑央, 伊東山登, 井出雄一郎, 中田耕太郎, 佐藤寛, 澤田悟, 中島滉介, 鈴木大登, 工藤祐介, 松尾亜紀子, 船木一幸, 中田大将, 内海政春, 江口光, 羽生宏人, 荒川聡, 増田純一, 前原健次, 臼杵智章, 山田和彦, 中尾達郎

    第6回観測ロケットシンポジウム   Vol. IV-2   2024.2

  18. 観測ロケットS-520-34号機による液体推進剤デトネーションエンジンシステムの飛行実験の開発状況

    笠原次郎, 松山行一, 松岡健, 川崎央, 伊東山登, 佐藤寛, 中田耕太郎, 平嶋秀俊, 安井正明, 東野和幸, 松尾亜紀子, 船木一幸, 中田大将, 内海政春, 江口光, 羽生宏人, 丹野英幸, 山田和彦

    令和5年度宇宙輸送シンポジウム   Vol. STCP-2023-046   2024.1

     More details

    Publishing type:Research paper, summary (national, other academic conference)  

  19. 電気浸透流ポンプの圧力-流量特性評価およびスラスタへの応用検討

    長谷川凌大, 鈴木大登, 伊東山登, 川﨑央, 内田圭亮, 松岡健, 笠原次郎

    令和5年度宇宙輸送シンポジウム   Vol. STCP-2023-026   2024.1

     More details

    Publishing type:Research paper, summary (national, other academic conference)  

  20. 曲がり円管型回転デトネーションエンジンの推力特性に関する研究

    織田悠輔, 澤田悟, 伊東山登, 川﨑央, 松岡健, 笠原次郎, 松尾 亜紀子, 船木 一幸

    第61回燃焼シンポジウム   Vol. C215   2023.11

     More details

    Publishing type:Research paper, summary (national, other academic conference)  

  21. 推進剤種およびその供給条件が回転デトネーションエンジン作動に与える影響に関する実験的研究

    佐和田拓史, 中島滉介, 松岡健, 伊東山登, 笠原次郎, 川﨑央, 松尾亜紀子

    第61回燃焼シンポジウム   Vol. C314   2023.11

     More details

    Publishing type:Research paper, summary (national, other academic conference)  

  22. 回転デトネーションエンジンにおける拡大角の効果に関する数値解析

    佐田拓巳, 松尾亜紀子, 嶋英志, 伊東山登, 川﨑央, 松岡健, 笠原次郎

    第61回燃焼シンポジウム   Vol. C214   2023.11

     More details

    Publishing type:Research paper, summary (national, other academic conference)  

  23. 回転デトネーションエンジンにおける伝播モードの特性に関する数値解析

    宮下萌乃, 松尾亜紀子, 嶋英志, 伊東山登, 川﨑央, 松岡健, 笠原次郎

    第61回燃焼シンポジウム   Vol. C213   2023.11

     More details

    Publishing type:Research paper, summary (national, other academic conference)  

  24. ピントルインジェクタを用いた回転デトネーションエンジンの作動特性および推進性能に関する実験的研究

    高木淳, 佐藤寛, 大山竜生, 松岡健, 伊東山登, 笠原次郎, 川﨑央

    第61回燃焼シンポジウム   Vol. C224   2023.11

     More details

    Publishing type:Research paper, summary (national, other academic conference)  

  25. インジェクタ拡大角が回転デトネーションエンジンの伝播構造および推進性能に与える影響

    中島滉介, 佐和田拓史, 松岡健, 伊東山登, 笠原次郎, 川﨑央, 松尾亜紀子

    第61回燃焼シンポジウム   Vol. C223   2023.11

     More details

    Publishing type:Research paper, summary (national, other academic conference)  

  26. Effect of water on the ignition mechanism of Energetic Ionic Liquid via applying voltage

    大森稜介, 田中菜月, 伊東山登, 塩田謙人, 伊里友一朗, 三宅淳巳

    火薬学会春季研究発表会講演要旨集(CD-ROM)   Vol. 2023   2023

     More details

  27. Measurement of In-situ Image, Temperature, and Current of ADN-based Ionic Liquids Voltage-applied

    久保田悠斗, 大森稜介, 伊東山登, 塩田謙人, 伊里友一朗, 三宅淳巳

    宇宙航空研究開発機構研究開発報告 JAXA-RR-(Web)   ( 22-006 )   2023

     More details

  28. Research and Development of Synthesis and Thruster of High Energetic Ionic Liquid Propellants for Micro Propulsion System

    松永浩貴, 伊東山登, 松本幸太郎, 塩田謙人, 伊里友一朗, 勝身俊之, 羽生宏人, 野田賢, 三宅淳巳

    宇宙航空研究開発機構研究開発報告 JAXA-RR-(Web)   ( 22-006 )   2023

     More details

  29. Effect of AC voltage on decomposition and ignition reaction of Energetic Ionic Liquids via applyng voltage

    大森稜介, 久保田悠斗, 伊東山登, 塩田謙人, 伊里友一朗, 三宅淳巳

    火薬学会春季研究発表会講演要旨集(CD-ROM)   Vol. 2023   2023

     More details

  30. Explosives related technology for SDGs issues

    吉野悟, 朝原誠, 伊東山登, 井上慶彦, 志田浩, 高橋良尭, 西脇洋佑, 藤崎陽次, 松本幸太郎, 毛利剛

    火薬学会春季研究発表会講演要旨集(CD-ROM)   Vol. 2023   2023

     More details

  31. Experimental Study of a Variable-Thrust Ultra-Compact Monopropellant Thruster Using an Electro Osmotic Pump

    鈴木大登, 長谷川凌大, 伊東山登, 松岡健, 笠原次郎, 川崎央

    宇宙科学技術連合講演会講演集(CD-ROM)   Vol. 67th   2023

     More details

    Publishing type:Research paper, summary (national, other academic conference)  

    J-GLOBAL

  32. The acceleration mechanism underlying the thermal decomposition of high-energetic-ionic liquids with metal catalysts

    伊東山登, 松永浩貴, 和田明哲, 澤田悟, 松岡健, 笠原次郎, 羽生宏人

    火薬学会秋季研究発表講演会講演要旨集   Vol. 2023   2023

     More details

  33. Fundamental Experiments on Clustering Using the Coupled Cylindrical Rotating Detonation Engine

    阪田倫平, 稲田将大, 伊藤志朗, 石原一輝, 伊東山登, 松岡健, 笠原次郎, 川崎央, 松尾亜紀子, 船木一幸

    衝撃波シンポジウム講演論文集(CD-ROM)   Vol. 2022   2023

     More details

  34. Gas generation behavior of ammonium dinitramide-based high-energy ionic liquids with catalysts

    松永浩貴, 伊東山登, 羽生宏人, 野田賢, 三宅淳巳

    火薬学会春季研究発表会講演要旨集(CD-ROM)   Vol. 2023   2023

     More details

  35. Experimental Study of a Rotating Detonation Engine Using H<sub>2</sub>-O<sub>2</sub> as Propellants

    木村朋亮, 中田耕太郎, 伊東山登, 川崎央, 松岡健, 笠原次郎, 松尾亜紀子, 船木一幸, 佐藤晃浩, 石川佳太郎, 浜崎享一, 川島秀人, 小島淳

    衝撃波シンポジウム講演論文集(CD-ROM)   Vol. 2022   2023

     More details

  36. Experimental Study on Thrust Vector Characteristics of Cylindrical Rotating Detonation Engine with Curvature

    織田悠輔, 澤田悟, 伊東山登, 松岡健, 笠原次郎, 川崎央, 松尾亜紀子, 船木一幸

    流体力学講演会/航空宇宙数値シミュレーション技術シンポジウム講演集(CD-ROM)   Vol. 55th-41st   2023

     More details

  37. Experimental Study of Wall Water-Cooled Temperature Measurement of A Cylindrical Rotating Detonation Engine

    稲田将大, 阪田倫平, 中田耕太郎, 石原一輝, 伊東山登, 川崎央, 松岡健, 笠原次郎, 松尾亜紀子, 船木一幸

    衝撃波シンポジウム講演論文集(CD-ROM)   Vol. 2022   2023

     More details

  38. Experimental Study on Evaluation of Thrust Performance by Throttling Operation at a Cylindrical Rotating Detonation Engine

    鈴木大登, 中田耕太郎, 佐藤寛, 伊東山登, 松岡健, 笠原次郎, 川崎央, 松尾亜紀子, 船木一幸

    流体力学講演会/航空宇宙数値シミュレーション技術シンポジウム講演集(CD-ROM)   Vol. 55th-41st   2023

     More details

  39. Experiments and studies for the resonance tube ignition system

    工藤祐介, 伊東山登, 松岡健, 笠原次郎

    衝撃波シンポジウム講演論文集(CD-ROM)   Vol. 2022   2023

     More details

  40. Experimental Demonstration on Detonation Initiation by Laser Ignition and Shock Focusing

    佐藤朋之, 松岡健, 伊東山登, 笠原次郎, 川崎央, 渡部広吾輝

    流体力学講演会/航空宇宙数値シミュレーション技術シンポジウム講演集(CD-ROM)   Vol. 55th-41st   2023

     More details

  41. Effect of a Gas Purge Method on Rotating Detonation Engine Operation

    佐和田拓史, 松岡健, 川崎央, 伊東山登, 笠原次郎

    流体力学講演会/航空宇宙数値シミュレーション技術シンポジウム講演集(CD-ROM)   Vol. 55th-41st   2023

     More details

  42. Combustion test of energetic ionic liquids using electrolytic combustor

    大森稜介, 伊東山登, 塩田謙人, 塩田謙人, 伊里友一朗, 三宅淳巳

    火薬学会秋季研究発表講演会講演要旨集   Vol. 2023   2023

     More details

  43. Influence of catalyst on the exothermic behavior of ammonium dinitramide/hydrazide mixtures

    松永浩貴, 松永浩貴, 伊東山登, 羽生宏人, 野田賢, 三宅淳巳

    火薬学会秋季研究発表講演会講演要旨集   Vol. 2023   2023

     More details

  44. 観測ロケットS-520-31号機によるデトネーションエンジン作動実証プロジェクトの総括—Summary of Detonation Engine System Demonstration in Space by Using Sounding Rocket S-520-31—特集 デトネーション燃焼の航空宇宙推進への適用(第1回)

    松岡 健, 後藤 啓介, ブヤコフ バレンティン, 松山 行一, 川﨑 央, 伊東山 登, 渡部 広吾輝, 石原 一輝, 野田 朋之, 笠原 次郎, 松尾 亜紀子, 船木 一幸, 中田 大将, 内海 政春, 羽生 宏人, 竹内 伸介, 荒川 聡, 増田 純一, 前原 健次, 中尾 達郎, 山田 和彦

    日本航空宇宙学会誌 = Aeronautical and space sciences Japan   Vol. 70 ( 11 ) page: 224 - 233   2022.11

     More details

    Language:Japanese   Publisher:日本航空宇宙学会  

    CiNii Books

  45. 次世代宇宙推進システムを見据えた高エネルギーイオン液体推進剤の研究

    松永浩貴, 伊東山登, 塩田謙人, 伊里友一朗, 松本幸太郎, 勝身俊之, 羽生宏人, 野田賢, 三宅淳巳

    安全工学シンポジウム講演予稿集(CD-ROM)   Vol. 2022   2022

     More details

  46. decomposition and ignition characteristics of combustor induced by electrical voltage using energetic ionic liquid

    大森稜介, 久保田悠斗, 井口喜一郎, 伊東山登, 塩田謙人, 塩田謙人, 伊里友一朗, 三宅淳巳

    火薬学会春季研究発表会講演要旨集(CD-ROM)   Vol. 2022   2022

     More details

  47. Research of High Energetic Ionic Liquid Propellants for Micro Propulsion System

    松永浩貴, 伊東山登, 松本幸太郎, 塩田謙人, 伊里友一朗, 勝身俊之, 羽生宏人, 野田賢, 三宅淳巳

    宇宙航空研究開発機構研究開発報告 JAXA-RR-(Web)   ( 21-002 )   2022

     More details

  48. Current-voltage measurement of energetic ionic liquids at the time of Ignition via applying voltage

    大森稜介, 久保田悠斗, 伊東山登, 塩田謙人, 塩田謙人, 伊里友一朗, 三宅淳巳

    火薬学会秋季研究発表講演会講演要旨集   Vol. 2022   2022

     More details

  49. Study on visualization and measurement of the Hartmann-Sprenger tube

    工藤祐介, 伊東山登, 川崎央, 松岡健, 笠原次郎

    日本航空宇宙学会中部・関西支部合同秋期大会講演論文集(CD-ROM)   Vol. 59th   2022

     More details

  50. A thruster concept based on laser ignition of high energetic ionic liquid and its operating properties

    伊東山登, 佐合芳道, 和田明哲, 羽生宏人, 笠原次郎

    火薬学会秋季研究発表講演会講演要旨集   Vol. 2022   2022

     More details

  51. Numerical investigation on the mean structure of gaseous detonation using particle track method

    渡部広吾輝, 松尾亜紀子, CHINNAYYA Ashwin, 伊東山登, 川崎央, 松岡健, 笠原次郎

    衝撃波シンポジウム講演論文集(CD-ROM)   Vol. 2021   2022

     More details

  52. Experimental Study on Visualization of Internal Flow of Liquid Fuel Rotating Detonation Combustor

    佐藤寛, 石原一輝, 米山健太郎, 伊藤志朗, 渡部広吾輝, 伊東山登, 川崎央, 松岡健, 笠原次郎, 松尾亜紀子, 船木一幸, 長尾隆央, 伊藤光紀

    衝撃波シンポジウム講演論文集(CD-ROM)   Vol. 2021   2022

     More details

  53. Experimental Study of a Film Cooling Rotating Detonation Engine with Hydrogen - Oxygen Propellant

    木村朋亮, 中田耕太郎, 伊東山登, 川崎央, 松岡健, 笠原次郎, 松尾亜紀子, 船木一幸, 佐藤晃浩, 石川佳太郎, 浜崎享一

    燃焼シンポジウム講演論文集(CD-ROM)   Vol. 60th   2022

     More details

  54. Experimental Study on Spherical Shock Wave-Flame Interference in Elliptic Combustor

    佐藤朋之, 松岡健, 川崎央, 伊東山登, 渡部広吾輝, 笠原次郎

    流体力学講演会/航空宇宙数値シミュレーション技術シンポジウム講演集(CD-ROM)   Vol. 54th-40th   2022

     More details

  55. An experimental study of the initial temperature dependence of reflection point distance in detonation diffraction

    菊地湧生, 川崎央, SUN Han, 伊東山登, 松岡健, 笠原次郎

    燃焼シンポジウム講演論文集(CD-ROM)   Vol. 60th   2022

     More details

  56. Quantitative evaluation of detonability using reflection point distance for reaction systems including hydrogen and hydrocarbons

    SUN Han, 川崎央, 伊東山登, 松岡健, 笠原次郎

    流体力学講演会/航空宇宙数値シミュレーション技術シンポジウム講演集(CD-ROM)   Vol. 54th-40th   2022

     More details

  57. Experimental study on the propagation mode and propulsive performance of reflective shuttling detonation engine

    高橋佑輔, 松岡健, 渡部広吾輝, 川崎央, 伊東山登, 笠原次郎, 松尾亜紀子

    燃焼シンポジウム講演論文集(CD-ROM)   Vol. 60th   2022

     More details

  58. Experimental Study of Ignition Mechanism Utilizing Self-Exothermic Decomposition of Nitrous Oxide

    服部花凜, 笠原次郎, 松岡健, 川崎央, 伊東山登

    宇宙科学技術連合講演会講演集(CD-ROM)   Vol. 66th   2022

     More details

  59. Experimental Study on Bipropellant Cylindrical Rotating Detonation Rocket Combustor

    石原一輝, 佐藤寛, 木村朋亮, 中島滉介, 中田耕太郎, 鈴木大登, 伊東山登, 川崎央, 松岡健, 松山行一, 笠原次郎, 夛田卓矢, 藤浦彰友, 奈女良実央, 岡野裕, 田原悠仁, 中村祐太, 安田一貴, 江口光, 中田大将, 内海政春, 松尾亜紀子, 船木一幸

    燃焼シンポジウム講演論文集(CD-ROM)   Vol. 60th   2022

     More details

  60. Evaluation of ignition properties of high-energy ionic liquid propellant by laser radiant heating

    伊東山登, 松永浩貴, 笠原次郎, 羽生宏人

    火薬学会春季研究発表会講演要旨集(CD-ROM)   Vol. 2022   2022

     More details

  61. Five years history of our research group investigating the detonation engine system for space demonstration

    伊東山登, 松山行一, 松岡健, 川崎央, 石原一輝, 伊藤志朗, 中田耕太郎, 佐藤寛, 笠原次郎, 松尾亜紀子, 船木一幸, 中田大将, 内海政春, 江口光, 安田一貴, 荒川聡, 増田純一, 前原健次, 臼杵智章, 竹内伸介, 羽生宏人

    宇宙科学技術連合講演会講演集(CD-ROM)   Vol. 66th   2022

     More details

  62. Experimental Study on Cylindrical Rotating Detonation Rocket Engine with Ethanol-Nitrous oxide

    石原一輝, 佐藤寛, 木村朋亮, 中島滉介, 中田耕太郎, 鈴木大登, 伊東山登, 川崎央, 松岡健, 笠原次郎, 夛田卓矢, 藤浦彰友, 奈女良実央, 岡野裕, 田原悠仁, 中村祐太, 安田一貴, 江口光, 中田大将, 内海政春, 松尾亜紀子, 船木一幸

    宇宙科学技術連合講演会講演集(CD-ROM)   Vol. 66th   2022

     More details

  63. Study on the internal flow of rotating detonation combustor with alcohol fuel.

    石原一輝, 佐藤寛, 伊藤志朗, 渡部広吾輝, 伊東山登, 川崎央, 松岡健, 笠原次郎, 松尾亜紀子, 船木一幸

    流体力学講演会/航空宇宙数値シミュレーション技術シンポジウム講演集(CD-ROM)   Vol. 54th-40th   2022

     More details

  64. 観測ロケット S-520 31号機プロジェクト:デトネーションエンジンシステムの宇宙実証

    松岡 健, 笠原 次郎, 松山 行一, 川﨑 央, 伊東山 登, 渡部 広吾輝, 後藤 啓介, ブヤコフ バレンティン, 石原 一輝, 野田 朋之, 松尾 亜紀子, 船木 一幸, 中田 大将, 内海 政春, 羽生 宏人, 竹内 伸介, 荒川 聡, 増田 純一, 前原 健次, 山田 和彦, 和田 明哲, MATSUOKA Ken, KASAHARA Jiro, Matsuyama Koichi, KAWASAKI Akira, ITOUYAMA Noboru, WATANABE Hiroaki, GOTO Keisuke, BUYAKOFU Valentin, ISHIHARA Kazuki, NODA Tomoyuki, MATSUO Akiko, FUNAKI Ikkoh, NAKATA Daisuke, UCHIUMI Masaharu, HABU Hiroto, TAKEUCHI Shinsuke, ARAKAWA Satoshi, MASUDA Junichi, MAEHARA Kenji, YAMADA Kazuhiko, WADA Asato

    観測ロケットシンポジウム2020 講演集 = Proceedings of Sounding Rocket Symposium 2020     2021.3

     More details

    Language:Japanese   Publisher:宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS)  

    第3回観測ロケットシンポジウム(2021年3月24-25日. オンライン開催)著者人数: 21名資料番号: SA6000162001レポート番号: Ⅰ-1

  65. Space Flight Demonstration of Detonation Kick Motor Using Sounding Rocket S-520

    KASAHARA Jiro, MATSUYAMA Koichi, MATSUOKA Ken, KAWASAKI Akira, WATANABE Hiroaki, ITOUYAMA Noboru, GOTO Keisuke, ISHIHARA Kazuki, MATSUO Akiko, FUNAKI Ikkoh, NAKATA Daisuke, UCHIUMI Masaharu, HABU Hiroto, TAKEUCHI Shinsuke, ARAKAWA Satoshi, MASUDA Junichi, MAEHARA Kenji@@WADA Asato, YAMADA Kazuhiko

        2021.3

     More details

    Language:Japanese   Publisher:Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency(JAXA)(ISAS)  

    3rd Sounding Rocket Symposium (March 24-25, 2021. Online Meeting)

  66. Progress Status of a Detonation Engine System for Sounding Rocket S-520 No. 31: Rotating Detonation Engine

    MATSUOKA Ken, GOTO Keisuke, BUYAKOFU Valentin, ISHIHARA Kazuki, NODA Tomoyuki, ITOYAMA Noboru, KAWASAKI Akira, WATANABE Hiroaki, MATSUYAMA Koichi, KASAHARA Jiro, MATSUO Akiko, FUNAKI Ikkoh, NAKATA Daisuke, UCHIUMI Masaharu, TAKEUCHI Shinsuke, IWASAKI Akihiro, WADA Asato, MASUDA Junichi, ARAKAWA Satoshi, HABU Hiroto, YAMADA Kazuhiko

        2021.1

     More details

    Language:Japanese   Publisher:Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency(JAXA)(ISAS)  

    Space Transportation Symposium FY2020 (January 14-15, 2021. Online Meeting)

  67. Propulsive performane of cylindrical rotating detonation engine with propellant injection cooing

    Keisuke Goto, Kosei Ota, Akira Kawasaki, Hiroaki Watanabe, Noboru Itouyama, Ken Matsuoka, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki

    AIAA Scitech 2021 Forum     page: 1 - 7   2021

     More details

    © 2021, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved. An engine cooling concept for cylindrical rotating detonation engine which had an injector surface on the combustor side wall has been tested with three combustor length of 21, 30, and 6 mm. Thrust measurement of the cylindrical RDE (24-mm-diameter) was conducted with monitoring K-type thermocouples inserted in combustor wall. Single rotating detonation wave was observed with the combustor length of 30 and 69 mm in this study. Cooling effect due to the propellant injection was confirmed as the nearly saturated temperature response in the combustor side wall. when the chamber length is more than 30 mm, the specific impulse maintained more than 80% of theoretical value assuming sonic condition at the chamber exit. The result indicated that modest combustor length as an efficient thruster exists in the range of 30 to 69 mm.

    Scopus

  68. An Experimental Investigation of the Rotating Detonation Rocket Engine Using Additive Manufacturing

    服部花凜, 太田光星, 石原一輝, 後藤啓介, 伊東山登, 渡部広吾輝, 川崎央, 松岡健, 笠原次郎, 松尾亜紀子, 船木一幸

    衝撃波シンポジウム講演論文集(CD-ROM)   Vol. 2020   2021

     More details

  69. Study on System Operation Evaluation of Rotating Detonation Engine Using Liquid Oxygen

    伊藤志朗, 石原一輝, 米山健太郎, 伊東山登, 渡部広吾輝, 川崎央, 松岡健, 笠原次郎, 松尾亜紀子, 船木一幸, 中田大将, 内海政春, 松井康平, 北川幸樹, 中村秀一, 東野和幸, 福地亜宝郎, 長尾隆央

    流体力学講演会/航空宇宙数値シミュレーション技術シンポジウム講演集(CD-ROM)   Vol. 53rd-39th   2021

     More details

  70. Experimental investigation of the effect of equivalence ratio on characteristic length of hydrogen-oxygen and hydrocarbon-oxygen mixtures with detonation diffraction

    SUN Han, 川崎央, 伊東山登, 渡部広吾輝, 松岡健, 笠原次郎

    衝撃波シンポジウム講演論文集(CD-ROM)   Vol. 2020   2021

     More details

  71. Experimental study of Cylindrical Rotating Detonation Engine with Diverging Channel

    中田耕太郎, 太田光星, 石原一輝, 後藤啓介, 伊東山登, 渡部広吾輝, 川崎央, 松岡健, 笠原次郎, 松尾亜紀子, 船木一幸

    衝撃波シンポジウム講演論文集(CD-ROM)   Vol. 2020   2021

     More details

  72. A Data-driven Investigation for Prediction of Detonation Characteristic Length based on Observation of Diffracting Detonation Waves

    川崎央, 長谷川大樹, SUN Han, 伊東山登, 渡部広吾輝, 松岡健, 笠原次郎, 松尾亜紀子, 船木一幸

    流体力学講演会/航空宇宙数値シミュレーション技術シンポジウム講演集(CD-ROM)   Vol. 53rd-39th   2021

     More details

  73. Study on Optical Measurement of a Reflective Shuttling Detonation Phenomena

    松岡健, 田口知哉, 渡部広吾輝, 川崎央, 伊東山登, 笠原次郎, 松尾亜紀子

    流体力学講演会/航空宇宙数値シミュレーション技術シンポジウム講演集(CD-ROM)   Vol. 53rd-39th   2021

     More details

  74. Study of Cylindrical Rotating Detonation Engine with Lattice Structure Injector

    太田光星, 鈴木遼太郎, 中田耕太郎, 服部花凜, 伊藤志朗, 石原一輝, 後藤啓介, 伊東山登, 渡部広吾輝, 川崎央, 松岡健, 笠原次郎, 松尾亜紀子, 船木一幸, 川島秀人, 松山新吾, 丹野英幸

    衝撃波シンポジウム講演論文集(CD-ROM)   Vol. 2020   2021

     More details

  75. Study on Operative Conditions Determination of Rotating Detonation Combustor Using Ethanol

    米山健太郎, 石原一輝, 伊藤志朗, 渡部広吾輝, 伊東山登, 川崎央, 松岡健, 笠原次郎, 松尾亜紀子, 船木一幸

    流体力学講演会/航空宇宙数値シミュレーション技術シンポジウム講演集(CD-ROM)   Vol. 53rd-39th   2021

     More details

  76. Prospects for research of high energetic materials

    松永浩貴, 伊東山登, 和田明哲, 松本幸太郎, 塩田謙人, 伊里友一朗, 勝身俊之, 羽生宏人, 羽生宏人, 野田賢, 三宅淳巳

    火薬学会春季研究発表会講演要旨集   Vol. 2020   2020

     More details

  77. Investigation for the mono-propulsion with a high-energy-density ionic liquid

    伊東山登, 和田明哲, 松永浩貴, 笠原次郎, 羽生宏人

    宇宙科学技術連合講演会講演集(CD-ROM)   Vol. 64th   2020

     More details

  78. Demonstration Study of Pulse Detonation Engine System for Sounding Rocket S-520-31

    BUYAKOFU Valentin, 野田朋之, 澤田悟, JOSEPH Victoria, 後藤啓介, 石原一輝, 渡部広吾輝, 伊東山登, 川崎央, 松岡健, 松山行一, 笠原次郎, 中田大将, 内海政春, 松尾亜紀子, 船木一幸, 竹内伸介, 和田明哲, 岩崎祥大, 羽生宏人

    宇宙科学技術連合講演会講演集(CD-ROM)   Vol. 64th   2020

     More details

  79. Research on high energetic materials with a view to using micro-propulsion system for deep space explorations

    松永浩貴, 伊東山登, 和田明哲, 塩田謙人, 伊里友一朗, 松本幸太郎, 勝身俊之, 早田葵, YU Xiuchao, 久保田一浩, 野副克彦, 羽生宏人, 野田賢, 三宅淳巳

    宇宙科学技術連合講演会講演集(CD-ROM)   Vol. 64th   2020

     More details

  80. Considerations of Innovative Micro Propulsion Systems for Future Deep Space Explorations

    和田明哲, 渡邊裕樹, 伊東山登, 池田知行, 月崎竜童, 飯塚俊明, 佐原宏典, 各務聡, 松永浩貴, 伊里友一朗, 塩田謙人, 松本幸太郎, 勝身俊之, 三宅淳巳, 笠原次郎, 志田真樹, 船瀬龍, 船木一幸, 羽生宏人

    宇宙科学技術連合講演会講演集(CD-ROM)   Vol. 64th   2020

     More details

  81. Study on the ignition of high-energy ionic liquid propellant by laser radiant heating

    伊東山登, 笠原次郎, 羽生宏人

    火薬学会春季研究発表会講演要旨集   Vol. 2020   2020

     More details

  82. Cylindrical rotating detonation engine cooling by means of propellant injection

    Keisuke Goto, Kosei Ota, Akira Kawasaki, Hiroaki Watanabe, Noboru Itouyama, Ken Matsuoka, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki

    AIAA Propulsion and Energy 2020 Forum     page: 1 - 9   2020

     More details

    © 2020, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved. An engine cooling concept for cylindrical rotating detonation engine which had an injector surface on the combustor side wall has been tested and demonstrated. Thrust measurement of the cylindrical RDE (24-mm-diameter) was conducted with monitoring K-type thermocouples inserted in combustor wall. Single rotating detonation wave was observed in the testing conditions ranging from 31 to 59 g/s in this study. Combustion tests for 4.0 ~ 4.9 s were successfully done, and all injector side wall temperature increases were suppressed compared to that of combustor base plate, which had no cooling structure. This could be due to the cooling effect by the heat exchange of propellant injection. In the 4.9 s combustion test with 31 g/s, all thermocouples inserted in the combustor side wall which had the propellant injector surface showed a temperature decreasing 2.5 s after ignition even though the combustion was continuing, and implied the combustion mode shift.

    DOI: 10.2514/6.2020-3855

    Scopus

  83. Operating Characteristics of a Rotating Detonation Engine with a Large Inlet Cross Section

    野田朋之, 松岡健, 川崎央, 渡部広吾輝, 伊東山登, 笠原次郎

    燃焼シンポジウム講演論文集(CD-ROM)   Vol. 58th   2020

     More details

  84. Kinetic analysis on ignition properties of high-energy ionic liquid propellants using a detailed chemical reaction mechanism

    伊東山登, 伊里友一朗, 三宅淳巳, 笠原次郎, 羽生宏人

    燃焼シンポジウム講演論文集(CD-ROM)   Vol. 58th   2020

     More details

  85. Thrust performance of rectangular-shaped reflective shuttling detonation combustor

    田口知哉, 松岡健, 川崎央, 渡部広吾輝, 伊東山登, 笠原次郎

    燃焼シンポジウム講演論文集(CD-ROM)   Vol. 58th   2020

     More details

  86. An Experimental Investigation of Influence of Diluents on Reflection Point Distance of Gaseous Detonation

    川崎央, SUN Han, 伊東山登, 渡部広吾輝, 松岡健, 笠原次郎

    燃焼シンポジウム講演論文集(CD-ROM)   Vol. 58th   2020

     More details

  87. 高エネルギー物質研究の実績と今後について

    羽生宏人, 羽生宏人, 羽生宏人, 松永浩貴, 塩田謙人, 伊里友一朗, 勝身俊之, 山田泰之, 山田泰之, 松本幸太郎, 岩崎祥大, 伊東山登, 中村太郎, 中村太郎, 三宅淳巳

    火薬学会春季研究発表会講演要旨集   Vol. 2019   2019

     More details

  88. Simplified Performance Analysis of Discharge Plasma Thruster with a High Energetic Ionic Liquid Propellant

    和田明哲, 伊東山登, 羽生宏人

    宇宙科学技術連合講演会講演集(CD-ROM)   Vol. 63rd   2019

     More details

  89. 硝酸ヒドロキシルアミン系一液推進薬の実験的化学反応分析に関する研究

    伊東山登

    火薬学会春季研究発表会講演要旨集   Vol. 2019   2019

     More details

  90. アンモニウムジニトラミド系イオン液体推進薬の気相領域における燃焼機構

    伊東山登, 伊里友一朗, 三宅淳巳, 羽生宏人

    火薬学会春季研究発表会講演要旨集   Vol. 2019   2019

     More details

  91. Research and Development of Ionic Liquid Propellant with High Energetic Materials

    松永浩貴, 伊東山登, 塩田謙人, 伊里友一朗, 勝身俊之, 羽生宏人, 野田賢, 三宅淳巳

    宇宙科学技術連合講演会講演集(CD-ROM)   Vol. 62nd   2018

     More details

  92. 連続光レーザ/浸透式インジェクタを用いたイオン性液体推進薬の着火制御

    伊東山登, 羽生宏人

    火薬学会春季研究発表会講演要旨集   Vol. 2018   2018

     More details

  93. アンモニウムジニトラミド系イオン性液体の気相詳細反応モデル構築と妥当性評価

    伊東山登, 伊里友一朗, 三宅淳巳, 羽生宏人

    火薬学会春季研究発表会講演要旨集   Vol. 2018   2018

     More details

  94. Investigation for breakdown ignition of non-solvent liquid propellant

    Itouyama Noboru, Habu Hiroto

    平成28年度宇宙輸送シンポジウム: 講演集録 = Proceedings of Space Transportation Symposium FY2016     2017.1

     More details

    Language:Japanese   Publisher:宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS)  

    Space Transportation Symposium FY2016 (January 19-20, 2017. Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA)(ISAS)), Sagamihara, Kanagawa Japan

  95. パルスレーザ/ブレイクダウンによる高エネルギーイオン液体推進薬への着火応用

    伊東山登, 羽生宏人

    火薬学会年会講演要旨集   Vol. 2017   2017

     More details

  96. 導電性液体推進薬の直接的着火エネルギー印加法の是非

    伊東山登, 羽生宏人

    火薬学会年会講演要旨集   Vol. 2017   2017

     More details

▼display all

Presentations 62

  1. Steady Detonation in Gaseous Pyrolysis Products of Ammonium Dinitramide and its related Ionic Liquids

    N. Itouyama, J. Kasahara, X. Huang, R. Mével

    29th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS 2023)  2023.7.23 

     More details

    Language:English   Presentation type:Oral presentation (general)  

  2. Flight Demonstration of Detonation Engine System Using Sounding Rocket S-520-31: Flight Path and Attitude

    Hiroaki Watanabe, Koichi Matsuyama, Ken Matsuoka, Akira Kawasaki, Noboru Itouyama, Keisuke Goto, Kazuki Ishihara, Valentin Buyakofu, Tomoyuki Noda, Shiro Ito, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki, Daisuke Nakata, Masaharu Uchiumi, Hiroto Habu, Shinsuke Takeuchi, Satoshi Arakawa, Junichi Masuda, Kenji Maehara, Tatsuro Nakao, Kazuhiko Yamada

    AIAA SCITECH 2022 Forum  2022.1.3  American Institute of Aeronautics and Astronautics

     More details

    Event date: 2022.1

  3. Flight Demonstration of Detonation Engine System Using Sounding Rocket S-520-31: System Design

    Akira Kawasaki, Koichi Matsuyama, Ken Matsuoka, Hiroaki Watanabe, Noboru Itouyama, Keisuke Goto, Kazuki Ishihara, Valentin Buyakofu, Tomoyuki Noda, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki, Daisuke Nakata, Masaharu Uchiumi, Hiroto Habu, Shinsuke Takeuchi, Satoshi Arakawa, Junichi Masuda, Kenji Maehara, Tatsuro Nakao, Kazuhiko Yamada

    AIAA SCITECH 2022 Forum  2022.1.3  American Institute of Aeronautics and Astronautics

     More details

    Event date: 2022.1

  4. Flight Demonstration of Detonation Engine System Using Sounding Rocket S-520-31: Performance of Rotating Detonation Engine

    Keisuke Goto, Ken Matsuoka, Koichi Matsuyama, Akira Kawasaki, Hiroaki Watanabe, Noboru Itouyama, Kazuki Ishihara, Valentin Buyakofu, Tomoyuki Noda, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki, Daisuke Nakata, Masaharu Uchiumi, Hiroto Habu, Shinsuke Takeuchi, Satoshi Arakawa, Junichi Masuda, Kenji Maehara, Tatsuro Nakao, Kazuhiko Yamada

    AIAA SCITECH 2022 Forum  2022.1.3  American Institute of Aeronautics and Astronautics

     More details

    Event date: 2022.1

  5. Flight Demonstration of Detonation Engine System Using Sounding Rocket S-520-31: Performance of Pulse Detonation Engine

    Valentin Buyakofu, Ken Matsuoka, Koichi Matsuyama, Keisuke Goto, Akira Kawasaki, Hiroaki Watanabe, Noboru Itouyama, Kazuki Ishihara, Tomoyuki Noda, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki, Daisuke Nakata, Masaharu Uchiumi, Hiroto Habu, Shinsuke Takeuchi, Satoshi Arakawa, Junichi Masuda, Kenji Maehara, Tatsuro Nakao, Kazuhiko Yamada

    AIAA SCITECH 2022 Forum  2022.1.3  American Institute of Aeronautics and Astronautics

     More details

    Event date: 2022.1

  6. Flight Demonstration of Detonation Engine System Using Sounding Rocket S-520-31: History from Development to Flight

    Noboru Itouyama, Koichi Matsuyama, Ken Matsuoka, Akira Kawasaki, Hiroaki Watanabe, Keisuke Goto, Kazuki Ishihara, Valentin Buyakofu, Tomoyuki Noda, Jiro Kasahara, Akiko Matsuo, Daisuke Nakata, Masaharu Uchiumi, Ikkoh Funaki, Hiroto Habu, Shinsuke Takeuchi, Satoshi Arakawa, Junichi Masuda, Kenji Maehara, Tatsuro Nakao, Kazuhiko Yamada

    AIAA SCITECH 2022 Forum  2022.1.3  American Institute of Aeronautics and Astronautics

     More details

    Event date: 2022.1

  7. Experimental Clarification on Detonation Phenomena of Liquid Ethanol Rotating Detonation Combustor

    Kentaro Yoneyama, Kazuki Ishihara, Shiro Ito, Hiroaki Watanabe, Noboru Itouyama, Akira Kawasaki, Ken Matsuoka, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki

    AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022  2022 

     More details

    Event date: 2022

    Rotating detonation combustion was successfully tested for liquid ethanol and gaseous oxygen heterogeneous mixture in a cylindrical combustor for the first time. The rotating detonation combustor (RDC) we operated has a diameter of 20 mm and variable lengths of 60, 210 mm. Pure ethanol and industrial ethanol were selected as liquid fuels. Under the conditions of ethanol and oxygen mass flow rate of 26-40 g/s, equivalence ratio of 0.4-1.7, and backpressure of 10-17 kPa, we confirmed detonation combustion and deflagration combustion. In detonation combustion, as the ethanol manifold supply temperature increases, the detonation propagation speeds, and luminance of combustion were enhanced. It is possible to say enhanced evaporation behavior resulted in stable detonation and showed high peaks in luminance value. Utilizing the control surface method to evaluate experimental thrust, estimated thrust showed good agreement with experimental thrust. For liquid-fueled cylindrical RDCs, the control surface methods can also be used to evaluate thrust.

  8. Experimental Research on Thrust Performance of Rotating Detonation Engine with Liquid Ethanol and Gaseous Oxygen

    Tomoki Sato, Kazuki Ishihara, Kentaro Yoneyama, Shiro Ito, Noboru Itouyama, Hiroaki Watanabe, Akira Kawasaki, Ken Matsuoka, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki

    AIAA AVIATION 2022 Forum  2022 

     More details

    Event date: 2022

    Rotating detonation combustor (RDC) is one of the combustors using detonation waves, which are hypersonic combustion waves, and is expected to simplify the system and improve thermal efficiency due to their hypersonic combustion and compression performance by shock waves. Most of these studies use gas propellants, and liquid propellants are rarely used. Since liquid propellants are used in many combustors such as aircraft engines, it is important to evaluate the performance of RDC with liquid propellants. In this study, a cylindrical RDC, which is an RDC without inner cylinder, with a liquid ethanol and gaseous oxygen was tested at a mass flow rate of 31.3 ± 3.2 g/s, an equivalent ratio of 0.46-1.42 ± 0.12, a back pressure of 13.2 ± 0.9 kPa, and fuel injector with 24×φ0.2 or 6×φ0.4 to evaluate the performance and visualize the inside of the combustion chamber. As a result, when fuel injector was 24×φ0.2, detonation waves were observed, and high propagation velocity and high thrust performance were achieved. From the internal self-luminous and CH* radicals visualization from side wall, a circumferential DDT (deflagration to detonation transition) was observed. In addition, it was found that the detonation wave lifted about 2-3 mm from the combustor bottom, the main combustion region was occurred at 20 mm from the bottom, and the combustion region, including the main combustion region, requires about 50-70 mm from the bottom, which is correlated with the internal pressure, brightness distributions, and the image of acrylic damage. When fuel injector was 6×φ0.4, transition of detonation wave was not observed. The deflagration wave lifted about 10 mm, main combustion occurred up to 45 mm, and partial combustion continued to more downstream compared to detonation combustion. Acrylic damage began to occur downstream from the area with the highest pressure and brightness.

  9. Study of Cylindrical Rotating Detonation Engine with Propellant Injection Cooling System

    K. Ota, K. Goto, N. Itouyama, H. Watanabe, A. Kawasaki, K. Matsuoka, J. Kasahara, A. Matsuo, I. Funaki

    2021 AIAA Propulsion & Energy Forum 

     More details

    Event date: 2021.8

    Language:English   Presentation type:Oral presentation (general)  

  10. Experimental Study on Truncated Conical Rtating Detonation Engine with Diverging Flows

    K. Nakata, K. Ota, S. Ito, K. Ishihara, K. Goto, N. Itouyama, H. Watanabe, A. Kawasaki, K. Matsuoka, J. Kasahara, A. Matsuo, I. Funaki

    2021 AIAA Propulsion & Energy Forum 

     More details

    Event date: 2021.8

    Language:English   Presentation type:Oral presentation (general)  

  11. Experimental Study on Truncated Conical Rotating Detonation Engine with Diverging Flows

    Kotaro Nakata, Kosei Ota, Shiro Ito, Kazuki Ishihara, Keisuke Goto, Noboru Itouyama, Hiroaki Watanabe, Akira Kawasaki, Ken Matsuoka, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki

    AIAA Propulsion and Energy 2021 Forum  2021.8.9  American Institute of Aeronautics and Astronautics

     More details

    Event date: 2021.8

  12. エタノールを用いた回転デトネーション燃焼器の動作条件同定に関する研究

    米山健太郎, 石原一輝, 伊藤志朗, 渡部広吾輝, 伊東山登, 松岡健, 笠原次郎, 松尾亜紀子, 船木一幸

    第53回流体力学講演会/第39回航空宇宙数値シミュレーション技術シンポジウム 

     More details

    Event date: 2021.6 - 2021.7

    Language:Japanese   Presentation type:Oral presentation (general)  

  13. 液体酸素を用いた回転デトネーションエンジンのシステム動作評価に関する研究

    伊藤志朗, 石原一輝, 米山健太郎, 伊東山登, 渡部広吾輝, 川﨑央, 松岡健, 笠原次郎, 松尾 亜紀子, 船木一幸, 中田大将, 内海政春, 松井康平, 北川幸樹, 中村秀一, 東野和幸, 福地亜宝郎, 長尾隆央

    第53回流体力学講演会/第39回航空宇宙数値シミュレーション技術シンポジウム 

     More details

    Event date: 2021.6 - 2021.7

    Language:Japanese   Presentation type:Oral presentation (general)  

  14. 回折デトネーション波観測に基づくデトネーション特性長予測に関するデータ駆動的検討

    川﨑央, 長谷川大樹, 孫涵, 伊東山登, 渡部広吾輝, 松岡健, 笠原次郎, 松尾亜紀子, 船木一幸

    第53回流体力学講演会/第39回航空宇宙数値シミュレーション技術シンポジウム 

     More details

    Event date: 2021.6 - 2021.7

    Language:Japanese   Presentation type:Oral presentation (general)  

  15. 反射往復デトネーション現象に関する可視化実験

    松岡健, 田口知哉, 渡部広吾輝, 川﨑央, 伊東山登, 笠原次郎, 松尾亜紀子

    第53回流体力学講演会/第39回航空宇宙数値シミュレーション技術シンポジウム 

     More details

    Event date: 2021.6 - 2021.7

    Language:Japanese   Presentation type:Oral presentation (general)  

  16. 観測ロケット S-520 31号機プロジェクト :デトネーションエンジンシステムの宇宙実証

    松岡健, 笠原次郎, 松山行一, 川﨑央, 伊東山登, 渡部広吾輝, 後藤啓介, ブヤコフバレンティン, 石原一輝, 秋元雄希, 野田朋之, 松尾亜紀子, 船木一幸, 中田大将, 内海 政春, 羽生宏人, 竹内伸介, 荒川聡, 増田純一, 前原健次, 山田和彦, 和田明哲

    第3回観測ロケットシンポジウム  2021.3.24 

     More details

    Event date: 2021.3

    Language:Japanese   Presentation type:Oral presentation (general)  

  17. 観測ロケットS-520を用いた液体推進剤デトネーションキックモーター飛行実証実験

    笠原次郎, 松山行一, 松岡健, 川﨑央, 伊東山登, 渡部広吾輝, 後藤啓介, 石原一輝, 松尾亜紀子, 船木一幸, 中田大将, 内海 政春, 羽生宏人, 竹内伸介, 荒川聡, 増田純一, 前原健次, 山田和彦, 和田明哲

    第3回観測ロケットシンポジウム  2021.3.24 

     More details

    Event date: 2021.3

    Language:Japanese   Presentation type:Oral presentation (general)  

  18. Propulsive Performance Analysis of Energetic Ionic Liquid Mono-Propulsion Systems for Micro-Spacecraft

    A. Wada, T. Iizuka, N. Itouyama, H. Sahara, H. Habu

    Space Propulsion 2020  2021.3.17 

     More details

    Event date: 2021.3

    Language:English   Presentation type:Oral presentation (general)  

  19. Study on the Effect of the Difference between Detonation and Constant-pressure Combustion on Thrust Characteristics

    K. Ishihara, K. Yoneyama, S. Ito, H. Watanabe, N. Itouyama, A. Kawasaki, K. Matsuoka, J. Kasahara, A. Matsuo, I. Funaki

    The 10th Asian Joint Conference on Propulsion and Power  2021.3.3 

     More details

    Event date: 2021.3

    Language:English   Presentation type:Oral presentation (general)  

  20. アディティブ・マニュファクチャリング回転デトネーションエンジンの研究

    服部花凜, 太田光星, 石原一輝, 後藤啓介, 伊東山登, 渡部広吾輝, 川﨑央, 松岡健, 笠原次郎, 松尾亜紀子, 船木一幸

    2020年度衝撃波シンポジウム 

     More details

    Event date: 2021.3

    Language:Japanese   Presentation type:Oral presentation (general)  

  21. 拡大流路を有する単円筒回転デトネーションエンジンに関する研究

    中田耕太郎, 太田光星, 石原一輝, 後藤啓介, 伊東山登, 渡部広吾輝, 川﨑央, 松岡健, 笠原次郎, 松尾亜紀子, 船木一幸

    2020年度衝撃波シンポジウム 

     More details

    Event date: 2021.3

    Language:Japanese   Presentation type:Oral presentation (general)  

  22. ラティス構造インジェクターを有する単円筒回転デトネーションエンジンに関する研究

    太田光星, 鈴木遼太郎, 中田耕太郎, 服部花凜, 伊藤志朗, 石原一輝, 後藤啓介, 伊東山登, 渡部広吾輝, 川﨑央, 松岡健, 笠原次郎, 松尾亜紀子, 船木一幸, 川島秀人, 松山新吾, 丹野英幸

    2020年度衝撃波シンポジウム 

     More details

    Event date: 2021.3

    Language:Japanese   Presentation type:Oral presentation (general)  

  23. 水素・酸素及び炭化水素・酸素混合気におけるデトネーション回折時の特性長に対する当量比の影響調査

    孫涵,川﨑央, 伊東山登, 渡部広吾輝, 松岡健, 笠原次郎

    2020年度衝撃波シンポジウム 

     More details

    Event date: 2021.3

    Language:Japanese   Presentation type:Oral presentation (general)  

  24. S-520-31号機によるデトネーションエンジン実験の進捗状況:デトネーションエンジンシステム

    川﨑央, 野田朋之, ブヤコフバレンティン, 石原一輝, 後藤啓介, 伊東山登, 渡部広吾輝, 松岡健, 松山行一, 笠原次郎, 松尾亜紀子, 船木一幸, 中田大将, 内海政春, 竹内伸介, 岩崎祥大, 和田明哲, 増田純一, 荒川聡, 羽生宏人, 山田和彦

    令和二年度宇宙輸送シンポジウム 

     More details

    Event date: 2021.1

    Language:Japanese   Presentation type:Oral presentation (general)  

  25. S-520-31号機によるデトネーションエンジン実験の進捗状況:飛行経路および姿勢予測

    渡部広吾輝, 伊藤志朗, 伊東山登, 川﨑央, 松岡健, 松山行一, 笠原次郎, 松尾亜紀子, 船木一幸, 竹内伸介, 岩崎祥大, 和田明哲, 増田純一, 荒川聡, 羽生宏人, 山田和彦

    令和二年度宇宙輸送シンポジウム 

     More details

    Event date: 2021.1

    Language:Japanese  

  26. S-520-31号機によるデトネーションエンジン実験の進捗状況:回転デトネーションエンジン

    松岡健, 後藤啓介, ブヤコフバレンティン, 石原一輝, 野田朋之, 伊東山登, 川﨑央, 渡部広吾輝, 松山行一, 笠原次郎, 松尾亜紀子, 船木一幸, 中田大将, 内海政春, 竹内伸介, 岩崎祥大, 和田明哲, 増田純一, 荒川聡, 羽生宏人, 山田和彦

    令和二年度宇宙輸送シンポジウム 

     More details

    Event date: 2021.1

    Language:Japanese   Presentation type:Oral presentation (general)  

  27. S-520-31号機によるデトネーションエンジン実験の進捗状況:パルスデトネーションエンジン

    伊東山登, ブヤコフバレンティン, 野田朋之, 石原一輝, 後藤啓介, 川﨑央, 渡部広吾輝, 松岡健, 松山行一, 笠原次郎, 松尾亜紀子, 船木一幸, 中田大将, 内海政春, 竹内伸介, 岩崎祥大, 和田明哲, 増田純一, 荒川聡, 羽生宏人, 山田和彦

    令和二年度宇宙輸送シンポジウム  2021.1.14 

     More details

    Event date: 2021.1

    Language:Japanese  

  28. Propulsive Performance of Cylindrical Rotating Detonation Engine with Propellant Injection Cooing

    K. Goto, K. Ota, A. Kawasaki, H. Watanabe, N. Itouyama, K. Matsuoka, J. Kasahara, A. Matsuo, I. Funaki

    AIAA SciTech 2021 Forum 

     More details

    Event date: 2021.1

    Language:English   Presentation type:Oral presentation (general)  

  29. Propulsive performane of cylindrical rotating detonation engine with propellant injection cooing

    Keisuke Goto, Kosei Ota, Akira Kawasaki, Hiroaki Watanabe, Noboru Itouyama, Ken Matsuoka, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki

    AIAA Scitech 2021 Forum  2021 

     More details

    Event date: 2021

    © 2021, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved. An engine cooling concept for cylindrical rotating detonation engine which had an injector surface on the combustor side wall has been tested with three combustor length of 21, 30, and 6 mm. Thrust measurement of the cylindrical RDE (24-mm-diameter) was conducted with monitoring K-type thermocouples inserted in combustor wall. Single rotating detonation wave was observed with the combustor length of 30 and 69 mm in this study. Cooling effect due to the propellant injection was confirmed as the nearly saturated temperature response in the combustor side wall. when the chamber length is more than 30 mm, the specific impulse maintained more than 80% of theoretical value assuming sonic condition at the chamber exit. The result indicated that modest combustor length as an efficient thruster exists in the range of 30 to 69 mm.

  30. 大インレット断面積を有する回転デトネーションエンジンの作動特性

    野田朋之, 松岡健, 川崎央, 渡部広吾輝, 伊東山登, 笠原次郎

    第58回燃焼シンポジウム  2020.12.3 

     More details

    Event date: 2020.12

    Language:Japanese   Presentation type:Oral presentation (general)  

  31. 気相デトネーションの反射点距離に与える希釈種の影響に関する実験的検討

    川崎央, 孫涵, 伊東山登, 渡部広吾輝, 松岡健, 笠原次郎

    第58回燃焼シンポジウム  2020.12.3 

     More details

    Event date: 2020.12

    Language:Japanese   Presentation type:Oral presentation (general)  

  32. 矩形反射往復型デトネーションエンジンの推進性能評価

    田口知哉, 松岡健, 川崎央, 渡部広吾輝, 伊東山登, 笠原次郎

    第58回燃焼シンポジウム  2020.12.3 

     More details

    Event date: 2020.12

    Language:Japanese   Presentation type:Oral presentation (general)  

  33. 詳細化学反応を用いた高エネルギイオン液体推進薬の着火特性解析

    伊東山登, 伊里友一朗, 三宅淳巳, 笠原次郎, 羽生宏人

    第58回燃焼シンポジウム  2020.12.3 

     More details

    Event date: 2020.12

    Presentation type:Oral presentation (general)  

  34. 将来深宇宙探査に向けた革新的超小型推進システムの検討

    和田明哲, 渡邊裕樹, 伊東山登, 池田知行, 月崎⻯童, 飯塚俊明, 佐原宏典, 各務聡, 松永浩貴, 伊里友一朗, 塩田謙人, 松本幸太郎, 勝身俊之, 三宅淳, 志田真樹, 船瀬龍, 船木一幸, 笠原次郎, 羽生宏人

    第64回宇宙科学技術連合講演会 

     More details

    Event date: 2020.10

    Language:Japanese   Presentation type:Oral presentation (general)  

  35. 深宇宙探査用超小型推進システムを見据えた高エネルギー物質研究

    松永浩貴, 伊東山登, 和田明哲, 塩田謙人, 伊里友一朗, 松本幸太郎, 勝身俊之, 早田葵, 于秀超, 野副克彦, 久保田一浩, 羽生宏人, 野田賢, 三宅淳

    第64回宇宙科学技術連合講演会 

     More details

    Event date: 2020.10

    Language:Japanese   Presentation type:Oral presentation (general)  

  36. 高エネルギーイオン液体の一液推進機応用に関する研究

    伊東山登, 和田明哲, 松永浩貴, 笠原次郎, 羽生宏人

    第64回宇宙科学技術連合講演会 

     More details

    Event date: 2020.10

    Language:Japanese   Presentation type:Oral presentation (general)  

  37. 観測ロケットS-520-31号機搭載用パルスデトネーションエンジンのシステム実証研究

    ブヤコフバレンティン, 野田朋之, 澤田悟, ジョセフビクトリア, 後藤啓介, 石原一輝, 渡部広吾輝, 伊東山登, 川崎央, 松岡健, 松山行一, 笠原次郎, 中田大将, 内海政春, 松尾亜紀子, 船木一幸, 竹内伸介, 和田明哲, 岩崎祥大, 羽生宏人

    第64回宇宙科学技術連合講演会 

     More details

    Event date: 2020.10

    Language:Japanese   Presentation type:Oral presentation (general)  

  38. Cylindrical rotating detonation engine cooling by means of propellant injection

    Keisuke Goto, Kosei Ota, Akira Kawasaki, Hiroaki Watanabe, Noboru Itouyama, Ken Matsuoka, Jiro Kasahara, Akiko Matsuo, Ikkoh Funaki

    AIAA Propulsion and Energy 2020 Forum  2020 

     More details

    Event date: 2020

    © 2020, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved. An engine cooling concept for cylindrical rotating detonation engine which had an injector surface on the combustor side wall has been tested and demonstrated. Thrust measurement of the cylindrical RDE (24-mm-diameter) was conducted with monitoring K-type thermocouples inserted in combustor wall. Single rotating detonation wave was observed in the testing conditions ranging from 31 to 59 g/s in this study. Combustion tests for 4.0 ~ 4.9 s were successfully done, and all injector side wall temperature increases were suppressed compared to that of combustor base plate, which had no cooling structure. This could be due to the cooling effect by the heat exchange of propellant injection. In the 4.9 s combustion test with 31 g/s, all thermocouples inserted in the combustor side wall which had the propellant injector surface showed a temperature decreasing 2.5 s after ignition even though the combustion was continuing, and implied the combustion mode shift.

  39. A Bread Board Model Testing for In-Space Flight Demonstration of a Liquid-Propellant Detonation Engine System

    A. Kawasaki, K. Nakata, T. Sato, S. Sawada, Y. Kudo, Y. Suzuki, N. Itouyama, K. Matsuoka, K. Matsuyama, J. Kasahara, D. Nakata, M. Namera, H. Eguchi, M. Uchiumi, A. Matsuo, I. Funaki, S. Nakamura, K. Higashino, H. Hirashima

    AIAA Scitech 2024  2024.1.8 

     More details

    Language:English   Presentation type:Oral presentation (general)  

  40. The Rotating Detonation Engines with The Helical Combustion Chambers

    S. Sawada, N. Itouyama, K. Matsuoka, J. Kasahara, J. Braun, G. Paniagua, A. Kawasaki, H. Watanabe, K. Higashino, A. Matsuo, I. Funaki

    AIAA Scitech 2024  2024.1.8 

     More details

    Language:English   Presentation type:Oral presentation (general)  

  41. The challenge of in-space demonstration of a cylindrical rotating detonation using liquid propellants by a sounding rocket S-520 launching

    N. Itouyama, K. Ishihara, T. Sato, K Nakata, K. Nakajima, K. Matsuyama, K. Matsuoka, A Kawasaki, J Kasahara, A. Matsuo, I. Funaki, H. Eguchi, D. Nakata, M. Uchiumi

    The 34th International Symposium on Space Technology and Science  2023.6.3 

     More details

    Language:English   Presentation type:Oral presentation (general)  

  42. Study on the Effect of Combustor Scale in Annular RDEs

    M. Miyashita, A. Matsuo, E. Shima, N. Itouyama, A. Kawasaki, K. Matsuoka, J. Kasahara

    29th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS 2023)  2023.7.23 

     More details

    Language:English   Presentation type:Oral presentation (general)  

  43. Overview for the research and development of Rotating Detonation Engine Systems using a liquid-liquid propellant combination

    N. Itouyama, K. Matsuyama, K. Matsuoka, T. Sato, K. Nakata, S. Sawada, Y. Kudo, K. Nakajima, Y. Suzuki, J. Kasahara, A. Kawasaki, M. Namera, D. Nakata, H. Eguchi, M. Uchiumi, A. Matsuo, I. Funaki

    AIAA SciTech 2024  2024.1.8 

     More details

    Language:English   Presentation type:Oral presentation (general)  

  44. Operation Characteristics of Cylindrical Rotating Detonation Engine Using Liquid Ethanol and Liquid Nitrous Oxide

    T. Sato, K. Nakata, S. Sawada, Y. Suzuki, Y. Kudo, K. Nakajima, N. Itouyama, K. Matsuoka, J. Kasahara, A. Kawasaki, M. Namera, H. Eguchi, D. Nakata, M. Uchiumi, A. Matsuo, I. Funaki, H. Tanno

    AIAA SciTech 2024  2024.1.8 

     More details

    Language:English   Presentation type:Oral presentation (general)  

  45. Operation Characteristics of a Throatless Rotating Detonation Engine with Diverging Channel

    K. Nakata, T. Kimura, K. Ishihara, N. Itouyama, K. Matsuoka, J. Kasahara, A. Kawasaki, H. Watanabe, A. Matsuo, I. Funaki, K. Higashino, V. Athmanathan, J. Braun, T. Meyer, G. Paniagua

    29th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS 2023)  2023.7.23 

     More details

    Language:English   Presentation type:Oral presentation (general)  

  46. Numerical Investigation on Throatless Diverging Rotating Detonation Engines

    T. Sada, A. Matsuo, E. Shima, A. Kawasaki, N. Itouyama, K. Matsuoka, J. Kasahara

    AIAA Scitech 2024  2024.1.8 

     More details

    Language:English   Presentation type:Oral presentation (general)  

  47. Numerical Investigation of Combustion Behavior Induced by Shock Wave in Combustible Jet Trains

    M. Miyashita, A. Matsuo, E. Shima, N. Itouyama, A. Kawasaki, K. Matsuoka, J. Kasahara

    International Conference of Hydrogen Safety  2023.9.19 

     More details

    Language:English   Presentation type:Oral presentation (general)  

  48. Numerical Analysis of the Effect of Combustor Length on Cylindrical Rotating Detonation Engine with Diverging Channel

    T. Sada, A. Matsuo, E. Shima, N. Itouyama, A. Kawasaki, K. Matsuoka, J. Kasahara

    29th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS 2023)  2023.7.23 

     More details

    Language:English   Presentation type:Oral presentation (general)  

  49. Influence of catalysts on the thermal behavior of ammonium dinitramide-based energetic ionic liquids

    H. Matsunaga, N. Itouyama, H. Habu, M. Noda, A. Miyake

    26th International Conference on Chemical Thermodynamics (ICCT-2023)  2023.7.30 

     More details

    Language:English   Presentation type:Oral presentation (general)  

  50. Improvement of Flash Atomization Characteristics of HAN-based Green Propellants Using High Saturation Pressure Additive

    H. Ito, K. Hayata, D Kamatsuchi, K. Kawabata, J. Nigorikawa, T. Katsumi, N. Itouyama, J. Kasahara, S. Kadowaki

    The 34th International Symposium on Space Technology and Science  2023.6.3 

     More details

    Language:English   Presentation type:Oral presentation (general)  

  51. Ignition of Energetic Ionic Liquids using Electrolysis Ignition Thruster

    R. Omori, N. Itouyama, K. Shiota, Y. Izato, A. Miyake

    The 34th International Symposium on Space Technology and Science  2023.6.3 

     More details

    Language:English   Presentation type:Oral presentation (general)  

  52. Experiments and studies for the resonant tube ignition system

    Y. Kudo, N. Itouyama, K. Matsuoka, J. Kasahara

    The 34th International Symposium on Shock Waves (ISSW),  2023.7.16 

     More details

    Language:English   Presentation type:Oral presentation (general)  

  53. Experimental Study on the Combination of Laser Ignition and Shock Focusing Method for Detonation Initiation

    T. Sato, K. Matsuoka, A. Kawasaki, N. Itouyama, H. Watanabe, J. Kasahara

    29th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS 2023)  2023.7.23 

     More details

    Language:English   Presentation type:Oral presentation (general)  

  54. Experimental Study on Propagation Mode of Cylindrical Rotating Detonation Engine with Liquid Ethanol-Liquid Nitrous Oxide

    T. Sato, K. Ishihara, K. Nakata, T. Kimura, Y. Kikuchi, K. Nakajima, S. Sawada, M. Inada, R. Sakata, Y. Suzuki, Y. Oda, B. Itouyama, K. Matsuoka, J. Kasahara, A. Kawasaki, H. Watanabe, H. Okano, T. Tada, F. Fujiura, M. Namera, R. Nakazawa, H. Eguchi, D. Nakata, M. Uchiumi, A. Matsuo, I. Funaki

    29th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS 2023)  2023.7.23 

     More details

    Language:English   Presentation type:Oral presentation (general)  

  55. Experimental Study of Heat Transfer Measurement Using Locally Water-Cooled Cylindrical Rotating Detonation Engine

    M. Inada, R. Sakata, N. Itouyama, K. Matsuoka, J. Kasahara, A. Kawasaki, A. Matsuo, I. Funaki

    International Conference on Materials and Systems for Sustainability (ICMaSS) 2023  2023.12.1 

     More details

    Language:English   Presentation type:Oral presentation (general)  

  56. Experimental research for clustering with the coupled cylindrical rotating detonation engine

    R. Sakata, M. Inada, N. Itouyama, K. Matsuoka, J. Kasahara, A. Kawasaki, A. Matsuo, I. Funaki

    AIAA Scitech 2024  2024.1.8 

     More details

    Language:English   Presentation type:Oral presentation (general)  

  57. Effect of Injector Expansion Angle on a Rotating Detonation Engine Performance

    K. Nakajima, K. Matsuoka, N. Itouyama, J. Kasahara, A. Kawasaki, A. Matsuo

    29th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS 2023)  2024.7.23 

     More details

    Language:English   Presentation type:Oral presentation (general)  

  58. Combustion Characteristics of Reflective Shuttling Detonation Combustor with Different Equivalence Ratio

    M. Miyashita, A. Matsu, E. Shima, A. Kawasaki, N. Itouyama, K. Matsuoka, J. Kasahara

    AIAA SciTech 2024  2024.1.8 

     More details

    Language:English   Presentation type:Oral presentation (general)  

  59. Characteristics of Torque around Axial Direction on Cylindrical Rotating Detonation Engines

    S. Sawada, K. Ishihara, N. Itouyama, H. Watanabe, A. Kawasaki, K. Matsuoka, J. Kasahara, A. Matsuo, I. Funaki

    29th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS 2023)  2023.7.23 

     More details

    Language:English   Presentation type:Oral presentation (general)  

  60. Analysis of Chemical Structure of a weakly Unstable Cellular Gaseous Detonation

    H. Watanabe, A. Matsuo, A. Chinnayya, N. Itouyama, K. Matsuoka, J. Kasahara

    29th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS 2023)  2023.7.23 

     More details

    Language:English   Presentation type:Oral presentation (general)  

  61. An Experimental Investigation of the Initial Temperature Dependence of a Characteristic Length Scale Associated with Detonation Diffraction

    A. Kawasaki, Y. Kikuchi, H. Sun, N. Itouyama, K. Matsuoka, J. Kasahara, A. Matsuo

    29th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS 2023)  2023.7.23 

     More details

    Language:English   Presentation type:Oral presentation (general)  

  62. Viscous and Thermal Boundary Layers in Detonation Driving Zone

    H. Watanabe, A. Matsuo, A. Chinnayya, N. Itouyama, K. Matsuoka, J. Kasahara

    29th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS 2023)  2023.7.23 

     More details

    Language:English   Presentation type:Oral presentation (general)  

▼display all

Works 6

  1. 観測ロケットを用いたデトネーションエンジンの宇宙実証

    2020.4

  2. High-energy-density ionic liquid propellant

    2016.4

  3. Palm-size high propulsion-density system

    2016.4

  4. Green Propulsion with HEDMs

    2014.4

  5. ガス発生剤の反応制御とその設計応用

  6. 気相燃焼および気相爆轟の化学的制御法の探索

▼display all

KAKENHI (Grants-in-Aid for Scientific Research) 8

  1. Detonation Engine Physics Elucidation: International Joint Research on Space Flight Demonstration

    Grant number:23K20036  2023.11 - 2030.3

    Grants-in-Aid for Scientific Research  Fund for the Promotion of Joint International Research (International Leading Research )

      More details

    Authorship:Coinvestigator(s) 

  2. Studyon a Pressure Gain Mechanisum by a Premixed Rotating Detonation Engine

    Grant number:23KK0082  2023.9 - 2027.3

    Grants-in-Aid for Scientific Research  Fund for the Promotion of Joint International Research (International Collaborative Research)

      More details

    Authorship:Coinvestigator(s) 

  3. Dynamic and Liquid Propellant Rotating Detonation Engine Physics Elucidation: Ballistic and Orbital Flight Demonstration

    Grant number:23H05446  2023.4 - 2028.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (S)

      More details

    Authorship:Coinvestigator(s) 

  4. Invetigation for scientific principle the laser-assisted radiant heating ignition of high-enegy monopropellants

    Grant number:22K14421  2022.4 - 2025.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Early-Career Scientists

      More details

    Authorship:Principal investigator 

    Grant amount:\4680000 ( Direct Cost: \3600000 、 Indirect Cost:\1080000 )

  5. Investigation of the detonability of high energy density materials and its-based propellants

    Grant number:20K22430  2020.9 - 2022.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Research Activity Start-up

    Itouyama Noboru

      More details

    Authorship:Principal investigator 

    Grant amount:\2860000 ( Direct Cost: \2200000 、 Indirect Cost:\660000 )

    The study focused on the detonation as a potential hazard with significant risk to ensure high handling performance for ammonium dinitramide (ADN) which is an energetic material and an ADN-based high energy density propellant, ADN-EILPs, and aimed to understand the basic gas-phase detonation characteristics of these materials. The initial conditions of ADN and ADN-EILPs decomposition gases were computationally verified and their compositions were found to change depending on the pressure environment. The 0D and 1D reaction simulations were performed to clarify the possible gas-phase detonation characteristics of ADN and ADN-EILPs decomposition gases, and to understand the detonation characteristics of ADN-EILPs, which are considered to have lower energy sensitivity in the solid-liquid state. It is suggested that ADN-EILPs, which is considered to have lower energy sensitivity in the solid-liquid state, has higher gas-phase detonability than ADN.

  6. Fundamental study on the catalytic ignition of low-toxicity and high performance monopropellants driven by laser radiation

    2020.4

    The Foundation for the Promotion of the Industrial Explosives Technology  Research Grant 

    Noboru Itouyama, Asato Wada, Hiroto Habu

      More details

    Authorship:Principal investigator 

  7. 将来深宇宙探査に向けた革新的超小型推進システム技術実証RG

    2020.4

    JAXA宇宙科学研究所  戦略的開発研究費(工学) 

      More details

    Authorship:Coinvestigator(s) 

  8. Investigation of Ignition Mechanism and Control of Ignition Delay of Ionic Liquid Propellant Based on High Energy Salt

    Grant number:18J14397  2018.4 - 2020.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for JSPS Fellows  Grant-in-Aid for JSPS Fellows

    Noboru Itouyama

      More details

    Authorship:Principal investigator 

    Grant amount:\1500000 ( Direct Cost: \1500000 )

▼display all

Industrial property rights 4

  1. Low gas generator

    Noboru Itouyama

     More details

    Application no:特願PCT/JP2017/019260 

  2. 低温ガス発生剤

    伊東山登

     More details

    Application no:特願2016-114936 

  3. 噴射装置及び推進システム

    伊東山登, 羽生宏人

     More details

    Application no:特願2018-048994 

  4. 噴射装置及び推進システム

    伊東山登, 羽生宏人

     More details

    Application no:PCT/JP2018/044151 

 

Teaching Experience (On-campus) 1

  1. 機械航空宇宙工学実験総合テーマ

    2023

Teaching Experience (Off-campus) 7

  1. Design Drawing #4 (Aerospace criative design)

    2023 Nagoya University)

  2. 物理学実験

    2023 Nagoya University)

  3. 機械航空宇宙工学実験 総合テーマ

    2023 Nagoya University)

  4. 推進エネルギーシステム工学セミナー1B

    2020 Nagoya University)

  5. 推進エネルギーシステム工学セミナー2D

    2020 Nagoya University)

  6. 推進エネルギーシステム工学セミナー2B

    2020 Nagoya University)

  7. 推進エネルギーシステム工学セミナー1D

    2020 Nagoya University)

▼display all

 

Social Contribution 1

  1. 観測ロケットS-520-31号機の紹介

    Role(s):Appearance

    宇宙航空研究開発機構  2020年度JAXA相模原キャンパス特別公開  2021.3

Academic Activities 11

  1. SDGsワーキンググループ 会員(火薬学会)

    2022.4

     More details

    Type:Academic society, research group, etc. 

  2. 将来深宇宙探査に向けた革新的超小型推進系研究グループ

    Role(s):Planning, management, etc.

    2020.11

  3. 高エネルギー物質研究会

    Role(s):Planning, management, etc., Peer review

    2020.4

     More details

    Type:Academic society, research group, etc. 

  4. モビリティ安全部品専門部会(火薬学会)

     More details

    Type:Academic society, research group, etc. 

  5. Combustion and Flame

    Role(s):Peer review

  6. 計算科学WG 副幹事(火薬学会)

    Role(s):Planning, management, etc.

  7. 火工品専門部会 会員(火薬学会)

  8. ガスデトネーション専門部会 会員(火薬学会)

  9. Science and Technology of Energetic Material

    Role(s):Peer review

  10. Journal of Evolving Space Activities

    Role(s):Peer review

  11. AIAA Scitech (abstract)

    Role(s):Peer review

▼display all