Updated on 2021/10/20

写真a

 
NAKAYAMA Tomoya
 
Organization
Institute for Advanced Research Designated assistant professor
Graduate School of Bioagricultural Sciences Designated assistant professor
Title
Designated assistant professor
External link

Degree 1

  1. 博士(農学) ( 2019.3   名古屋大学 ) 

Research Interests 6

  1. 温度適応

  2. 季節適応

  3. 動物生理学

  4. 分子生物学

  5. 光周性

  6. メダカ

Research Areas 5

  1. Life Science / Aquatic life science

  2. Life Science / Laboratory animal science

  3. Life Science / Animal physiological chemistry, physiology and behavioral biology

  4. Life Science / Animal physiological chemistry, physiology and behavioral biology

  5. Life Science / Molecular biology

Research History 4

  1. Nagoya University   Nagoya University

    2020.4

  2. 日本学術振興会 特別研究員 PD

    2019.4 - 2020.3

  3. 日本学術振興会 特別研究員 DC2

    2018.4 - 2019.3

  4. 自然科学研究機構 基礎生物学研究所 技術支援員

    2016.1 - 2016.3

Education 2

  1. National Institutes of Natural Sciences

    2016.4 - 2019.3

  2. 名古屋大学 大学院生命農学研究科 博士課程後期課程(吉村崇教授)

    2016.4 - 2019.3

Awards 1

  1. 日本時間生物学会優秀ポスター賞

    2019.10   日本時間生物学会   長鎖ノンコーディングRNAであるLDAIRは自己防衛行動の季節変化を制御する

    中山 友哉

     More details

    Award type:Award from Japanese society, conference, symposium, etc. 

    第26回日本時間生物学会学術大会

 

Papers 8

  1. Seasonal changes in NRF2 antioxidant pathway regulates winter depression-like behavior. Reviewed International journal

    Tomoya Nakayama, Kousuke Okimura, Jiachen Shen, Ying-Jey Guh, T Katherine Tamai, Akiko Shimada, Souta Minou, Yuki Okushi, Tsuyoshi Shimmura, Yuko Furukawa, Naoya Kadofusa, Ayato Sato, Toshiya Nishimura, Minoru Tanaka, Kei Nakayama, Nobuyuki Shiina, Naoyuki Yamamoto, Andrew S Loudon, Taeko Nishiwaki-Ohkawa, Ai Shinomiya, Toshitaka Nabeshima, Yusuke Nakane, Takashi Yoshimura

    Proceedings of the National Academy of Sciences of the United States of America     2020.4

     More details

    Authorship:Lead author   Language:English  

    Seasonal changes in the environment lead to depression-like behaviors in humans and animals. The underlying mechanisms, however, are unknown. We observed decreased sociability and increased anxiety-like behavior in medaka fish exposed to winter-like conditions. Whole brain metabolomic analysis revealed seasonal changes in 68 metabolites, including neurotransmitters and antioxidants associated with depression. Transcriptome analysis identified 3,306 differentially expressed transcripts, including inflammatory markers, melanopsins, and circadian clock genes. Further analyses revealed seasonal changes in multiple signaling pathways implicated in depression, including the nuclear factor erythroid-derived 2-like 2 (NRF2) antioxidant pathway. A broad-spectrum chemical screen revealed that celastrol (a traditional Chinese medicine) uniquely reversed winter behavior. NRF2 is a celastrol target expressed in the habenula (HB), known to play a critical role in the pathophysiology of depression. Another NRF2 chemical activator phenocopied these effects, and an NRF2 mutant showed decreased sociability. Our study provides important insights into winter depression and offers potential therapeutic targets involving NRF2.

    DOI: 10.1073/pnas.2000278117

    PubMed

  2. Seasonal regulation of the lncRNA LDAIR modulates self-protective behaviours during the breeding season Reviewed International journal

    Tomoya Nakayama, *, Tsuyoshi Shimmura, Ai Shinomiya, Kousuke Okimura, Yusuke Takehana, Yuko Furukawa, Takayuki Shimo, Takumi Senga, Mana Nakatsukasa, Toshiya Nishimura, Minoru Tanaka, Kataaki Okubo, Yasuhiro Kamei, Kiyoshi Naruse, Takashi Yoshimura, Equal contribution

    Nature Ecology & Evolution     page: 1 - 8   2019.4

     More details

    Authorship:Lead author   Language:English  

    DOI: 10.1038/s41559-019-0866-6

  3. Seasonal changes in color perception Reviewed International journal

    Tsuyoshi Shimmura, Tomoya Nakayama, Ai Shinomiya, Takashi Yoshimura

    General and Comparative Endocrinology   Vol. 260   page: 171 - 174   2018.5

     More details

    Language:English   Publisher:Academic Press Inc.  

    In temperate zones, organisms experience dynamic fluctuations in environment including changes in color. To cope with such seasonal changes in the environment, organisms adapt their physiology and behavior. Although color perception has been believed to be fixed throughout life, there is increasing evidence for the alteration in opsin gene expression induced by environmental stimuli in a number of animals. Very recently, dynamic seasonal plasticity in color perception has been reported in the seasonally breeding medaka fish. Interestingly, seasonal changes in human color perception have also been reported. Therefore, plasticity of color perception, induced by environmental stimuli, might be a common phenomenon across various species.

    DOI: 10.1016/j.ygcen.2017.12.010

    Scopus

  4. Seasonal Rhythms: The Role of Thyrotropin and Thyroid Hormones Reviewed International journal

    Tomoya Nakayama, Takashi Yoshimura

    Thyroid   Vol. 28 ( 1 ) page: 4   2018.1

     More details

    Language:English   Publisher:Mary Ann Liebert Inc  

    DOI: 10.1089/thy.2017.0186

  5. Dynamic plasticity in phototransduction regulates seasonal changes in color perception Reviewed International journal

    Tsuyoshi Shimmura, Tomoya Nakayama, Ai Shinomiya, Shoji Fukamachi, Masaki Yasugi, Eiji Watanabe, Takayuki Shimo, Takumi Senga, Toshiya Nishimura, Minoru Tanaka, Yasuhiro Kamei, Kiyoshi Naruse, Takashi Yoshimura

    NATURE COMMUNICATIONS   Vol. 8 ( 1 )   2017.9

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:NATURE PUBLISHING GROUP  

    To cope with seasonal changes in the environment, organisms adapt their physiology and behavior. Although color perception varies among seasons, the underlying molecular basis and its physiological significance remain unclear. Here we show that dynamic plasticity in phototransduction regulates seasonal changes in color perception in medaka fish. Medaka are active and exhibit clear phototaxis in conditions simulating summer, but remain at the bottom of the tank and fail to exhibit phototaxis in conditions simulating winter. Mate preference tests using virtual fish created with computer graphics demonstrate that medaka are more attracted to orange-red-colored model fish in summer than in winter. Transcriptome analysis of the eye reveals dynamic seasonal changes in the expression of genes encoding photopigments and their downstream pathways. Behavioral analysis of photopigment-null fish shows significant differences from wild type, suggesting that plasticity in color perception is crucial for the emergence of seasonally regulated behaviors.

    DOI: 10.1038/s41467-017-00432-8

    Web of Science

  6. Indirect pathway to pectoral fin motor neurons from nucleus ruber in the Nile tilapia Oreochromis niloticus Reviewed International journal

    Tomoya Nakayama, Hirotaka Nishino, Junya Narita, Hideki Abe, Naoyuki Yamamoto

    Journal of Comparative Neurology   Vol. 527   page: 957 - 971   2018.12

     More details

    Language:English  

    DOI: 10.1002/cne.24578

  7. Descending pathways to the spinal cord in teleosts in comparison with mammals, with special attention to rubrospinal pathways Reviewed International journal

    Naoyuki Yamamoto, Tomoya Nakayama, Hanako Hagio

    DEVELOPMENT GROWTH & DIFFERENTIATION   Vol. 59 ( 4 ) page: 188 - 193   2017.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:WILEY  

    In this article we review descending neural pathways to the spinal cord in teleosts, compared with mammals. Descending pathways to the spinal cord are crucial in controlling various behaviors in vertebrates. The major difference between teleosts and mammals is the lack of corticospinal (or palliospinal) tracts. Other descending pathways, which originate from the brain stem, are basically identical in teleosts and mammals. This suggests the presence of common systems in the spinal motor control by higher order centers. The homologue of nucleus ruber remained unclear in teleosts until recently, and this review pays special attention to the rubrospinal tract.

    DOI: 10.1111/dgd.12355

    Web of Science

  8. Nucleus Ruber of Actinopterygians Reviewed International journal

    Tomoya Nakayama, Satoshi Miyajima, Hirotaka Nishino, Junya Narita, Hideki Abe, Naoyuki Yamamoto

    BRAIN BEHAVIOR AND EVOLUTION   Vol. 88 ( 1 ) page: 25 - 42   2016

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:KARGER  

    Nucleus ruber is known as an important supraspinal center that controls forelimb movements in tetrapods, and the rubral homologue may serve similar functions in fishes (motor control of pectoral fin). However, two apparently different structures have been identified as 'nucleus ruber' in actinop-terygians. One is nucleus ruber of Goldstein (1905) (NRg), and the other nucleus ruber of Nieuwenhuys and Pouwels (1983) (NRnp). It remains unclear whether one of these nuclei (or perhaps both) is homologous to tetrapod nucleus ruber. To resolve this issue from a phylogenetic point of view, we have investigated the distribution of tegmental neurons retrogradely labeled from the spinal cord in eight actinopterygian species. We also investigated the presence/absence of the two nuclei with Nissl- or Bodian-stained brain section series of an additional 28 actinopterygian species by comparing the morphological features of candidate rubral neurons with those of neurons revealed by the tracer studies. Based on these analyses, the NRg was identified in all actinopterygians investigated in the present study, while the NRnp appears to be absent in basal actinopterygians. The phylogenetic distribution pattern indicates that the NRg is the more likely homologue of nucleus ruber, and the NRnp may be a derived nucleus that emerged during the course of actinopterygian evolution. (C) 2016 S. Karger AG, Basel

    DOI: 10.1159/000447442

    Web of Science

▼display all

MISC 3

  1. ケミカルゲノミクスで明らかにするメダカの冬季うつ様行動の分子基盤 Reviewed

    沖村 光祐, 中山 友哉, 吉村 崇

    化学と生物   Vol. 59 ( 8 ) page: 369 - 376   2021.8

  2. 脊椎動物の季節感知機構の解明とその応用 動物たちの季節適応戦略の謎に迫る Reviewed

    中山 友哉, 中根 右介, 吉村 崇

    化学と生物   Vol. 57 ( 2 ) page: 121 - 128   2019.1

     More details

    Language:Japanese  

  3. The 64th NIBB Conference: Evolution of Seasonal Timers

    中山友哉

    日本進化学会ニュース     2016.7

     More details

    Language:Japanese  

Presentations 11

  1. Seasonal regulation of the lncRNA LDAIR modulates self-protective behaviors during the breeding season Invited International conference

    Tomoya Nakayama, Tsuyoshi Shimmura, Ai Shinomiya, Kousuke Okimura, Yusuke Takehana, Yuko Furukawa, Takayuki Shimo, Takumi Senga, Mana Nakatsukasa, Toshiya Nishimura, Minoru Tanaka, Kataaki Okubo, Yasuhiro Kamei, Kiyoshi Naruse, Takashi Yoshimura

    the 1st International Exchange Symposium of Zoology: Invitation to Neuroscience  2019.9 

     More details

    Language:English   Presentation type:Oral presentation (invited, special)  

  2. Seasonal regulation of the lncRNA LDAIR modulates self-protective behaviors during the breeding season International conference

    Tomoya Nakayama, Tsuyoshi Shimmura, Ai Shinomiya, Kousuke Okimura, Yusuke Takehana, Yuko Furukawa, Takayuki Shimo, Takumi Senga, Mana Nakatsukasa, Toshiya Nishimura, Minoru Tanaka, Kataaki Okubo, Yasuhiro Kamei, Kiyoshi Naruse, Takashi Yoshimura

    XVI European Biological Rhythms Society Congress  2019.8 

     More details

    Language:English   Presentation type:Poster presentation  

  3. Molecular mechanism of seasonal adaptation in medaka Invited International conference

    Tomoya Nakayama, Tsuyoshi Shimmura, Ai Shinomiya, Yusuke Takehana, Shoji Fukamachi, Masaki Yasugi, Eiji Watanabe, Toshiya Nishimura, Minoru Tanaka, Kataaki Okubo, Yasuhiro Kamei, Kiyoshi Naruse, Takashi Yoshimura

    The 14th International Zebrafish Conference  2019.6 

     More details

    Language:English   Presentation type:Oral presentation (invited, special)  

  4. Transcriptome analysis of spring-responsive genes in medaka (Oryzias latipes) International conference

    Tomoya Nakayama, Tsuyoshi Shimmura, Ai Shinomiya, Yusuke Takehana, Takayuki Shimo, Takumi Senga, Toshiya Nishimura, Minoru Tanaka, Yasuhiro Kamei, Kiyoshi Naruse, Takashi Yoshimura

    Society for Research on Biological Rhythms  2018.5 

     More details

    Language:English   Presentation type:Poster presentation  

  5. メダカの春季適応機構におけるトランスクリプトーム解析

    中山 友哉

    第2回名古屋リズム研究会  2018.3 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

  6. 光情報伝達経路のダイナミックな可塑性が色覚の季節変化を制御する

    新村毅, 中山友哉, 四宮愛, 深町昌司, 八杉公基, 渡辺英治, 下貴行, 千賀琢未, 西村俊哉, 田中実, 亀井保博, 成瀬清, 吉村崇

    第24回日本時間生物学会学術大会  2017.10 

     More details

    Language:Japanese   Presentation type:Poster presentation  

  7. メダカにおける秋季適応機構

    中山友哉, 新村毅, 四宮愛, 下貴行, 千賀琢未, 西村俊哉, 田中実, 成瀬清, 吉村崇

    日本動物学会 第88回富山大会  2017.9 

     More details

    Language:Japanese   Presentation type:Poster presentation  

  8. Transcriptome analysis of autumn-resposive genes in medaka (Oryzias latipes) International conference

    Tomoya Nakayama, Tsuyoshi Shimmura, Ai Shinomiya, Takayuki Shimo, Takumi Senga, Toshiya Nishimura, Minoru Tanaka, Kiyoshi Naruse, Takashi Yoshimura

    International Symposium on Biological Rhythms “Towards understanding the molecular clockwork”  2016.11 

     More details

    Language:English   Presentation type:Poster presentation  

  9. メダカの秋季応答におけるトランスクリプトーム解析

    中山友哉, 新村毅, 四宮愛, 下貴行, 千賀琢未, 西村俊哉, 田中実, 成瀬清, 吉村崇

    第23回日本時間生物学会学術大会  2016.11 

     More details

    Language:Japanese   Presentation type:Poster presentation  

  10. Genome-wide expression analysis of genes in response to the autumn season in medaka (Oryzias latipes)

    2016.8 

     More details

    Language:Japanese   Presentation type:Poster presentation  

  11. Genome-wide expression analysis of genes in response to the autumn season in medaka (Oryzias latipes) International conference

    Tomoya Nakayama, Tsuyoshi Shimmura, Ai Shinomiya, Takayuki Shimo, Takumi Senga, Toshiya Nishimura, Minoru Tanaka, Kiyoshi Naruse, Takashi Yoshimura

    Evolution of seasonal timers  2016.4 

     More details

    Language:English   Presentation type:Poster presentation  

▼display all

KAKENHI (Grants-in-Aid for Scientific Research) 4

  1. 柔軟性と頑健性を備えた季節温度適応能の分子基盤の解明

    2021.10 - 2024.3

    国立研究開発法人 科学技術振興機構(JST)  ACT-X「環境とバイオテクノロジー」 

    中山 友哉

      More details

    Authorship:Principal investigator 

  2. 日長応答性を示す機能未知遺伝子の機能解明

    Grant number:20K15840  2020.4 - 2024.3

    日本学術振興会  科学研究費助成事業 若手研究  若手研究

    中山 友哉

  3. 脊椎動物の季節適応機構の解明とその応用

    Grant number:19H05643  2019.6 - 2024.3

    日本学術振興会  科学研究費助成事業 基盤研究(S)  基盤研究(S)

    吉村 崇, 大川 妙子, 中山 友哉, 大竹 愛, 中根 右介

      More details

    動物は日照時間や温度の変化を感知し、様々な生理機能や行動を変化させることで、環境の季節変動に巧みに適応している。カレンダーを持たない動物がこれを成し遂げる仕組みは謎である。本研究では洗練された季節適応能力を持ち、緯度によって遺伝的に異なる季節適応戦略を身に着けたメダカをモデルとして、動物の季節適応戦略を解明することを目的とした。まず、高緯度と低緯度に由来するメダカでは日長や温度を感知する仕組みが遺伝的に異なることを見出し、遺伝解析によって臨界日長、臨界温度を制御する量的形質遺伝子座(quantitative trait loci: QTL)を染色体上にマップした。その後、臨界日長、臨界温度が異なる10個の集団に由来する32個体について全ゲノム配列を解読し、QTL領域に存在する遺伝子群について、アミノ酸多型、フレームシフトの有無を明らかにした。さらに臨界温度を制御する候補遺伝子については、機能解析を行った。また、屋外の自然条件下で飼育したメダカから視床下部および下垂体を2年間にわたって採材し、RNA-Seq解析を行い、バイオインフォマティクスを駆使して年周変動する遺伝子をゲノムワイドに同定した。
    高緯度地域では、冬季にうつ病を発症する冬季うつ病が社会問題になっているが、その発症機構は不明である。そこでその発症機構を解明するとともに、これを制御する分子を開発することを目的とした。まず、夏の環境においたメダカに比較して、冬の環境においたメダカにおいて社会性が低下し、不安様行動が増加するという、冬季うつ病に類似した表現型を見出した。次に冬と夏のメダカの脳についてトランスクリプトーム解析、メタボローム解析を実施するとともに、既存薬を用いたスクリーニングを実施し、ケミカルゲノミクスのアプローチから、冬にうつ様行動を引き起こす情報伝達経路を明らかにした。

  4. メダカの秋季感知機構の解明

    Grant number:18J10936  2018.4 - 2020.3

    日本学術振興会  科学研究費助成事業 特別研究員奨励費  特別研究員奨励費

    中山 友哉

      More details

    近年の研究から季節繁殖の制御機構は明らかになってきたものの、行動の季節変化などの動物の季節適応機構の分子基盤はほとんど明らかにされていない。短日条件から長日条件へと移行した際の脳の時系列サンプルを用いて、DNAマイクロアレイによるトランスクリプトーム解析が実施されたところ、多数の転写産物やシグナル伝達経路が長日刺激によって変動していることが明らかとなった。その中には長日条件移行後にほかの転写産物に先駆けて誘導される機能未知な長鎖ノンコーディングRNAであるLDAIRが含まれていた。LDAIRノックアウト(KO)メダカを用いたトランスクリプトーム解析を行ったところ、LDAIRはストレス反応に関与するコルチコトロピン放出ホルモン受容体2(CRHR2)を含む近傍遺伝子の発現を制御していることが明らかとなった。LDAIR KOメダカを作製し、ストレス応答を評価したところ、長日条件で飼育された野生型のメダカはLDAIR KOメダカと比べてストレスに敏感であり、危険な状況を避けることが明らかとなった。以上の結果より、LDAIRによるCRHR2の日長制御は繁殖期における自己防衛行動を制御していることが明らかとなった。
    メダカは春に繁殖を開始し、秋に繁殖を停止する長日繁殖動物であるが、動物がどのように秋を感知し、繁殖を停止しているかについては依然として明らかとなっていない。これまでの長日条件から短日条件へと移行した際の脳の時系列サンプルを用いたDNAマイクロアレイ解析により短日刺激に応じて様々な遺伝子の発現が変動することが明らかとなっていた。また、新たにRNA-seq解析からメダカは短日刺激によりいくつかの遺伝子のスプライシングパターンを変化させていることも明らかとなった。