Updated on 2024/03/21

写真a

 
HINOHARA Kunihiko
 
Organization
Graduate School of Medicine Designated associate professor
Title
Designated associate professor

Degree 1

  1. Ph.D. ( 2009.3   Tokyo Medical and Dental University ) 

Research Interests 8

  1. tumor evolution

  2. synthetic lethality

  3. epigenetics

  4. tumor heterogeneity

  5. tumor evolution

  6. synthetic lethality

  7. epigenetics

  8. tumor heterogeneity

Research Areas 4

  1. Life Science / Molecular biology

  2. Life Science / Tumor biology

  3. Life Science / Molecular biology

  4. Life Science / Tumor biology

Research History 6

  1. Nagoya University   Department of Immunology, Graduate School of Medicine/Institute for Advanced Research   Designated associate professor

    2019.7

      More details

    Country:Japan

  2. Nagoya University   Institute for Advanced Research   Designated associate professor

    2019.7

  3. Dana-Farber Cancer Institute   Medical Oncology   Research fellow

    2014.4 - 2019.6

  4. The University of Tokyo   Division of Molecular Therapy, Institute for Medical Science   Designated assistant professor

    2012.4 - 2014.3

      More details

    Country:Japan

  5. The University of Tokyo   Division of Systems Biomedical Technology, Institute for Medical Science,   Designated assistant professor

    2010.4 - 2012.3

      More details

    Country:Japan

  6. The University of Tokyo   Division of Systems Biomedical Technology, Institute for Medical Science,   Post-doctoral fellow

    2009.4 - 2010.3

      More details

    Country:Japan

▼display all

Education 2

  1. Tokyo Medical and Dental University   Biomedical Science PhD Program

    2006.4 - 2009.3

      More details

    Country: Japan

  2. Tokyo University of Science   Faculty of Science   Department of Applied Chemistry

    - 2004.3

      More details

    Country: Japan

 

Papers 28

  1. Genetic background variation impacts microglial heterogeneity and disease progression in amyotrophic lateral sclerosis model mice.

    Komine O, Ohnuma S, Hinohara K, Hara Y, Shimada M, Akashi T, Watanabe S, Sobue A, Kawade N, Ogi T, Yamanaka K

    iScience   Vol. 27 ( 2 ) page: 108872   2024.2

     More details

    Language:English   Publisher:iScience  

    Recent single-cell analyses have revealed the complexity of microglial heterogeneity in brain development, aging, and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). Disease-associated microglia (DAMs) have been identified in ALS mice model, but their role in ALS pathology remains unclear. The effect of genetic background variations on microglial heterogeneity and functions remains unknown. Herein, we established and analyzed two mice models of ALS with distinct genetic backgrounds of C57BL/6 and BALB/c. We observed that the change in genetic background from C57BL/6 to BALB/c affected microglial heterogeneity and ALS pathology and its progression, likely due to the defective induction of neurotrophic factor-secreting DAMs and impaired microglial survival. Single-cell analyses of ALS mice revealed new markers for each microglial subtype and a possible association between microglial heterogeneity and systemic immune environments. Thus, we highlighted the role of microglia in ALS pathology and importance of genetic background variations in modulating microglial functions.

    DOI: 10.1016/j.isci.2024.108872

    Scopus

    PubMed

  2. BRD9 determines the cell fate of hematopoietic stem cells by regulating chromatin state

    Xiao, MR; Kondo, S; Nomura, M; Kato, S; Nishimura, K; Zang, WJ; Zhang, YF; Akashi, T; Viny, A; Shigehiro, T; Ikawa, T; Yamazaki, H; Fukumoto, M; Tanaka, A; Hayashi, Y; Koike, Y; Aoyama, Y; Ito, H; Nishikawa, H; Kitamura, T; Kanai, A; Yokoyama, A; Fujiwara, T; Goyama, S; Noguchi, H; Lee, SC; Toyoda, A; Hinohara, K; Abdel-Wahab, O; Inoue, D

    NATURE COMMUNICATIONS   Vol. 14 ( 1 ) page: 8372   2023.12

     More details

    Language:English   Publisher:Nature Communications  

    ATP-dependent chromatin remodeling SWI/SNF complexes exist in three subcomplexes: canonical BAF (cBAF), polybromo BAF (PBAF), and a newly described non-canonical BAF (ncBAF). While cBAF and PBAF regulate fates of multiple cell types, roles for ncBAF in hematopoietic stem cells (HSCs) have not been investigated. Motivated by recent discovery of disrupted expression of BRD9, an essential component of ncBAF, in multiple cancers, including clonal hematopoietic disorders, we evaluate here the role of BRD9 in normal and malignant HSCs. BRD9 loss enhances chromatin accessibility, promoting myeloid lineage skewing while impairing B cell development. BRD9 significantly colocalizes with CTCF, whose chromatin recruitment is augmented by BRD9 loss, leading to altered chromatin state and expression of myeloid-related genes within intact topologically associating domains. These data uncover ncBAF as critical for cell fate specification in HSCs via three-dimensional regulation of gene expression and illuminate roles for ncBAF in normal and malignant hematopoiesis.

    DOI: 10.1038/s41467-023-44081-6

    Web of Science

    Scopus

    PubMed

  3. The cancer epigenome: Non-cell autonomous player in tumor immunity

    Kato, S; Maeda, Y; Sugiyama, D; Watanabe, K; Nishikawa, H; Hinohara, K

    CANCER SCIENCE   Vol. 114 ( 3 ) page: 730 - 740   2023.3

     More details

    Language:English   Publisher:Cancer Science  

    Dysregulation of the tumor-intrinsic epigenetic circuit is a key driver event for the development of cancer. Accumulating evidence suggests that epigenetic and/or genetic drivers stimulate intrinsic oncogenic pathways as well as extrinsic factors that modulate the immune system. These modulations indeed shape the tumor microenvironment (TME), allowing pro-oncogenic factors to become oncogenic, thereby contributing to cancer development and progression. Here we review the epigenetic dysregulation arising in cancer cells that disseminates throughout the TME and beyond. Recent CRISPR screening has elucidated key epigenetic drivers that play important roles in the proliferation of cancer cells (intrinsic) and inhibition of antitumor immunity (extrinsic), which lead to the development and progression of cancer. These epigenetic players can serve as promising targets for cancer therapy as a dual (two-in-one)-targeted approach. Considering the interplay between cancer and the immune system as a key determinant of immunotherapy, we discuss a novel lineage-tracing technology that enables longitudinal monitoring of cancer and immune phenotypic heterogeneity and fate paths during cancer development, progression, and therapeutic interventions.

    DOI: 10.1111/cas.15681

    Web of Science

    Scopus

    PubMed

  4. Significance of regulatory T cells in cancer immunology and immunotherapy

    Sugiyama, D; Hinohara, K; Nishikawa, H

    EXPERIMENTAL DERMATOLOGY   Vol. 32 ( 3 ) page: 256 - 263   2023.3

     More details

    Language:English   Publisher:Experimental Dermatology  

    Immunosuppression in the tumour microenvironment (TME) attenuates antitumor immunity, consequently hindering protective immunosurveillance and preventing effective antitumor immunity induced by cancer immunotherapy. Multiple mechanisms including immune checkpoint molecules, such as CTLA-4, PD-1, and LAG-3, and immunosuppressive cells are involved in the immunosuppression in the TME. Regulatory T (Treg) cells, a population of immunosuppressive cells, play an important role in inhibiting antitumor immunity. Therefore, Treg cells in the TME correlate with an unfavourable prognosis in various cancer types. Thus, Treg cell is considered to become a promising target for cancer immunotherapy. Elucidating Treg cell functions in cancer patients is therefore crucial for developing optimal Treg cell-targeted immunotherapy. Here, we describe Treg cell functions and phenotypes in the TME from the perspective of Treg cell-targeted immunotherapy.

    DOI: 10.1111/exd.14721

    Web of Science

    Scopus

    PubMed

  5. Cancer evolution and vulnerability

    Hinohara, K

    CANCER SCIENCE   Vol. 114   page: 1519 - 1519   2023.2

     More details

  6. Identification of therapeutic targets exhibiting synthetic lethality with IDH1 inhibitor using the CRISPR/Cas9 system

    Maeda, S; Aoki, K; Hinohara, K; Yamaguchi, J; Ohka, F; Natsume, A; Saito, R

    CANCER SCIENCE   Vol. 114   page: 1460 - 1460   2023.2

     More details

  7. CRISPR screens reveal genetic determinants of PARP inhibitor sensitivity and resistance in prostate cancer

    Tsujino, T; Takai, T; Hinohara, K; Gui, F; Tsutsumi, T; Bai, X; Miao, CK; Feng, C; Gui, B; Sztupinszki, Z; Simoneau, A; Xie, N; Fazli, L; Dong, XS; Azuma, H; Choudhury, AD; Mouw, KW; Szallasi, Z; Zou, L; Kibel, AS; Jia, L

    NATURE COMMUNICATIONS   Vol. 14 ( 1 ) page: 252   2023.1

     More details

    Language:English   Publisher:Nature Communications  

    Prostate cancer harboring BRCA1/2 mutations are often exceptionally sensitive to PARP inhibitors. However, genomic alterations in other DNA damage response genes have not been consistently predictive of clinical response to PARP inhibition. Here, we perform genome-wide CRISPR-Cas9 knockout screens in BRCA1/2-proficient prostate cancer cells and identify previously unknown genes whose loss has a profound impact on PARP inhibitor response. Specifically, MMS22L deletion, frequently observed (up to 14%) in prostate cancer, renders cells hypersensitive to PARP inhibitors by disrupting RAD51 loading required for homologous recombination repair, although this response is TP53-dependent. Unexpectedly, loss of CHEK2 confers resistance rather than sensitivity to PARP inhibition through increased expression of BRCA2, a target of CHEK2-TP53-E2F7-mediated transcriptional repression. Combined PARP and ATR inhibition overcomes PARP inhibitor resistance caused by CHEK2 loss. Our findings may inform the use of PARP inhibitors beyond BRCA1/2-deficient tumors and support reevaluation of current biomarkers for PARP inhibition in prostate cancer.

    DOI: 10.1038/s41467-023-35880-y

    Web of Science

    Scopus

    PubMed

  8. Cancer Phenotypic Plasticity and Therapeutic Resistance

    Hinohara K.

    Gan to kagaku ryoho. Cancer & chemotherapy   Vol. 50 ( 1 ) page: 7 - 12   2023.1

     More details

    Publisher:Gan to kagaku ryoho. Cancer & chemotherapy  

    Cancer genomic medicine or cancer immunotherapy has led to a paradigm shift in cancer treatment. When the first treatment does not work, patients may be able to have second-line therapy or additional rounds of treatment after that, however, most advanced cancers eventually acquire resistance to those treatments. To stop this perpetual cycle, a deeper understanding of cancer evolutionary trajectories during the acquisition of therapeutic resistance is needed. We and others have recently provided evidence that non-genetic drug resistance is due to dormant persister cells, yet little is known about how persister cancer cells promote tumor relapse. To study the non-genetic evolution of cancer cells, a single-cell analysis will enable us to trace the phenotypic plasticity of cancer cells. As persister cancer cells are considered to act as a reservoir for drug-resistant mutants, we may be able to overcome cancer relapse or metastasis if we can better understand their evolutionary trajectories.

    Scopus

  9. [Cancer Phenotypic Plasticity and Therapeutic Resistance].

    Hinohara K

    Gan to kagaku ryoho. Cancer & chemotherapy   Vol. 50 ( 1 ) page: 7 - 12   2023.1

     More details

    Language:Japanese  

    PubMed

  10. IDENTIFICATION OF A NOVEL THERAPEUTIC TARGET THAT IS SYNTHETICALLY LETHAL WITH MUTANT IDH INHIBITOR IN GLIOMA USING THE CRISPR/CAS9 GENOME EDITING TECHNOLOGY

    Maeda, S; Aoki, K; Hinohara, K; Yamaguchi, J; Ohka, F; Motomura, K; Kibe, Y; Natsume, A; Saito, R

    NEURO-ONCOLOGY   Vol. 24   page: 107 - 107   2022.11

     More details

  11. A bifurcation concept for B-lymphoid/plasmacytoid dendritic cells with largely fluctuating transcriptome dynamics

    Nagaharu, K; Kojima, Y; Hirose, H; Minoura, K; Hinohara, K; Minami, H; Kageyama, Y; Sugimoto, Y; Masuya, M; Nii, S; Seki, M; Suzuki, Y; Tawara, I; Shimamura, T; Katayama, N; Nishikawa, H; Ohishi, K

    CELL REPORTS   Vol. 40 ( 9 ) page: 111260   2022.8

     More details

    Language:English   Publisher:Cell Reports  

    Hematopoiesis was considered a hierarchical stepwise process but was revised to a continuous process following single-cell RNA sequencing. However, the uncertainty or fluctuation of single-cell transcriptome dynamics during differentiation was not considered, and the dendritic cell (DC) pathway in the lymphoid context remains unclear. Here, we identify human B-plasmacytoid DC (pDC) bifurcation as large fluctuating transcriptome dynamics in the putative B/NK progenitor region by dry and wet methods. By converting splicing kinetics into diffusion dynamics in a deep generative model, our original computational methodology reveals strong fluctuation at B/pDC bifurcation in IL-7Rα+ regions, and LFA-1 fluctuates positively in the pDC direction at the bifurcation. These expectancies are validated by the presence of B/pDC progenitors in the IL-7Rα+ fraction and preferential expression of LFA-1 in pDC-biased progenitors with a niche-like culture system. We provide a model of fluctuation-based differentiation, which reconciles continuous and discrete models and is applicable to other developmental systems.

    DOI: 10.1016/j.celrep.2022.111260

    Web of Science

    Scopus

    PubMed

  12. Druggable dependency on histone demethylase LSD1 in undifferentiated melanoma

    Kato, S; Hinohara, K

    CANCER SCIENCE   Vol. 113   2022.2

     More details

  13. Therapeutic Utility of ATM Inhibitor to Chemoradiation-Resistant Urothelial Carcinoma with Aberrant BUBR1 Expression

    Komura, K; Inamoto, T; Hinohara, K; Taniguchi, K; Azuma, H

    CANCER SCIENCE   Vol. 113   page: 1290 - 1290   2022.2

     More details

  14. Immune responses against immunogenic neoantigens enable to break the resistance to immune checkpoint inhibitors

    Sugiyama, D; Muramatsu, T; Noguchi, T; Kato, S; Hinohara, K; Nishikawa, H

    CANCER SCIENCE   Vol. 113   2022.2

     More details

  15. Epigenetic regulation of intratumor heterogeneity

    Hinohara, K

    CANCER SCIENCE   Vol. 113   page: 1216 - 1216   2022.2

     More details

  16. Cancer immunotherapy with PI3K and PD-1 dual-blockade via optimal modulation of T cell activation signal

    Isoyama, S; Mori, S; Sugiyama, D; Kojima, Y; Tada, Y; Shitara, K; Hinohara, K; Dan, S; Nishikawa, H

    JOURNAL FOR IMMUNOTHERAPY OF CANCER   Vol. 9 ( 8 )   2021

     More details

    Language:English   Publisher:Journal for ImmunoTherapy of Cancer  

    Background Immune checkpoint blockade (ICB) induces durable clinical responses in patients with various types of cancer. However, its limited clinical efficacy requires the development of better approaches. In addition to immune checkpoint molecules, tumor-infiltrating immunosuppressive cells including regulatory T cells (Tregs) play crucial roles in the immune suppressive tumor microenvironment. While phosphatidylinositol 3-kinase (PI3K) inhibition as a Treg-targeted treatment has been implicated in animal models, its effects on human Tregs and on the potential impairment of effector T cells are required to be clarified for successful cancer immunotherapy. Methods The impact of a selective-PI3K inhibitor ZSTK474 with or without anti-programmed cell death 1 (PD-1) monoclonal antibody on Tregs and CD8 + T cells were examined with in vivo animal models and in vitro experiments with antigen specific and non-specific fashions using peripheral blood from healthy individuals and cancer patients. Phenotypes and functions of Tregs and effector T cells were examined with comprehensive gene and protein expression assays. Results Improved antitumor effects by the PI3K inhibitor in combination with ICB, particularly PD-1 blockade, were observed in mice and humans. Although administration of the PI3K inhibitor at higher doses impaired activation of CD8 + T cells as well as Tregs, the optimization (doses and timing) of this combination treatment selectively decreased intratumoral Tregs, resulting in increased tumor antigen-specific CD8 + T cells in the treated mice. Moreover, on the administration of the PI3K inhibitor with the optimal dose for selectively deleting Tregs, PI3K signaling was inhibited not only in Tregs but also in activated CD8 + T cells, leading to the enhanced generation of tumor antigen-specific memory CD8 + T cells which contributed to durable antitumor immunity. These opposing outcomes between Tregs and CD8 + T cells were attributed to the high degree of dependence on T cell signaling in the former but not in the latter. Conclusions PI3K inhibitor in the combination with ICB with the optimized protocol fine-tuned T cell activation signaling for antitumor immunity via decreasing Tregs and optimizing memory CD8 + T cell responses, illustrating a promising combination therapy.

    DOI: 10.1136/jitc-2020-002279

    Web of Science

    Scopus

    PubMed

  17. Synthetic Lethal and Resistance Interactions with BET Bromodomain Inhibitors in Triple-Negative Breast Cancer.

    Molecular cell   Vol. 78 ( 6 ) page: 1096 - 1113.e8   2020.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.molcel.2020.04.027

    PubMed

  18. Perturbed myoepithelial cell differentiation in BRCA mutation carriers and in ductal carcinoma in situ

    Ding Lina, Su Ying, Fassl Anne, Hinohara Kunihiko, Qiu Xintao, Harper Nicholas W, Huh Sung Jin, Bloushtain-Qimron Noga, Jovanovic Bojana, Ekram Muhammad, Zi Xiaoyuan, Hines William C, Aleckovic Masa, del Alcazar Carlos Gil, Caulfield Ryan J, Bonal Dennis M, Quang-De Nguyen, Merino Vanessa F, Choudhury Sibgat, Ethington Gabrielle, Panos Laura, Grant Michael, Herlihy William, Au Alfred, Rosson Gedge D, Argani Pedram, Richardson Andrea L, Dillon Deborah, Allred D. Craig, Babski Kirsten, Kim

    NATURE COMMUNICATIONS   Vol. 10 ( 1 ) page: 4182   2019.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/s41467-019-12125-5

    Web of Science

    Scopus

    PubMed

  19. MRTF-A regulates proliferation and survival properties of pro-atherogenic macrophages.

    An J, Naruse TK, Hinohara K, Soejima Y, Sawabe M, Nakagawa Y, Kuwahara K, Kimura A

    Journal of molecular and cellular cardiology   Vol. 133   page: 26-35 - 35   2019.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    We have previously reported that promoter polymorphism of myocardin-related transcription factor A (MRTF-A) is associated with coronary atherosclerosis. However, the contribution of MRTF-A to the development of atherosclerosis remains unknown. Macrophages are known to be important mediators of atherosclerosis. It has been demonstrated that local proliferation and survival of macrophages are atherogenic. In this study, we found that MRTF-A was highly expressed in lesional macrophages in human carotid atherosclerotic plaque. We then investigated the role of macrophagic MRTF-A in the pathogenesis of atherosclerosis. ApoE null MRTF-A transgenic mice (ApoE−/−/MRTF-Atg/+), in which human MRTF-A was specifically overexpressed in monocytes/macrophages, were established and fed with normal diet to examine the progression of atherosclerosis. We found that ApoE−/−/MRTF-Atg/+ aggravated atherosclerosis and lesional macrophages were more prominently accumulated in the aortic sinus of ApoE−/−/MRTF-Atg/+ than in that of ApoE−/− littermates. We also found that MRTF-A promoted proliferation and mitigated apoptosis of macrophages both in vitro and in vivo, and down regulated the expression of cyclin-dependent kinase inhibitors. From these findings, we conclude that MRTF-A modulates functional properties of pro-atherogenic macrophages. Our study may play a valuable role in understanding the pathological role of macrophagic MRTF-A in the progression of atherosclerosis.

    DOI: 10.1016/j.yjmcc.2019.05.015

    Scopus

    PubMed

  20. Intratumoral Heterogeneity: More Than Just Mutations.

    Hinohara K, Polyak K

    Trends in cell biology   Vol. 29 ( 7 ) page: 569-579 - 579   2019.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.tcb.2019.03.003

    PubMed

  21. MUC1-C Integrates Chromatin Remodeling and PARP1 Activity in the DNA Damage Response of Triple-Negative Breast Cancer Cells.

    Yamamoto M, Jin C, Hata T, Yasumizu Y, Zhang Y, Hong D, Maeda T, Miyo M, Hiraki M, Suzuki Y, Hinohara K, Rajabi H, Kufe D

    Cancer research   Vol. 79 ( 8 ) page: 2031-2041 - 2041   2019.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER ASSOC CANCER RESEARCH  

    The oncogenic MUC1-C protein is overexpressed in triple-negative breast cancer (TNBC) cells and contributes to their epigenetic reprogramming and chemoresistance. Here we show that targeting MUC1-C genetically or pharmacologically with the GO-203 inhibitor, which blocks MUC1-C nuclear localization, induced DNA double-strand breaks and potentiated cisplatin (CDDP)-induced DNA damage and death. MUC1-C regulated nuclear localization of the polycomb group proteins BMI1 and EZH2, which formed complexes with PARP1 during the DNA damage response. Targeting MUC1-C downregulated BMI1-induced H2A ubiquitylation, EZH2-driven H3K27 trimethylation, and activation of PARP1. As a result, treatment with GO-203 synergistically sensitized both mutant and wild-type BRCA1 TNBC cells to the PARP inhibitor olaparib. These findings uncover a role for MUC1-C in the regulation of PARP1 and identify a therapeutic strategy for enhancing the effectiveness of PARP inhibitors against TNBC.

    DOI: 10.1158/0008-5472.CAN-18-3259

    Web of Science

    PubMed

  22. Deletion of Cdkn1b in ACI rats leads to increased proliferation and pregnancy-associated changes in the mammary gland due to perturbed systemic endocrine environment.

    Ding L, Shunkwiler LB, Harper NW, Zhao Y, Hinohara K, Huh SJ, Ekram MB, Guz J, Kern MJ, Awgulewitsch A, Shull JD, Smits BMG, Polyak K

    PLoS genetics   Vol. 15 ( 3 ) page: e1008002   2019.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1371/journal.pgen.1008002

    PubMed

  23. KDM5 Histone Demethylase Activity Links Cellular Transcriptomic Heterogeneity to Therapeutic Resistance.

    Cancer cell   Vol. 35 ( 2 ) page: 330-332 - 332   2019.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.ccell.2019.01.012

    PubMed

  24. KDM5 Histone Demethylase Activity Links Cellular Transcriptomic Heterogeneity to Therapeutic Resistance.

    Hinohara K, Wu HJ, Vigneau S, McDonald TO, Igarashi KJ, Yamamoto KN, Madsen T, Fassl A, Egri SB, Papanastasiou M, Ding L, Peluffo G, Cohen O, Kales SC, Lal-Nag M, Rai G, Maloney DJ, Jadhav A, Simeonov A, Wagle N, Brown M, Meissner A, Sicinski P, Jaffe JD, Jeselsohn R, Gimelbrant AA, Michor F, Polyak K

    Cancer cell   Vol. 34 ( 6 ) page: 939-953.e9 - 953.e9   2018.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.ccell.2018.10.014

    PubMed

  25. Genetic and transcriptional evolution alters cancer cell line drug response.

    Ben-David U, Siranosian B, Ha G, Tang H, Oren Y, Hinohara K, Strathdee CA, Dempster J, Lyons NJ, Burns R, Nag A, Kugener G, Cimini B, Tsvetkov P, Maruvka YE, O'Rourke R, Garrity A, Tubelli AA, Bandopadhayay P, Tsherniak A, Vazquez F, Wong B, Birger C, Ghandi M, Thorner AR, Bittker JA, Meyerson M, Getz G, Beroukhim R, Golub TR

    Nature   Vol. 560 ( 7718 ) page: 325-330 - 330   2018.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/s41586-018-0409-3

    PubMed

  26. ATR inhibition controls aggressive prostate tumors deficient in Y-linked histone demethylase KDM5D International journal

    Komura Kazumasa, Yoshikawa Yuki, Shimamura Teppei, Chakraborty Goutam, Gerke Travis A, Hinohara Kunihiko, Chadalavada Kalyani, Jeong Seong Ho, Armenia Joshua, Du Shin-Yi, Mazzu Ying Z, Taniguchi Kohei, Ibuki Naokazu, Meyer Clifford A, Nanjangud Gouri J, Inamoto Teruo, Lee Gwo-Shu Mary, Mucci Lorelei A, Azuma Haruhito, Sweeney Christopher J, Kantoff Philip W

    JOURNAL OF CLINICAL INVESTIGATION   Vol. 128 ( 7 ) page: 2979 - 2995   2018.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Epigenetic modifications control cancer development and clonal evolution in various cancer types. Here, we show that loss of the male-specific histone demethylase lysine-specific demethylase 5D (KDM5D) encoded on the Y chromosome epigenetically modifies histone methylation marks and alters gene expression, resulting in aggressive prostate cancer. Fluorescent in situ hybridization demonstrated that segmental or total deletion of the Y chromosome in prostate cancer cells is one of the causes of decreased KDM5D mRNA expression. The result of ChIP-sequencing analysis revealed that KDM5D preferably binds to promoter regions with coenrichment of the motifs of crucial transcription factors that regulate the cell cycle. Loss of KDM5D expression with dysregulated H3K4me3 transcriptional marks was associated with acceleration of the cell cycle and mitotic entry, leading to increased DNA-replication stress. Analysis of multiple clinical data sets reproducibly showed that loss of expression of KDM5D confers a poorer prognosis. Notably, we also found stress-induced DNA damage on the serine/threonine protein kinase ATR with loss of KDM5D. In KDM5D-deficient cells, blocking ATR activity with an ATR inhibitor enhanced DNA damage, which led to subsequent apoptosis. These data start to elucidate the biological characteristics resulting from loss of KDM5D and also provide clues for a potential novel therapeutic approach for this subset of aggressive prostate cancer.

    DOI: 10.1172/JCI96769

    Web of Science

    Scopus

    PubMed

  27. ER Stress Signaling Promotes the Survival of Cancer "Persister Cells" Tolerant to EGFR Tyrosine Kinase Inhibitors International journal

    Terai Hideki, Kitajima Shunsuke, Potter Danielle S, Matsui Yusuke, Quiceno Laura Gutierrez, Chen Ting, Kim Tae-jung, Rusan Maria, Thai Tran C, Piccioni Federica, Donovan Katherine A, Kwiatkowski Nicholas, Hinohara Kunihiko, Wei Guo, Gray Nathanael S, Fischer Eric S, Wong Kwok-Kin, Shimamura Teppei, Letai Anthony, Hammerman Peter S, Barbie David A

    CANCER RESEARCH   Vol. 78 ( 4 ) page: 1044 - 1057   2018.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    An increasingly recognized component of resistance to tyrosine kinase inhibitors (TKI) involves persistence of a drug-tolerant subpopulation of cancer cells that survive despite effective eradication of the majority of the cell population. Multiple groups have demonstrated that these drug-tolerant persister cells undergo transcriptional adaptation via an epigenetic state change that promotes cell survival. Because this mode of TKI drug tolerance appears to involve transcriptional addiction to specific genes and pathways, we hypothesized that systematic functional screening of EGFR TKI/transcriptional inhibitor combination therapy would yield important mechanistic insights and alternative drug escape pathways. We therefore performed a genome-wide CRISPR/Cas9 enhancer/suppressor screen in EGFR-dependent lung cancer PC9 cells treated with erlotinib + THZ1 (CDK7/12 inhibitor) combination therapy, a combination previously shown to suppress drug-tolerant cells in this setting. As expected, suppression of multiple genes associated with transcriptional complexes (EP300, CREBBP, and MED1) enhanced erlotinib/THZ1 synergy. Unexpectedly, we uncovered nearly every component of the recently described ufmylation pathway in the synergy suppressor group. Loss of ufmylation did not affect canonical downstream EGFR signaling. Instead, absence of this pathway triggered a protective unfolded protein response associated with STING upregulation, promoting protumorigenic inflammatory signaling but also unique dependence on Bcl-xL. These data reveal that dysregulation of ufmylation and ER stress comprise a previously unrecognized TKI drug tolerance pathway that engages survival signaling, with potentially important therapeutic implications.Significance: These findings reveal a novel function of the recently described ufmylation pathway, an ER stress survival signaling in drug-tolerant persister cells, which has important biological and therapeutic implications. Cancer Res; 78(4); 1044-57. ©2017 AACR.

    DOI: 10.1158/0008-5472.CAN-17-1904

    Web of Science

    Scopus

    PubMed

  28. MUC1-C Induces PD-L1 and Immune Evasion in Triple-Negative Breast Cancer.

    Maeda T, Hiraki M, Jin C, Rajabi H, Tagde A, Alam M, Bouillez A, Hu X, Suzuki Y, Miyo M, Hata T, Hinohara K, Kufe D

    Cancer research   Vol. 78 ( 1 ) page: 205-215 - 215   2018.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER ASSOC CANCER RESEARCH  

    The immune checkpoint ligand PD-L1 and the transmembrane mucin MUC1 are upregulated in triple-negative breast cancer (TNBC), where they contribute to its aggressive pathogenesis. Here, we report that genetic or pharmacological targeting of the oncogenic MUC1 subunit MUC1-C is sufficient to suppress PD-L1 expression in TNBC cells. Mechanistic investigations showed that MUC1-C acted to elevate PD-L1 transcription by recruitment of MYC and NF-kappa B p65 to the PD-L1 promoter. In an immunocompetent model of TNBC in which Eo771/MUC1-C cells were engrafted into MUC1 transgenic mice, we showed that targeting MUC1-C associated with PD-L1 suppression, increases in tumor- infiltrating CD8(+) T cells and tumor cell killing. MUC1 expressionin TNBCs also correlated inversely with CD8, CD69, and GZMB, and downregulation of these markers associated with decreased survival. Taken together, our findings show how MUC1 contributes to immune escape in TNBC, and they offer a rationale to target MUC1-C as a novel immunotherapeutic approach for TNBC treatment. (C) 2017 AACR.

    DOI: 10.1158/0008-5472.CAN-17-1636

    Web of Science

    PubMed

▼display all

Research Project for Joint Research, Competitive Funding, etc. 1

  1. Mechanism for synthetic lethality in SWI/SNF-deficient breast cancers

    2019.8 - 2021.3

    Project for Cancer Research and Therapeutic Evolution (P-CREATE) 

      More details

    Grant type:Competitive

KAKENHI (Grants-in-Aid for Scientific Research) 8

  1. がん薬剤耐性化におけるパーシスター細胞の運命決定機構

    Grant number:23KK0144  2023.9 - 2026.3

    科学研究費助成事業  国際共同研究加速基金(海外連携研究)

    日野原 邦彦, 加藤 真一郎, 山口 純矢

      More details

    Authorship:Principal investigator 

    Grant amount:\21060000 ( Direct Cost: \16200000 、 Indirect Cost:\4860000 )

    本研究課題では、がんが薬剤投与という環境変動に対してどのような適応進化プロセスを経るのかに関して、特にエピゲノムを起点とした細胞運命決定機構に着目し、パーシスター細胞がどのように生み出され、残存し、その後の再増殖へと至るのかという学術的問いに迫る。本国際共同研究の推進により、がん薬剤耐性化の源泉であるパーシスター細胞の運命決定プログラムを司る分子機構を解明し、パーシスター細胞を標的とした革新的がん治療法の開発基盤となる基礎研究成果を創出する。

  2. がん免疫療法における耐性化機序と進化軌跡の解明

    Grant number:22K18381  2022.6 - 2025.3

    科学研究費助成事業  挑戦的研究(開拓)

    日野原 邦彦

      More details

    Authorship:Principal investigator 

    Grant amount:\26000000 ( Direct Cost: \20000000 、 Indirect Cost:\6000000 )

    本研究では、1つの細胞を転写ランドスケープレベルで追跡可能な発現型バーコード技術を利用し、ACTに対する固形がんの耐性化過程を追跡する。ACT過程における個々のがん細胞の運命を発現型バーコード情報から1細胞レベルで空間的に明らかにし、ACTに対する耐性進化軌跡の時空間的な理解を図る。多様性を示す個々のがん細胞の免疫応答に関する機能的な境界を高解像度で解明することに挑戦し、ACT耐性細胞の発生起源とその維持に関わる制御機構を突き止めることを目指す。
    本年度は、がん免疫療法に対する耐性進化軌跡の解明に向けたがん細胞株移植モデルのバーコード化を行なった。複数のマウスがん細胞株を対象とし、レンチウイルスベースの発現型バーコードライブラリを低タイターにて感染させ、1細胞ごとに異なるバーコードを保持するがん細胞株を樹立した。これらのバルク細胞集団からDNAを抽出してバーコード領域をPCR増幅し、そのサンプルを次世代シーケンスにて解析したところ、それぞれの細胞株が数百から数千のバーコードによりラベルできていることがわかった。これは多様ながん細胞を追跡する上で十分な数のバーコードではあるものの、マウス移植後に生着するクローンがどの程度存在するかは未知である。そのため、これらの細胞株をマウス移植して生着させた後に得られた腫瘍組織のバーコード多様性を今後検証し、十分な数のがん細胞をin vivoで追跡し得るモデル細胞株の選別を行う必要がある。一方で、来年度以降に実施予定である1細胞データの取得を見据え、個々の細胞における発現バーコード情報を解析するパイプラインの準備も進めた。既存のpublicデータを用いてパイプラインの検証を進め、1細胞トランスクリプトームデータと共に取得される発現バーコード情報を解析するパイプラインを構築した。実際のデータ取得は10xChromiumにて実施予定であるため、これらのバーコード情報をCell Ranger上にてvisualizeする方法論も併せて開発した。
    がん免疫療法に対する耐性化実験モデルとして、養子免疫療法や免疫チェックポイント阻害剤投与のモデルとなる複数のマウスがん細胞株を発現バーコード化し、十分量のクローンを追跡し得る細胞株モデルの構築を終えた。これらのバーコードをバルク細胞のDNAからPCR増幅して次世代シーケンスに供し、そのバルクデータを解析する方法論も構築した。さらに来年度以降に実施予定である1細胞RNA-seq解析を見据え、個々の細胞に発現するバーコード情報を1細胞レベルでトランスクリプトーム情報と共に取得するためのパイプラインも構築した。このように、本年度は当初の計画通りバーコード化細胞株モデルの樹立とバーコード解析系の確立を終えることができた。現在これらの細胞株のin vivoにおける生着率を検証するためのマウス移植実験の準備を進めており、来年度以降の研究の実施に影響する大きな問題等も発生していない。以上のように、当初の研究計画はおおむね順調に進展している。
    がん免疫療法に対する薬剤耐性進化軌跡を1細胞の遺伝子発現レベルで捉えるため、まずはモデルとなる細胞株の選別を進めていく。In vitroでは十分量のクローンを追跡可能ながん細胞株を複数樹立することができたが、マウス体内(in vivo)では移植直後から生着できるクローンと生着できないクローンに別れることが予想される。大幅にクローン数が減ると追跡実験の意味をなさなくなってしまうため、相当数のクローンが生着する細胞株を選別する必要がある。また、治療過程における個々のクローン運命を追跡する上ではがん細胞が長期に渡りマウス体内に留まる必要があるため、来年度はじめに実施する生着率実験は30-60日程度の期間を設けて時系列にサンプル採取を行う予定である。また少なくとも数百程度のクローン追跡を可能とするために必要な移植細胞数や移植実験系(PBS or Matrigelなど)についても併せて条件の最適化を進める。また、1細胞トランスクリプトームデータからバーコード情報を得て解析するためのパイプラインは作成を終えたが、実際にそれぞれのタイムポイントで得られる数千細胞のバーコードデータからどのように細胞運命をつなげて解析するかについても具体的な解析系を構築していく必要がある。この点についても過去論文を参考にしつつ来年度以降で順次解析系の構築を進めていくことを予定している。現在はマウス移植実験の準備を進めているが、来年度はじめからがん免疫療法に対する耐性進化軌跡の追跡に適したモデル細胞株を選別し、その後に1細胞解析へと歩を進める予定である。

  3. エピゲノムダイナミクスに基づくがん多様性の新たな理解

    Grant number:20KK0184  2020.10 - 2024.3

    科学研究費助成事業  国際共同研究加速基金(国際共同研究強化(B))

    日野原 邦彦, 小嶋 泰弘, 加藤 真一郎

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\18720000 ( Direct Cost: \14400000 、 Indirect Cost:\4320000 )

    本研究課題では、クロマチン制御因子SWI/SNF複合体の遺伝子変異によって生じるエピジェネティクス制御機構の破綻が、発がん、治療耐性、再発といった悪性形質獲得に至る過程においてどのようにがん細胞の多様性を造出し、悪性化進展基盤を成すのかを1細胞エピゲノム解析技術によって解き明かす。1細胞エピゲノム情報を取り入れた統合解析を推進することにより、遺伝的要因とは異なるエピゲノム制御の側面からがん多様性の新たな理解を試み、エピゲノムのダイナミクスから生み出されるがんの不均一性を制御する革新的方法論の創出を目指す。
    本年度は、ARID2欠失変異を持つ抗がん剤耐性乳がん細胞株に特徴的なエピゲノム状態の理解を目的としてChIP-seq解析を進め、ARID2レスキューによりARID2の結合が回復するゲノム領域ではARID1Aの結合が減弱する傾向にあることがわかった。ARID2のレスキュー前後のサンプルを用いてRapid immunoprecipitation mass spectrometry of endogenous protein (RIME)解析を行なったところ、野生型ARID2導入によるPBAF複合体の再形成を確認したことから、PBAF複合体のゲノム結合が再開した結果ARID1Aを含むBAF複合体の結合がコンペティションにより減少した可能性が考えられた。並行して海外共同研究者の技術支援のもと実施した1細胞ATAC-seqの解析を進めたところ、ARID2レスキューによりオープンとなるクロマチン領域にRUNX3モチーフの濃縮を認めた。RUNX3は上記のRIME解析においてもARID2の結合パートナーの一つとして同定されており、ARID2-RUNX3はCDK4などと共にCell cycle decision complexを形成することが知られている。1細胞RNA-seqの解析からは、ARID2レスキュー後に細胞老化関連分泌形質に関わる多くの因子が発現上昇することがわかった。以上より、ARID2変異体細胞は細胞周期制御の変化により老化誘導を免れている可能性が示唆された。一方、メラノーマモデルの研究では、BRAF阻害剤の長期投与後にARID2のヘテロ欠失を有する薬剤耐性細胞株を樹立することに成功した。BRAF阻害剤投与により一旦細胞老化形質が誘導されるが、その後細胞老化を回避した耐性細胞が再増殖してくることから、上記乳がん細胞株同様にARID2変異による細胞老化回避機構の存在が考えられた。
    当初の計画に沿って、海外共同研究機関の技術指導のもと、乳がん細胞株モデルを用いた1細胞およびバルクレベルのエピゲノム・トランスクリプトーム解析を実施し、その解析からARID2のon/offによりエピゲノムレベルで細胞周期制御因子に変化があること、及び遺伝子発現レベルで細胞老化関連分泌形質に関わる因子に変化があることを捉えることができた。ChIP-seq解析やRIME解析との統合的解析も進め、ARID2が欠失するとPBAF複合体が分解されゲノム結合能がなくなり、当該ゲノム領域においてはBAF複合体の結合が優位となることも確認できた。また、メラノーマモデルにおいても分子標的薬の長期投与によりARID2変異を持つ薬剤耐性細胞株を樹立することに成功し、抗がん剤の長期投与によりARID2変異を持つ薬剤耐性細胞が出現する乳がんモデルとの比較検討を行う実験環境を整えることができた。どちらのモデルにおいてもARID2変異が細胞老化回避に関わる可能性が示唆されていることから、今後この点についてさらに詳細な解析を進めていきたい。海外渡航制限により海外機関との共同研究活動には大きな制約があったが、渡航制限の撤廃やコロナ分類が5類引き下げになることに伴い、今夏に長期間の現地滞在を予定している。その際に、海外共同研究者と協働して1細胞データや他のオミクスデータの統合解析を進めたいと考えている。以上のように、当初の研究計画はおおむね順調に進展している。
    今後は、取得した乳がんのオミクスデータに関する統合解析を海外共同研究者と共に進め、さらにメラノーマモデルにおいても同様のオミクスデータを取得することを計画している。特に、ARID2の変化がいかにしてエピゲノムのダイナミクスを規定しているかを理解し、これらの変化が遺伝子発現レベルで細胞動態にどのような影響を及ぼしているのかに関する解明研究を推進していく。現在までに得られている細胞周期や細胞老化に関わる分子群の変化については実験的に検証を進め、抗がん剤や分子標的薬に耐性を示す細胞においてARID2変異がどのような役割を持つのかを分子レベルで明らかにしていく。また、海外共同研究者は次世代の細胞バーコード化技術も保有しているため、その技術をこれらの薬剤耐性細胞株モデルに適用することでがん細胞の治療抵抗性ダイナミクスを解明する研究も進めていきたいと考えている。以上のアプローチによってARID2を起点とした薬剤耐性メカニズムをエピゲノムダイナミクスの観点から包括的に解明し、これらの基礎的研究成果をもとに薬剤耐性を呈するがん患者の新たな治療法開発を実現するためのシーズ発見を目指す。

  4. Deciphering mechanisms of immune escape by single-cell barcoding

    Grant number:20K21542  2020.7 - 2022.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Challenging Research (Exploratory)

    Hinohara Kunihiko

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\6500000 ( Direct Cost: \5000000 、 Indirect Cost:\1500000 )

    Most human tumors are composed of genetically and phenotypically heterogeneous cancer cell populations that pose a major challenge for the clinical management of cancer patients. Here we used mouse model of adoptive T cell transfer (ACT) to investigate the impact of tumor heterogeneity on therapy effectiveness. We found that all tumors underwent regressions after transfer of tumor antigen-specific cytotoxic T cells but eventually some tumors re-start to grow. We observed that resistance can occur either by selection of pre-existing mERK2-negative clones or via evolution from initially mERK2-positive drug-sensitive cells. Also, we developed single-cell lineage tracing system using expressed DNA barcoding technology to further understand evolutionary trajectory of drug-resistant cancer cells. By utilizing this experimental system, we will identify key roles for intratumor heterogeneity and tumor evolution in ACT response.

  5. Identification of STING agonist transporter in cancer cells by utilizing a lineage barcoding system

    Grant number:20K21553  2020.7 - 2022.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Challenging Research (Exploratory)

    KITAJIMA Shunsuke

      More details

    Authorship:Coinvestigator(s)  Grant type:Competitive

    Although STING activation in cancer cells drives antitumor immunity, stimulation of cancer cell-intrinsic STING signaling by STING agonist is limited due to low cell-membrane permeability. In this study, we attempted to identify a novel transporter/regulator of STING agonist by utilizing a lineage barcoding system which can compare the gene expression profile at the single cell level between before and after treatment of STING agonist. We can classify the cells into a cell group showing high sensitivity and low sensitivity, and extract the gene candidates related with the sensitivity to STING agonist. In the future, we will analyze the candidate genes whether they can directly regulate the sensitivity to STING agonist in cancer cells by using in vitro model.

  6. The evolutional trajection and precision-medicine to gliomas

    Grant number:20H03789  2020.4 - 2023.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

      More details

    Authorship:Coinvestigator(s)  Grant type:Competitive

  7. Deciphering the mechanism of synthetic lethality in glioma

    Grant number:20H03512  2020.4 - 2023.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    Hinohara Kunihiko

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\17810000 ( Direct Cost: \13700000 、 Indirect Cost:\4110000 )

    Currently, the only treatment for gliomas, which are malignant brain tumors, is the alkylating agent temozolomide (TMZ), and since resistance to TMZ will eventually emerge, the development of new treatments is an urgent issue. In this study, we focused on ATRX mutations, which are most frequently observed in gliomas, and analyzed the mechanism of synthetic lethality to TMZ by genome-wide CRISPR loss-of-function screening. We found that ATRX wild-type and mutant glioma cells are differentially vulnerable to TMZ. Detailed analysis of the molecular mechanism will promote the development of combination therapies and patient stratification markers to enhance TMZ sensitivity.

  8. Mechanism for synthetic lethality in SWI/SNF-deficient breast cancers

    2019.8 - 2021.3

    Japan Agency for Medical Research and Development  Project for Cancer Research and Therapeutic Evolution (P-CREATE) 

      More details

    Grant type:Competitive

▼display all