Updated on 2022/03/15

写真a

 
HSIAO Shih nan
 
Organization
Center for Low-temperature Plasma Sciences (cLPS) Designated associate professor
Title
Designated associate professor
Contact information
メールアドレス
External link

Degree 1

  1. 博士(工学) ( 2011.7   逢甲大學 ) 

Research History 5

  1. Nagoya University   Center for Low-temperature Plasma Sciences (cLPS)   Designated associate professor

    2019.4

  2. Globe Union Industrial Cooperation   Researcher

    2015.9 - 2018.9

  3. 清華大学   研究員

    2014.8 - 2015.8

  4. National Synchrotron Radiation Research Center   Researcher

    2011.3 - 2014.7

  5. Argonne National Laboratory   Visiting Scholar

    2010.1 - 2011.1

      More details

    Country:United States

Education 1

  1. Feng Chia University   Department Materials Science and engineering

    2006.8 - 2011.3

      More details

    Country: Taiwan, Province of China

 

Papers 8

  1. Low-temperature reduction of SnO2 by floating wire-assisted medium-pressure H-2/Ar plasma

    Thi-Thuy-Nga Nguyen, Sasaki Minoru, Hsiao Shih-Nan, Tsutsumi Takayoshi, Ishikawa Kenji, Hori Masaru

    PLASMA PROCESSES AND POLYMERS     2022.2

     More details

    Language:Japanese   Publisher:Plasma Processes and Polymers  

    Reduction of SnO2 to form spherical Sn particles and Sn etching are obtained by floating wire (FW)-assisted medium-pressure H2/Ar plasma. High-density H2/Ar plasma (1014 cm−3) with a larger treatment area at medium pressure (10 kPa) produces a two-times higher removal rate of SnO2 (0.111 mg/min) than that at atmospheric pressure with the same treatment area of 300 mm2. SnO2 film is removed from the glass surface by a two-step process involving (1) reduction of SnO2 by FW-H2/Ar plasma to form spherical Sn particles and (2) removal of low-contact Sn particles by water-based cleaning. High surface smoothness (roughness of 0.488 nm) and high optical transmittance (>92%) of treated samples indicate no damage compared to that of pristine quartz glass.

    DOI: 10.1002/ppap.202100209

    Web of Science

    Scopus

  2. On the Etching Mechanism of Highly Hydrogenated SiN Films by CF4/D-2 Plasma: Comparison with CF4/H-2

    Hsiao Shih-Nan, Nguyen Thi-Thuy-Nga, Tsutsumi Takayoshi, Ishikawa Kenji, Sekine Makoto, Hori Masaru

    COATINGS   Vol. 11 ( 12 )   2021.12

     More details

    Language:Japanese   Publisher:Coatings  

    With the increasing interest in dry etching of silicon nitride, utilization of hydrogencontained fluorocarbon plasma has become one of the most important processes in manufacturing advanced semiconductor devices. The correlation between hydrogen-contained molecules from the plasmas and hydrogen atoms inside the SiN plays a crucial role in etching behavior. In this work, the influences of plasmas (CF4/D2 and CF4/H2 ) and substrate temperature (Ts, from −20 to 50◦ C) on etch rates (ERs) of the PECVD SiN films were investigated. The etch rate performed by CF4/D2 plasma was higher than one obtained by CF4/H2 plasma at substrate temperature of 20◦ C and higher. The optical emission spectra showed that the intensities of the fluorocarbon (FC), F, and Balmer emissions were stronger in the CF4/D2 plasma in comparison with CF4/H2 . From X-ray photoelectron spectra, a thinner FC layer with a lower F/C ratio was found in the surface of the sample etched by the CF4/H2 plasma. The plasma density, gas phase concentration and FC thickness were not responsible for the higher etch rate in the CF4/D2 plasma. The abstraction of H inside the SiN films by deuterium and, in turn, hydrogen dissociation from Si or N molecules, supported by the results of in situ monitoring of surface structure using attenuated total reflectance-Fourier transform infrared spectroscopy, resulted in the enhanced ER in the CF4/D2 plasma case. The findings imply that the hydrogen dissociation plays an important role in the etching of PECVD-prepared SiN films when the hydrogen concentration of SiN is higher. For the films etched with the CF4/H2 at −20◦ C, the increase in ER was attributed to a thinner FC layer and surface reactions. On the contrary, in the CF4/D2 case the dependence of ER on substrate temperature was the consequence of the factors which include the FC layer thickness (diffusion length) and the atomic mobility of the etchants (thermal activation reaction).

    DOI: 10.3390/coatings11121535

    Web of Science

    Scopus

  3. Effects of hydrogen content in films on the etching of LPCVD and PECVD SiN films using CF4/H-2 plasma at different substrate temperatures

    Hsiao Shih-Nan, Britun Nikolay, Thi-Thuy-Nga Nguyen, Tsutsumi Takayoshi, Ishikawa Kenji, Sekine Makoto, Hori Masaru

    PLASMA PROCESSES AND POLYMERS     2021.8

     More details

    Language:Japanese   Publisher:Plasma Processes and Polymers  

    The dependences of etching characteristics on substrate temperature (Ts, from –20 to 50°C) of the plasma-enhanced chemical vapor deposition (PECVD) SiN films (PE-SiN) and low-pressure chemical vapor deposition (LPCVD) SiN films (LP-SiN) with CF4/H2 plasma were investigated. The Fourier-transform infrared spectroscopy shows that both film types were N–H bond-rich films, but in different hydrogen contents (PE-SiN 22.7 at% and LP-SiN 3.8 at%) from the Rutherford backscattering spectroscopy analyses. A higher hydrogen content led to a thinner fluorocarbon thickness because of the reaction between hydrogen outflux and C and N to form an HCN byproduct. The etch rates (ER) for the PE-SiN were higher than that of the LP-SiN at all Ts, due to the different FC thickness and etching mechanisms proposed. The formation of the N−Hx layer on PE-SiN at low temperature caused the decrease in ER. For the LP-SiN, the weak dependences of Ts on surface structure and ER were observed.

    DOI: 10.1002/ppap.202100078

    Web of Science

    Scopus

  4. Thickness-dependent L10 ordering behavior in polycrystalline Fe?Pd nanoparticle films on glass substrates

    Hsiao S. N., Chen C. C., Liu S. H., Chen S. K.

    VACUUM   Vol. 187   2021.5

     More details

  5. Influences of substrate temperatures on etch rates of PECVD-SiN thin films with a CF4/H-2 plasma

    Hsiao Shih-Nan, Nakane Kazuya, Tsutsumi Takayoshi, Ishikawa Kenji, Sekine Makoto, Hori Masaru

    APPLIED SURFACE SCIENCE   Vol. 542   2021.3

     More details

    Publisher:Applied Surface Science  

    DOI: 10.1016/j.apsusc.2020.148550

    Web of Science

    Scopus

  6. Selective etching of SiN against SiO2 and poly-Si films in hydrofluoroethane chemistry with a mixture of CH2FCHF2, O-2, and Ar

    Hsiao Shih-Nan, Ishikawa Kenji, Hayashi Toshio, Ni Jiwei, Tsutsumi Takayoshi, Sekine Makoto, Hori Masaru

    APPLIED SURFACE SCIENCE   Vol. 541   2021.3

     More details

    Publisher:Applied Surface Science  

    DOI: 10.1016/j.apsusc.2020.148439

    Web of Science

    Scopus

  7. Influence of pressure on (001)-preferred orientation and in-plane residual stress in rapidly annealed FePt thin films

    Hsiao S. N., Chou C. L., Liu S. H., Chen S. K.

    APPLIED SURFACE SCIENCE   Vol. 509   2020.4

     More details

    Publisher:Applied Surface Science  

    DOI: 10.1016/j.apsusc.2020.145304

    Web of Science

    Scopus

  8. Etching characteristics of PECVD-prepared SiN films with CF4/D-2 and CF4/H-2 plasmas at different temperatures

    Hsiao Shih-Nan, Thi-Thuy-Nga Nguyen, Tsutsumi Takayoshi, Ishikawa Kenji, Sekine Makoto, Hori Masaru

    2020 INTERNATIONAL SYMPOSIUM ON SEMICONDUCTOR MANUFACTURING (ISSM)     2020

     More details

▼display all