Updated on 2022/05/24

写真a

 
UEDA Shuhei
 
Organization
Research Institute of Environmental Medicine Division of Stress Recognition and Response Assistant Professor
Graduate School
Graduate School of Medicine
Title
Assistant Professor
External link

Degree 1

  1. 博士(生命科学) ( 2013.5   京都大学 ) 

Research Interests 9

  1. autism spectrum disorder

  2. schizophrenia

  3. psychiatric disorder

  4. developmental disorder

  5. 包括脳ネットワーク

  6. molecular biology

  7. シナプス

  8. amygdala

  9. emotion

Research Areas 3

  1. Life Science / Molecular biology

  2. Life Science / Neuroscience-general

  3. Life Science / Animal physiological chemistry, physiology and behavioral biology

Research History 3

  1. Nagoya University   Research Institute of Environmental Medicine   Assistant Professor

    2017.4

      More details

    Country:Japan

  2. Nagoya University   Research Institute of Environmental Medicine

    2016.4 - 2017.3

      More details

    Country:Japan

  3. 京都大学大学院   医学研究科 メディカルイノベーションセンター   特定研究員

    2013.5 - 2016.3

      More details

    Country:Japan

Education 2

  1. 京都大学大学院   生命科学研究科 博士課程

    2009.4 - 2013.3

  2. Kyoto University   Faculty of Pharmaceutical Science

    2002.4 - 2007.3

Professional Memberships 2

  1. THE JAPAN NEUROSCIENCE SOCIETY

  2. Society for Neuroscience

 

Papers 9

  1. Identification of ultra-rare disruptive variants in voltage-gated calcium channel-encoding genes in Japanese samples of schizophrenia and autism spectrum disorder Reviewed International journal

    Chenyao Wang, Shin-ichiro Horigane, Minoru Wakamori, Shuhei Ueda, Takeshi Kawabata, Hajime Fujii, Itaru Kushima, Hiroki Kimura, Kanako Ishizuka, Yukako Nakamura, Yoshimi Iwayama, Masashi Ikeda, Nakao Iwata, Takashi Okada, Branko Aleksic, Daisuke Mori, Takashi Yoshida, Haruhiko Bito, Takeo Yoshikawa, Sayaka Takemoto-Kimura, Norio Ozaki

    Translational Psychiatry   Vol. 12 ( 1 ) page: 84   2022.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/s41398-022-01851-y

    Web of Science

    PubMed

  2. From population to neuron: exploring common mediators for metabolic problems and mental illnesses Reviewed International coauthorship International journal

    Yoichiro Takayanagi, Koko Ishizuka, Thomas M. Laursen, Hiroshi Yukitake, Kun Yang, Nicola G. Cascella, Shuhei Ueda, Akiko Sumitomo, Zui Narita, Yasue Horiuchi, Minae Niwa, Akiko Taguchi, Morris F. White, William W. Eaton, Preben B. Mortensen, Takeshi Sakurai, Akira Sawa

    Molecular Psychiatry   Vol. 26 ( 8 ) page: 3931 - 3942   2021.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media LLC  

    Major mental illnesses such as schizophrenia (SZ) and bipolar disorder (BP) frequently accompany metabolic conditions, but their relationship is still unclear, in particular at the mechanistic level. We implemented an approach of "from population to neuron", combining population-based epidemiological analysis with neurobiological experiments using cell and animal models based on a hypothesis built from the epidemiological study. We characterized high-quality population data, olfactory neuronal cells biopsied from patients with SZ or BP, and healthy subjects, as well as mice genetically modified for insulin signaling. We accessed the Danish Registry and observed (1) a higher incidence of diabetes in people with SZ or BP and (2) higher incidence of major mental illnesses in people with diabetes in the same large cohort. These epidemiological data suggest the existence of common pathophysiological mediators in both diabetes and major mental illnesses. We hypothesized that molecules associated with insulin resistance might be such common mediators, and then validated the hypothesis by using two independent sets of olfactory neuronal cells biopsied from patients and healthy controls. In the first set, we confirmed an enrichment of insulin signaling-associated molecules among the genes that were significantly different between SZ patients and controls in unbiased expression profiling data. In the second set, olfactory neuronal cells from SZ and BP patients who were not pre-diabetic or diabetic showed reduced IRS2 tyrosine phosphorylation upon insulin stimulation, indicative of insulin resistance. These cells also displayed an upregulation of IRS1 protein phosphorylation at serine-312 at baseline (without insulin stimulation), further supporting the concept of insulin resistance in olfactory neuronal cells from SZ patients. Finally, Irs2 knockout mice showed an aberrant response to amphetamine, which is also observed in some patients with major mental illnesses. The bi-directional relationships between major mental illnesses and diabetes suggest that there may be common pathophysiological mediators associated with insulin resistance underlying these mental and physical conditions.

    DOI: 10.1038/s41380-020-00939-5

    PubMed

    Other Link: http://www.nature.com/articles/s41380-020-00939-5

  3. Remote control of neural function by X-ray-induced scintillation Reviewed International journal

    Takanori Matsubara, Takayuki Yanagida, Noriaki Kawaguchi, Takashi Nakano, Junichiro Yoshimoto, Maiko Sezaki, Hitoshi Takizawa, Satoshi P. Tsunoda, Shin-ichiro Horigane, Shuhei Ueda, Sayaka Takemoto-Kimura, Hideki Kandori, Akihiro Yamanaka, Takayuki Yamashita

    Nature Communications   Vol. 12 ( 1 ) page: 4478   2021.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media LLC  

    <title>Abstract</title>Scintillators emit visible luminescence when irradiated with X-rays. Given the unlimited tissue penetration of X-rays, the employment of scintillators could enable remote optogenetic control of neural functions at any depth of the brain. Here we show that a yellow-emitting inorganic scintillator, Ce-doped Gd<sub>3</sub>(Al,Ga)<sub>5</sub>O<sub>12</sub> (Ce:GAGG), can effectively activate red-shifted excitatory and inhibitory opsins, ChRmine and GtACR1, respectively. Using injectable Ce:GAGG microparticles, we successfully activated and inhibited midbrain dopamine neurons in freely moving mice by X-ray irradiation, producing bidirectional modulation of place preference behavior. Ce:GAGG microparticles are non-cytotoxic and biocompatible, allowing for chronic implantation. Pulsed X-ray irradiation at a clinical dose level is sufficient to elicit behavioral changes without reducing the number of radiosensitive cells in the brain and bone marrow. Thus, scintillator-mediated optogenetics enables minimally invasive, wireless control of cellular functions at any tissue depth in living animals, expanding X-ray applications to functional studies of biology and medicine.

    DOI: 10.1038/s41467-021-24717-1

    Web of Science

    PubMed

    Other Link: http://www.nature.com/articles/s41467-021-24717-1

  4. Distinctive Regulation of Emotional Behaviors and Fear-Related Gene Expression Responses in Two Extended Amygdala Subnuclei With Similar Molecular Profiles. Reviewed International journal

    Shuhei Ueda, Masahito Hosokawa, Koji Arikawa, Kiyofumi Takahashi, Mao Fujiwara, Manami Kakita, Taro Fukada, Hiroaki Koyama, Shin-Ichiro Horigane, Keiichi Itoi, Masaki Kakeyama, Hiroko Matsunaga, Haruko Takeyama, Haruhiko Bito, Sayaka Takemoto-Kimura

    Frontiers in molecular neuroscience   Vol. 14   page: 741895 - 741895   2021

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    The central nucleus of the amygdala (CeA) and the lateral division of the bed nucleus of the stria terminalis (BNST) are the two major nuclei of the central extended amygdala that plays essential roles in threat processing, responsible for emotional states such as fear and anxiety. While some studies suggested functional differences between these nuclei, others showed anatomical and neurochemical similarities. Despite their complex subnuclear organization, subnuclei-specific functional impact on behavior and their underlying molecular profiles remain obscure. We here constitutively inhibited neurotransmission of protein kinase C-δ-positive (PKCδ+) neurons-a major cell type of the lateral subdivision of the CeA (CeL) and the oval nucleus of the BNST (BNSTov)-and found striking subnuclei-specific effects on fear- and anxiety-related behaviors, respectively. To obtain molecular clues for this dissociation, we conducted RNA sequencing in subnuclei-targeted micropunch samples. The CeL and the BNSTov displayed similar gene expression profiles at the basal level; however, both displayed differential gene expression when animals were exposed to fear-related stimuli, with a more robust expression change in the CeL. These findings provide novel insights into the molecular makeup and differential engagement of distinct subnuclei of the extended amygdala, critical for regulation of threat processing.

    DOI: 10.3389/fnmol.2021.741895

    Web of Science

    PubMed

  5. A mouse model of Timothy syndrome exhibits altered social competitive dominance and inhibitory neuron development. Reviewed International journal

    Horigane SI, Ozawa Y, Zhang J, Todoroki H, Miao P, Haijima A, Yanagawa Y, Ueda S, Nakamura S, Kakeyama M, Takemoto-Kimura S

    FEBS open bio     2020.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1002/2211-5463.12924

    PubMed

  6. Sequence of Molecular Events during the Maturation of the Developing Mouse Prefrontal Cortex. Reviewed International coauthorship International journal

    Ueda S, Niwa M, Hioki H, Sohn J, Kaneko T, Sawa A, Sakurai T

    Molecular neuropsychiatry   Vol. 1 ( 2 ) page: 94-104   2015.7

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1159/000430095

    PubMed

  7. Rac GEF Dock4 interacts with cortactin to regulate dendritic spine formation. Reviewed International journal

    Ueda S, Negishi M, Katoh H

    Molecular biology of the cell   Vol. 24 ( 10 ) page: 1602-13   2013.5

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1091/mbc.E12-11-0782

    PubMed

  8. Ephexin4 and EphA2 mediate cell migration through a RhoG-dependent mechanism. Reviewed International journal

    Hiramoto-Yamaki N, Takeuchi S, Ueda S, Harada K, Fujimoto S, Negishi M, Katoh H

    The Journal of cell biology   Vol. 190 ( 3 ) page: 461-77   2010.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1083/jcb.201005141

    PubMed

  9. Dock4 regulates dendritic development in hippocampal neurons. Reviewed International journal

    Ueda S, Fujimoto S, Hiramoto K, Negishi M, Katoh H

    Journal of neuroscience research   Vol. 86 ( 14 ) page: 3052-61   2008.11

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1002/jnr.21763

    PubMed

▼display all

KAKENHI (Grants-in-Aid for Scientific Research) 2

  1. 摂食行動による情動神経回路の応答とストレスによる回路機構変容の解析

    Grant number:22K06483  2022.4 - 2025.3

    日本学術振興会  科学研究費助成事業 基盤研究(C)  基盤研究(C)

    上田 修平

      More details

    Authorship:Principal investigator 

    Grant amount:\4160000 ( Direct Cost: \3200000 、 Indirect Cost:\960000 )

  2. 摂食行動制御における情動中枢扁桃体の神経回路機構

    Grant number:20K15929  2020.4 - 2022.3

    日本学術振興会  科学研究費助成事業 若手研究  若手研究

    上田 修平

      More details

    Authorship:Principal investigator 

    Grant amount:\4160000 ( Direct Cost: \3200000 、 Indirect Cost:\960000 )

    近年増加傾向にある精神疾患としての摂食障害は、根本的な原因や発症機構についていまだに不明な点が多い。摂食障害の病態の解明には、情動的摂食行動の神経回路機構の解読が必要であると考え、情動中枢の出力核である扁桃体中心核において摂食行動に関連する情報がどのような回路機構で処理され、摂食行動調節のアウトプットにつながるかを解明することを目的とし、今年度は神経活動計測を主に進めた。
    具体的には、扁桃体中心核を構成するの主要な神経細胞であるPKCd (protein kinase C, delta)、SOM (somatostatin)、CRF (cortictropin releasing factor)陽性細胞を対象とし、それぞれのCreドライバーマウスの扁桃体中心核にCre依存的にカルシウムインディケーターGCaMP6を発現するアデノ随伴ウイルスを導入し、エンドスコープ型小型蛍光顕微鏡を用いて摂食行動時、または様々な味質水の飲水行動時のカルシウムイメージングを行った。取得した神経活動計測データの解析を進め、扁桃体中心核において摂食によって神経活動変化を起こす細胞群、特定の味質に応答して神経系活動変化を起こす細胞群が存在することを確認した。現在は神経活動計測の解析結果を元に、摂食行動に促進的に働く可能性のある神経細胞群に対象を絞り込み、化学遺伝学的手法や光遺伝学的手法を用いた回路操作実験を行う準備を進めている。