Updated on 2024/04/03

写真a

 
ONO Daisuke
 
Organization
Research Institute of Environmental Medicine Division of Stress Recognition and Response Lecturer
Graduate School
Graduate School of Medicine
Title
Lecturer

Degree 1

  1. 博士(医学) ( 2012.3   北海道大学 ) 

Research Interests 16

  1. 視床下部

  2. 視交叉上核

  3. 神経科学

  4. 神経回路

  5. 睡眠

  6. 発達

  7. 生理学

  8. 生物発光

  9. 環境適応

  10. 概日リズム

  11. 同期現象

  12. 包括脳ネットワーク

  13. 光操作

  14. ニューロン

  15. イメージング

Research Areas 5

  1. Life Science / Neuroscience-general  / 神経生理学

  2. Life Science / Animal physiological chemistry, physiology and behavioral biology  / 神経生物学、生理学、時間生物学

  3. Life Science / Neuroscience-general

  4. Life Science / Physiology

  5. Life Science / Animal physiological chemistry, physiology and behavioral biology  / 時間生物学

Research History 10

  1. 名古屋大学 環境医学研究所 神経系Ⅱ   講師

    2020.10

      More details

    Country:Japan

  2. 名古屋大学 環境医学研究所   講師

    2020.10

  3. 名古屋大学 環境医学研究所 神経系Ⅱ   助教

    2016.10 - 2020.9

      More details

    Country:Japan

  4. Nagoya University   Research Institute of Environmental Medicine   Assistant Professor

    2016.10 - 2020.9

  5. 名古屋大学 環境医学研究所 神経系Ⅱ   特任助教

    2016.4 - 2016.9

      More details

    Country:Japan

  6. 北海道大学大学院医学研究科   特任助教

    2013.4 - 2016.3

      More details

    Country:Japan

  7. 北海道大学大学院医学研究科・光バイオイメージング部門   博士研究員

    2012.4 - 2013.3

      More details

    Country:Japan

  8. 北海道大学大学院医学研究科(博士課程)

    2008 - 2012

      More details

    Country:Japan

  9. 北海道大学大学院医学研究科(修士課程)

    2004 - 2006

      More details

    Country:Japan

  10. 東邦大学理学部生物学科

    2000 - 2004

      More details

    Country:Japan

▼display all

Education 2

  1. Hokkaido University   Graduate School, Division of Medicine

    2008.4 - 2012.3

      More details

    Country: Japan

  2. Hokkaido University   Graduate School, Division of Medicine

    2004.4 - 2006.3

      More details

    Country: Japan

Professional Memberships 8

  1. 日本生理学会

  2. 日本神経科学学会

  3. 日本時間生物学会

  4. Society for Research on Biological Rhythms

  5. THE JAPAN NEUROSCIENCE SOCIETY

  6. PHYSIOLOGICAL SOCIETY OF JAPAN

  7. 日本時間生物学会

  8. Society for Research on Biological Rhythms (SRBR)

▼display all

Awards 13

  1. 日本神経科学学会奨励賞

    2022.7   日本神経科学学会  

  2. 文部科学省 若手科学者賞

    2020.4   文部科学省  

     More details

    Country:Japan

  3. 日本生理学会奨励賞

    2016.3   日本生理学会  

     More details

    Country:Japan

  4. 日本神経科学学会奨励賞

    2022.7  

  5. 文部科学省若手科学者賞

    2020.4  

  6. 日本時間生物学会奨励賞

    2016.11   日本時間生物学会  

     More details

    Award type:Honored in official journal of a scientific society, scientific journal  Country:Japan

  7. 日本時間生物学会奨励賞

    2016.11  

  8. 日本生理学会奨励賞

    2016.3  

  9. 日本生理学会環境生理学グループ久野寧記念賞

    2015.3   日本生理学会  

     More details

    Country:Japan

  10. 日本生理学会環境生理学久野寧記念賞

    2015.3  

  11. 北海道大学医学研究科 優秀論文賞

    2014.3   北海道大学大学院医学研究科  

     More details

    Country:Japan

  12. Society for Research on Biological Rhythms (SRBR) Excellence Award

    2010.5   Society for Research on Biological Rhythms  

     More details

    Country:United States

  13. 日本時間生物学会優秀ポスター賞

    2009.11   日本時間生物学会  

     More details

    Country:Japan

▼display all

 

Papers 47

  1. Network-driven intracellular cAMP coordinates circadian rhythm in the suprachiasmatic nucleus Reviewed

    Ono Daisuke, Wang Huan, Hung Chi Jung, Wang Hsin-tzu, Kon Naohiro, Yamanaka Akihiro, Li Yulong, Sugiyama Takashi

    SCIENCE ADVANCES   Vol. 9 ( 1 ) page: eabq7032   2023.1

     More details

  2. The mammalian circadian pacemaker regulates wakefulness via CRF neurons in the paraventricular nucleus of the hypothalamus Reviewed

    Ono Daisuke, Mukai Yasutaka, Hung Chi Jung, Chowdhury Srikanta, Sugiyama Takashi, Yamanaka Akihiro

    SCIENCE ADVANCES   Vol. 6 ( 45 )   2020.11

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1126/sciadv.abd0384

    Web of Science

    PubMed

  3. Dissociation of <i>Per1</i> and <i>Bmal1</i> circadian rhythms in the suprachiasmatic nucleus in parallel with behavioral outputs. Reviewed

    Ono D, Honma S, Nakajima Y, Kuroda S, Enoki R, Honma KI

    Proceedings of the National Academy of Sciences of the United States of America   Vol. 114 ( 18 ) page: E3699-E3708   2017.5

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1073/pnas.1613374114

    PubMed

  4. Differential roles of AVP and VIP signaling in the postnatal changes of neural networks for coherent circadian rhythms in the SCN. Reviewed

    Ono D, Honma S, Honma K

    Science advances   Vol. 2 ( 9 ) page: e1600960   2016.9

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1126/sciadv.1600960

    PubMed

  5. Cryptochromes are critical for the development of coherent circadian rhythms in the mouse suprachiasmatic nucleus. Reviewed

    Ono D, Honma S, Honma K

    Nature communications   Vol. 4   page: 1666   2013.4

     More details

    Authorship:Lead author   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/ncomms2670

    PubMed

  6. The Suprachiasmatic Nucleus at 50: Looking Back, Then Looking Forward

    Ono, D; Weaver, DR; Hastings, MH; Honma, KI; Honma, S; Silver, R

    JOURNAL OF BIOLOGICAL RHYTHMS     page: 7487304231225706   2024.2

     More details

  7. Serotonergic neurons control cortical neuronal intracellular energy dynamics by modulating astrocyte-neuron lactate shuttle.

    Natsubori A, Hirai S, Kwon S, Ono D, Deng F, Wan J, Miyazawa M, Kojima T, Okado H, Karashima A, Li Y, Tanaka KF, Honda M

    iScience   Vol. 26 ( 1 ) page: 105830   2023.1

     More details

    Language:English  

    DOI: 10.1016/j.isci.2022.105830

    PubMed

  8. Aripiprazole disrupts cellular synchrony in the suprachiasmatic nucleus and enhances entrainment to environmental light-dark cycles in mice.

    Li R, Masuda K, Ono D, Kanbayashi T, Hirano A, Sakurai T

    Frontiers in neuroscience   Vol. 17   page: 1201137   2023

     More details

    Language:English  

    DOI: 10.3389/fnins.2023.1201137

    PubMed

  9. Level of constitutively expressed BMAL1 affects the robustness of circadian oscillations

    Padlom Apirada, Ono Daisuke, Hamashima Rio, Furukawa Yuko, Yoshimura Takashi, Nishiwaki-Ohkawa Taeko

    SCIENTIFIC REPORTS   Vol. 12 ( 1 ) page: 19519   2022.11

     More details

  10. Neural circuits in the central circadian clock and their regulation of sleep and wakefulness in mammals

    Ono Daisuke

    NEUROSCIENCE RESEARCH   Vol. 182   page: 1 - 6   2022.9

     More details

  11. Functional Interaction Between GABAergic Neurons in the Ventral Tegmental Area and Serotonergic Neurons in the Dorsal Raphe Nucleus

    Rahaman Sheikh Mizanur, Chowdhury Srikanta, Mukai Yasutaka, Ono Daisuke, Yamaguchi Hiroshi, Yamanaka Akihiro

    FRONTIERS IN NEUROSCIENCE   Vol. 16   page: 877054   2022.5

     More details

  12. The Food-entrainable Oscillator Is a Complex of Non-SCN Activity Bout Oscillators Uncoupled From the SCN Circadian Pacemaker.

    Nishide S, Suzuki Y, Ono D, Honma S, Honma KI

    Journal of biological rhythms     page: 7487304211047937   2021.10

     More details

    Language:English  

    DOI: 10.1177/07487304211047937

    PubMed

  13. CHRONO and DEC1/DEC2 compensate for lack of CRY1/CRY2 in expression of coherent circadian rhythm but not in generation of circadian oscillation in the neonatal mouse SCN

    Ono Daisuke, Honma Ken-ichi, Schmal Christoph, Takumi Toru, Kawamoto Takeshi, Fujimoto Katsumi, Kato Yukio, Honma Sato

    SCIENTIFIC REPORTS   Vol. 11 ( 1 ) page: 19240   2021.9

     More details

  14. Editorial: Development of Circadian Clock Functions

    Myung Jihwan, Nakamura Takahiro J., Jones Jeff R., Silver Rae, Ono Daisuke

    FRONTIERS IN NEUROSCIENCE   Vol. 15   page: 735007   2021.8

     More details

  15. Reversible modulation of circadian time with chronophotopharmacology

    Kolarski Dusan, Miro-Vinyals Carla, Sugiyama Akiko, Srivastava Ashutosh, Ono Daisuke, Nagai Yoshiko, Iida Mui, Itami Kenichiro, Tama Florence, Szymanski Wiktor, Hirota Tsuyoshi, Feringa Ben L.

    NATURE COMMUNICATIONS   Vol. 12 ( 1 ) page: 3164   2021.5

     More details

  16. Roles of Neuropeptides, VIP and AVP, in the Mammalian Central Circadian Clock

    Ono Daisuke, Honma Ken-ichi, Honma Sato

    FRONTIERS IN NEUROSCIENCE   Vol. 15   page: 650154   2021.4

     More details

  17. Corrigendum: Roles of Neuropeptides, VIP and AVP, in the Mammalian Central Circadian Clock.

    Ono D, Honma KI, Honma S

    Frontiers in neuroscience   Vol. 15   page: 810796   2021

     More details

    Language:English  

    DOI: 10.3389/fnins.2021.810796

    PubMed

  18. Conditional Knockout of <i>Bmal1</i> in Corticotropin-Releasing Factor Neurons Does Not Alter Sleep-Wake Rhythm in Mice.

    Hung CJ, Yamanaka A, Ono D

    Frontiers in neuroscience   Vol. 15   page: 808754   2021

     More details

    Language:English  

    DOI: 10.3389/fnins.2021.808754

    PubMed

  19. Prostaglandin E<sub>2</sub>Induces Long-Lasting Inhibition of Noradrenergic Neurons in the Locus Coeruleus and Moderates the Behavioral Response to Stressors

    Yasutaka Mukai, Tatsuo S. Okubo, Michael Lazarus, Daisuke Ono, Kenji F. Tanaka, Akihiro Yamanaka

    The Journal of Neuroscience   Vol. 43 ( 47 ) page: 7982 - 7999   2023.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Society for Neuroscience  

    Neuronal activity is modulated not only by inputs from other neurons but also by various factors, such as bioactive substances. Noradrenergic (NA) neurons in the locus coeruleus (LC-NA neurons) are involved in diverse physiological functions, including sleep/wakefulness and stress responses. Previous studies have identified various substances and receptors that modulate LC-NA neuronal activity through techniques including electrophysiology, calcium imaging, and single-cell RNA sequencing. However, many substances with unknown physiological significance have been overlooked. Here, we established an efficient screening method for identifying substances that modulate LC-NA neuronal activity through intracellular calcium ([Ca<sup>2+</sup>]<sub>i</sub>) imaging using brain slices. Using both sexes of mice, we screened 53 bioactive substances, and identified five novel substances: gastrin-releasing peptide, neuromedin U, and angiotensin II, which increase [Ca<sup>2+</sup>]<sub>i</sub>, and pancreatic polypeptide and prostaglandin D<sub>2</sub>, which decrease [Ca<sup>2+</sup>]<sub>i</sub>. Among them, neuromedin U induced the greatest response in female mice. In terms of the duration of [Ca<sup>2+</sup>]<sub>i</sub>change, we focused on prostaglandin E<sub>2</sub>(PGE<sub>2</sub>), since it induces a long-lasting decrease in [Ca<sup>2+</sup>]<sub>i</sub>via the EP<sub>3</sub>receptor. Conditional knock-out of the receptor in LC-NA neurons resulted in increased depression-like behavior, prolonged wakefulness in the dark period, and increased [Ca<sup>2+</sup>]<sub>i</sub>after stress exposure. Our results demonstrate the effectiveness of our screening method for identifying substances that modulate a specific neuronal population in an unbiased manner and suggest that stress-induced prostaglandin E<sub>2</sub>can suppress LC-NA neuronal activity to moderate the behavioral response to stressors. Our screening method will contribute to uncovering previously unknown physiological functions of uncharacterized bioactive substances in specific neuronal populations.

    SIGNIFICANCE STATEMENTBioactive substances modulate the activity of specific neuronal populations. However, since only a limited number of substances with predicted effects have been investigated, many substances that may modulate neuronal activity have gone unrecognized. Here, we established an unbiased method for identifying modulatory substances by measuring the intracellular calcium signal, which reflects neuronal activity. We examined noradrenergic (NA) neurons in the locus coeruleus (LC-NA neurons), which are involved in diverse physiological functions. We identified five novel substances that modulate LC-NA neuronal activity. We also found that stress-induced prostaglandin E<sub>2</sub>(PGE<sub>2</sub>) may suppress LC-NA neuronal activity and influence behavioral outcomes. Our screening method will help uncover previously overlooked functions of bioactive substances and provide insight into unrecognized roles of specific neuronal populations.

    DOI: 10.1523/JNEUROSCI.0353-23.2023

    Web of Science

    PubMed

  20. Deficiency of orexin signaling during sleep is involved in abnormal REM sleep architecture in narcolepsy

    Hiroto Ito, Noriaki Fukatsu, Sheikh Mizanur Rahaman, Yasutaka Mukai, Shuntaro Izawa, Daisuke Ono, Thomas S. Kilduff, Akihiro Yamanaka

    Proceedings of the National Academy of Sciences   Vol. 120 ( 41 ) page: e2301951120   2023.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Proceedings of the National Academy of Sciences  

    Narcolepsy is a sleep disorder caused by deficiency of orexin signaling. However, the neural mechanisms by which deficient orexin signaling causes the abnormal rapid eye movement (REM) sleep characteristics of narcolepsy, such as cataplexy and frequent transitions to REM states, are not fully understood. Here, we determined the activity dynamics of orexin neurons during sleep that suppress the abnormal REM sleep architecture of narcolepsy. Orexin neurons were highly active during wakefulness, showed intermittent synchronous activity during non-REM (NREM) sleep, were quiescent prior to the transition from NREM to REM sleep, and a small subpopulation of these cells was active during REM sleep. Orexin neurons that lacked orexin peptides were less active during REM sleep and were mostly silent during cataplexy. Optogenetic inhibition of orexin neurons established that the activity dynamics of these cells during NREM sleep regulate NREM–REM sleep transitions. Inhibition of orexin neurons during REM sleep increased subsequent REM sleep in “orexin intact” mice and subsequent cataplexy in mice lacking orexin peptides, indicating that the activity of a subpopulation of orexin neurons during the preceding REM sleep suppresses subsequent REM sleep and cataplexy. Thus, these results identify how deficient orexin signaling during sleep results in the abnormal REM sleep architecture characteristic of narcolepsy.

    DOI: 10.1073/pnas.2301951120

    Web of Science

    PubMed

  21. GABAergic mechanisms in the suprachiasmatic nucleus that influence circadian rhythm Reviewed

    Ono Daisuke, Honma Ken-ichi, Honma Sato

    JOURNAL OF NEUROCHEMISTRY     2020.7

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1111/jnc.15012

    Web of Science

    PubMed

  22. Dual orexin and MCH neuron-ablated mice display severe sleep attacks and cataplexy Reviewed International coauthorship

    Hung Chi Jung, Ono Daisuke, Kilduff Thomas S., Yamanaka Akihiro

    ELIFE   Vol. 9   2020.4

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.7554/eLife.54275

    Web of Science

    PubMed

  23. Controlling the Circadian Clock with High Temporal Resolution through Photodosing

    Kolarski Dusan, Sugiyama Akiko, Breton Ghislain, Rakers Christin, Ono Daisuke, Schulte Albert, Tama Florence, Itami Kenichiro, Szymanski Wiktor, Hirota Tsuyoshi, Feringa Ben L.

    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY   Vol. 141 ( 40 ) page: 15784 - 15791   2019.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1021/jacs.9b05445

    Web of Science

    PubMed

  24. REM sleep-active MCH neurons are involved in forgetting hippocampus-dependent memories

    Izawa Shuntaro, Chowdhury Srikanta, Miyazaki Toh, Mukai Yasutaka, Ono Daisuke, Inoue Ryo, Ohmura Yu, Mizoguchi Hiroyuki, Kimura Kazuhiro, Yoshioka Mitsuhiro, Terao Akira, Kilduff Thomas S., Yamanaka Akihiro

    SCIENCE   Vol. 365 ( 6459 ) page: 1308 - +   2019.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1126/science.aax9238

    Web of Science

    PubMed

  25. Weak coupling between intracellular feedback loops explains dissociation of clock gene dynamics

    Schmal Christoph, Ono Daisuke, Myung Jihwan, Pett J. Patrick, Honma Sato, Honma Ken-Ichi, Herzel Hanspeter, Tokuda Isao T.

    PLOS COMPUTATIONAL BIOLOGY   Vol. 15 ( 9 ) page: e1007330   2019.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1371/journal.pcbi.1007330

    Web of Science

    PubMed

  26. GABA in the suprachiasmatic nucleus refines circadian output rhythms in mice Reviewed

    Ono Daisuke, Honma Ken-ichi, Yanagawa Yuchio, Yamanaka Akihiro, Honma Sato

    COMMUNICATIONS BIOLOGY   Vol. 2   page: 232   2019.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/s42003-019-0483-6

    Web of Science

    PubMed

  27. GABA neurons in the ventral tegmental area regulate non-rapid eye movement sleep in mice

    Chowdhury Srikanta, Matsubara Takanori, Miyazaki Toh, Ono Daisuke, Fukatsul Noriaki, Abe Manabu, Sakimura Kenji, Sudo Yuki, Yamanaka Akihiro

    ELIFE   Vol. 8   2019.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.7554/eLife.44928

    Web of Science

    PubMed

  28. Chemical Control of Mammalian Circadian Behavior through Dual Inhibition of Casein Kinase Iα and δ.

        2019.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1021/acs.jmedchem.8b01541

    PubMed

  29. Coherency of circadian rhythms in the SCN is governed by the interplay of two coupling factors

    Tokuda Isao T., Ono Daisuke, Honma Sato, Honma Ken-Ichi, Herzel Hanspeter

    PLOS COMPUTATIONAL BIOLOGY   Vol. 14 ( 12 ) page: e1006607   2018.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1371/journal.pcbi.1006607

    Web of Science

    PubMed

  30. Role of GABA in the regulation of the central circadian clock of the suprachiasmatic nucleus

    Ono Daisuke, Honma Ken-ichi, Yanagawa Yuchio, Yamanaka Akihiro, Honma Sato

    JOURNAL OF PHYSIOLOGICAL SCIENCES   Vol. 68 ( 4 ) page: 333 - 343   2018.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1007/s12576-018-0604-x

    Web of Science

    PubMed

  31. Hypothalamic regulation of the sleep/wake cycle. Reviewed

    Ono D, Yamanaka A

    Neuroscience research   Vol. 118   page: 74-81   2017.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.neures.2017.03.013

    PubMed

  32. Synchronous circadian voltage rhythms with asynchronous calcium rhythms in the suprachiasmatic nucleus. Reviewed

    Enoki R, Oda Y, Mieda M, Ono D, Honma S, Honma KI

    Proceedings of the National Academy of Sciences of the United States of America   Vol. 114 ( 12 ) page: E2476-E2485   2017.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1073/pnas.1616815114

    PubMed

  33. Dual origins of the intracellular circadian calcium rhythm in the suprachiasmatic nucleus. Reviewed

    Enoki R, Ono D, Kuroda S, Honma S, Honma KI

    Scientific reports   Vol. 7   page: 41733   2017.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/srep41733

    PubMed

  34. Coupling Controls the Synchrony of Clock Cells in Development and Knockouts. Reviewed

    Tokuda IT, Ono D, Ananthasubramaniam B, Honma S, Honma K, Herzel H

    Biophysical journal   Vol. 109 ( 10 ) page: 2159-2170   2015.11

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.bpj.2015.09.024

    PubMed

  35. Disruption of MeCP2 attenuates circadian rhythm in CRISPR/Cas9-based Rett syndrome model mouse. Reviewed

    Tsuchiya Y, Minami Y, Umemura Y, Watanabe H, Ono D, Nakamura W, Takahashi T, Honma S, Kondoh G, Matsuishi T, Yagita K

    Genes to cells : devoted to molecular & cellular mechanisms     page: -   2015.10

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1111/gtc.12305

    PubMed

  36. Circadian PER2::LUC rhythms in the olfactory bulb of freely moving mice depend on the SCN but not on behavior rhythms. Reviewed

    Ono D, Honma S, Honma KI

    The European journal of neuroscience     page: -   2015.10

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1111/ejn.13111

    PubMed

  37. Circadian and ultradian rhythms of clock gene expression in the suprachiasmatic nucleus of freely moving mice. Reviewed

    Ono D, Honma K, Honma S

    Scientific reports   Vol. 5   page: 12310   2015.7

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/srep12310

    PubMed

  38. Cellular clocks in AVP neurons of the SCN are critical for interneuronal coupling regulating circadian behavior rhythm. Reviewed

    Mieda M, Ono D, Hasegawa E, Okamoto H, Honma K, Honma S, Sakurai T

    Neuron   Vol. 85 ( 5 ) page: 1103-1116   2015.3

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.neuron.2015.02.005

    PubMed

  39. Postnatal Constant Light Compensates Cryptochrome1 and 2 Double Deficiency for Disruption of Circadian Behavioral Rhythms in Mice under Constant Dark. Reviewed

    Ono D, Honma S, Honma K

    PloS one   Vol. 8   page: e80615   2013.11

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1371/journal.pone.0080615

    PubMed

  40. Topological specificity and hierarchical network of the circadian calcium rhythm in the suprachiasmatic nucleus. Reviewed

    Enoki R, Kuroda S, Ono D, Hasan MT, Ueda T, Honma S, Honma KI

    Proceedings of the National Academy of Sciences of the United States of America   Vol. 109 ( 52 ) page: 21498-21503   2012.12

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1073/pnas.1214415110

    PubMed

  41. JNK regulates the photic response of the mammalian circadian clock. Reviewed

    Yoshitane H, Honma S, Imamura K, Nakajima H, Nishide SY, Ono D, Kiyota H, Shinozaki N, Matsuki H, Wada N, Doi H, Hamada T, Honma K, Fukada Y

    EMBO reports   Vol. 13   page: 455-461   2012.5

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/embor.2012.37

    PubMed

  42. Single-cell resolution fluorescence imaging of circadian rhythms detected with a Nipkow spinning disk confocal system. Reviewed

    Enoki R, Ono D, Hasan MT, Honma S, Honma K

    Journal of neuroscience methods   Vol. 207 ( 1 ) page: 72-79   2012.5

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.jneumeth.2012.03.004

    PubMed

  43. De novo synthesis of PERIOD initiates circadian oscillation in cultured mouse suprachiasmatic nucleus after prolonged inhibition of protein synthesis by cycloheximide. Reviewed

    Nishide SY, Ono D, Yamada Y, Honma S, Honma K

    The European journal of neuroscience   Vol. 35   page: 291-299   2012.1

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1111/j.1460-9568.2011.07952.x

    PubMed

  44. Suprachiasmatic nucleus: cellular clocks and networks. Reviewed

    Honma S, Ono D, Suzuki Y, Inagaki N, Yoshikawa T, Nakamura W, Honma K

    Progress in brain research   Vol. 199   page: 129-141   2012

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/B978-0-444-59427-3.00029-0

    PubMed

  45. Clock mechanisms for seasonal adaptation: Morning and evening oscillators in the suprachiasmatic nucleus Reviewed

    Honma S, Inagaki N, Ono D, Yoshikawa T, Hashimoto S, Honma K

    Sleep and Biological rhythms   Vol. 6 ( 2 ) page: 84-90   2008.4

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1111/j.1479-8425.2008.00347.x

  46. A TTX-sensitive local circuit is involved in the expression of PK2 and BDNF circadian rhythms in the mouse suprachiasmatic nucleus. Reviewed

    Baba K, Ono D, Honma S, Honma K

    The European journal of neuroscience   Vol. 27   page: 909-916   2008.2

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1111/j.1460-9568.2008.06053.x

    PubMed

  47. Separate oscillating cell groups in mouse suprachiasmatic nucleus couple photoperiodically to the onset and end of daily activity. Reviewed

    Inagaki N, Honma S, Ono D, Tanahashi Y, Honma K

    Proceedings of the National Academy of Sciences of the United States of America   Vol. 104 ( 18 ) page: 7664-7669   2007.5

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1073/pnas.0607713104

    PubMed

▼display all

MISC 4

  1. Circadian clock and postnatal development

      Vol. 67 ( 6 ) page: 550 - 554   2016.11

     More details

    Language:Japanese  

    CiNii Books

  2. Oscillator networks in the suprachiasmatic nucleus: analysis of circadian parameters using time-laps images Invited

    Honma S, Ono D, Enoki R, Yoshikawa T, Kuroda S, Honma K

    Biological Clocks - 30th Anniversary of Sapporo Symposium on Biological Rhythm, (eds by Honma K and Honma S)     page: 33 - 41   2016.5

     More details

    Language:English   Publishing type:Meeting report  

  3. Hypothermia is induced by restricted feeding in mice : Effect of time of day

    Shin-ya Nishide, Yoko Suzuki, Daisuke Ono, Ken-ichi Honma, Sato Honma, Serge Daan

    JOURNAL OF PHYSIOLOGICAL SCIENCES   Vol. 63   page: S259 - S259   2013

     More details

    Language:English   Publishing type:Research paper, summary (international conference)   Publisher:SPRINGER JAPAN KK  

    Web of Science

  4. Large-Scale Circadian Calcium Imaging in Neuronal Network of the Suprachiasmatic Nucleus

    Ryosuke Enoki, Shigeru Kuroda, Daisuke Ono, Hasan Mazahir, Tetsuo Ueda, Sato Honma, Ken-ichi Honma

    JOURNAL OF PHYSIOLOGICAL SCIENCES   Vol. 63   page: S53 - S53   2013

     More details

    Language:English   Publishing type:Research paper, summary (international conference)   Publisher:SPRINGER JAPAN KK  

    Web of Science

Presentations 27

  1. CRY 二重欠損マウスにおける視交叉上核の細胞間カップリングと生後発達 International conference

    小野 大輔

    Cryptochrome研究会 

     More details

    Event date: 2016.4

    Country:Japan  

  2. VIPとAVPは生後発達における視交叉上核概日リズムの細胞間カップリングを調節する International conference

    小野大輔、本間さと、本間研一

    第93回日本生理学会大会 

     More details

    Event date: 2016.3

    Country:Japan  

  3. 視交叉上核と私. International conference

    小野 大輔

    時間医学講座開講10周年シンポジウム 

     More details

    Event date: 2016.3

    Country:Japan  

  4. VIP and AVP regulate circadian cellular networks in the suprachiasmatic nucleus of Cryptochrome deficient mice during postnatal development. International conference

    Daisuke Ono, Sato Honma, and Ken-ichi Honma

    Asian Forum on Chronobiology in 2015 

     More details

    Event date: 2015.8

    Country:Japan  

  5. 視交叉上核の生後発達にともなう神経ネットワーク形成 International conference

    小野大輔、本間さと、本間研一.

    第38回日本神経科学学会 

     More details

    Event date: 2015.7

    Country:Japan  

  6. Cry1/2ダブルノックアウトマウス視交叉上核における概日リズム形成メカニズム International conference

    小野大輔、本間研一、本間さと.

    第92回日本生理学会大会 

     More details

    Event date: 2015.3

    Country:Japan  

  7. Cryptochromeは生後発達における視交叉上核概日リズムの細胞間カップリングに重要である International conference

    小野 大輔

    久野賞受賞記念講演 

     More details

    Event date: 2015.3

    Country:Japan  

  8. マルチモーダル計測システムを用いた概日リズムの理解 International conference

    小野大輔、本間研一、本間さと.

    第87回日本生化学大会 

     More details

    Event date: 2014.10

    Country:Japan  

  9. Circadian rhythm generation and tuning in the suprachiasmatic nucleus, the master clock of mammals. International conference

    Daisuke Ono

    Circadian rhythm generation and tuning in the suprachiasmatic nucleus, the master clock of mammals. 

     More details

    Event date: 2014.9

    Country:Japan  

  10. 光ファイバーを用いた自由行動下マウス脳内長期遺伝子発現計測.  International conference

    小野大輔、本間研一、本間さと.

    第93回日本生理学会北海道地方会 

     More details

    Event date: 2014.8

    Country:Japan  

  11. 発光イメージングを用いて概日時計の生後発達を探る International conference

    小野大輔、本間さと、本間研一.

    奈良先端未来開拓コロキウム 

     More details

    Event date: 2013.12

    Country:Japan  

  12. 視交叉上核の生後発達と細胞間カップリング International conference

    小野大輔、本間さと、本間研一.

    第20回日本時間生物学会 

     More details

    Event date: 2013.11

    Country:Japan  

  13. Application of bioluminescence proteins for measurement of gene expression in vivo and ex vivo Invited

    Daisuke Ono

    IBRO APRC School 2018  2018.10 

  14. In vivo monitoring of circadian clock gene expression in the brain of freely moving mice Invited

    2018.3.30 

     More details

    Language:English   Presentation type:Symposium, workshop panel (nominated)  

  15. GABA in the suprachiasmatic nucleus refines circadian behavioral rhythms Invited

    Daisuke Ono

    V World Congress of Chronobiology  2019.4 

  16. Differential roles of AVP and VIP signaling in the postnatal development of the neural networks for the circadian clock in the suprachiasmatic nucleus Invited

    Daisuke Ono, Sato Honma, Ken-ichi Honma

    Sapporo symposium  2016.11 

  17. Circadian regulation of sleep and wakefulness in mammals Invited

    Daisuke ONお

    2nd Japanese-Canadian Frontiers of Science (JCFoS) symposium  2020.3 

  18. Postnatal development of cellular networks in the mammalian central circadian clock Invited

    Daisuke Ono

    2018.10 

  19. 発光イメージングを用いた哺乳類概日リズム研究

    小野 大輔

    環研カンファレンス  2017.2.24 

     More details

    Language:Japanese  

  20. 概日時計が調節する睡眠覚醒の神経回路 Invited

    小野 大輔

    第3回ルミノジェネティクス研究会  2018.11 

  21. 哺乳類概日時計中枢の生後発達と細胞間ネットワーク Invited

    小野 大輔

    第39回神経組織培養研究会  2017.10.7 

     More details

    Language:Japanese  

  22. 哺乳類の概日リズムと睡眠覚醒制御

    小野 大輔

    第1回名古屋リズム研究会  2017.3.31 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

  23. 光ファイバーを用いた自由行動下マウス脳内の時計遺伝子発現計測 Invited

    小野大輔, 本間研一, 柳川右千夫, 本間さと

    第43回日本睡眠学会定期学術集会  2018.7.13 

     More details

    Language:Japanese  

  24. マウス視交叉上核におけるGABAの機能 Invited

    小野大輔, 本間研一, 柳川右千夫, 本間さと

    第93回日本生理学会大会  2016.3.22 

     More details

    Language:English   Presentation type:Symposium, workshop panel (nominated)  

  25. The brain mechanism of circadian clock. Invited

    Daisuke Ono

    3rd ITCN, Taipei  2019.3 

  26. Simultaneous measurement of circadian rhythms of multiple functions: Dissociation of Per1 and Bmal1 circadian rhythms in the suprachiasmatic nucleus International conference

    Ono, D, Enoki, R, Honma, K, Honma, S

    XV European Biological Rhythms Society (EBRS) congress  2017.7.30 

     More details

    Language:English   Presentation type:Oral presentation (general)  

  27. Postnatal development of the neural networks in the mammalian circadian pacemaker Invited

    Daisuke Ono

    2017.2.11 

▼display all

Other research activities 1

  1. 文部科学省 若手科学者賞

    2020.4

Research Project for Joint Research, Competitive Funding, etc. 22

  1. 食と運動が脳に及ぼす影響とその睡眠覚醒調節メカニズムの解明

    2020 - 2022

    研究助成 

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\3000000 ( Direct Cost: \3000000 )

  2. ホタルが光る原理を利用した脳活動計測法の開発

    2020 - 2021

    研究助成 

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\2000000 ( Direct Cost: \2000000 )

  3. 哺乳類の行動の時間的ニッチを制御する脳内メカニズムの解明

    2020 - 2021

    研究助成(継続) 

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\3000000 ( Direct Cost: \3000000 )

  4. 新規神経変性疾患モデルマウスを用いた概日リズム調節メカニズムの解明

    2020 - 2021

    研究助成 

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\1000000 ( Direct Cost: \1000000 )

  5. 精神疾患に関わる概日時計細胞の同定と臨床応用に向けた研究

    2019 - 2021

    研究助成 

    小野 大輔

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\9000000 ( Direct Cost: \9000000 )

  6. 発光タンパク質を用いた非侵襲的光計測法の開発

    2018 - 2019

    研究助成 

    小野 大輔

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\2000000 ( Direct Cost: \2000000 )

  7. 睡眠覚醒を調節する視床下部神経群の新たな機能解明

    2018 - 2019

    研究助成 

    小野 大輔

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\3000000 ( Direct Cost: \3000000 )

  8. 生体深部からの細胞活動を可視化するイメージング技術の開発

    2018

    研究助成 

    小野 大輔

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\4000000 ( Direct Cost: \4000000 )

  9. 脳深部光計測を用いた睡眠覚醒メカニズム解明

    2018

    研究助成 

    小野 大輔

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\2000000 ( Direct Cost: \2000000 )

  10. 哺乳類の行動の時間的ニッチを制御する脳内メカニズムの解明

    2018

    研究助成 

    小野 大輔

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\2000000 ( Direct Cost: \2000000 )

  11. 革新的光イメージングと1細胞光操作法を用いた睡眠創薬研究への展開

    2017 - 2018

    研究助成 

    小野 大輔

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\2000000 ( Direct Cost: \2000000 )

  12. 睡眠覚醒の概日リズム制御に関わる神経回路の解明

    2016.10 - 2018.9

    研究助成 

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\1000000 ( Direct Cost: \1000000 )

  13. 概日時計の睡眠覚醒制御に関わる新規神経回路の同定

    2016 - 2017

    研究助成 

    小野 大輔

      More details

    Grant type:Competitive

  14. 革新的発光イメージングを用いた睡眠覚醒の創薬研究への応用

    2016 - 2017

    研究助成 

    小野 大輔

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\1000000 ( Direct Cost: \1000000 )

  15. 革新的発光イメージングを用いた睡眠創薬研究への展開

    2016 - 2017

    研究助成 

    小野 大輔

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\2000000 ( Direct Cost: \2000000 )

  16. 概日時計の動的変容が引き起こす精神疾患の神経回路形成メカニズム

    2015 - 2016

    研究助成 

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\2000000 ( Direct Cost: \2000000 )

  17. 中枢時計特異的遺伝子操作を用いた概日システムの理解

    2014 - 2015

    研究助成 

      More details

    Grant type:Competitive

  18. 光ファイバーを用いた長期in vivo遺伝子計測:概日リズムのシステム的理解を目指して

    2014 - 2015

    若手研究者自立支援 

      More details

    Grant type:Competitive

  19. 光ファイバーを用いたin vivoイメージングによる概日リズムのシステム的理解

    2014 - 2015

    研究助成 

      More details

    Grant type:Competitive

  20. 概日時計特異的操作法を用いた睡眠・覚醒リズムのシステム的理解

    2014 - 2015

    研究助成 

      More details

    Grant type:Competitive

  21. 無麻酔・無拘束マウスの神経ネットワークの計測と制御による概日リズムの評価

    2014 - 2015

    研究助成 

      More details

    Grant type:Competitive

  22. 概日リズムの発達と時計遺伝子

    2013 - 2014

    交流助成 

      More details

    Grant type:Competitive

▼display all

KAKENHI (Grants-in-Aid for Scientific Research) 16

  1. Understanding of the regulation of sleep and wakefulness by CRF neurons in mice

    Grant number:22KF0166  2023.3 - 2024.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for JSPS Fellows

      More details

    Authorship:Principal investigator 

    Grant amount:\2300000 ( Direct Cost: \2300000 )

  2. Understanding of the regulation of sleep and wakefulness by CRF neurons in mice

    Grant number:22F22106  2022.4 - 2024.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for JSPS Fellows

      More details

    Authorship:Other 

  3. 哺乳類の昼行性・夜行性を決定する神経メカニズムの解明

    Grant number:21K19255  2021.7 - 2023.3

    科学研究費助成事業  挑戦的研究(萌芽)

    小野 大輔

      More details

    Authorship:Principal investigator 

    Grant amount:\6370000 ( Direct Cost: \4900000 、 Indirect Cost:\1470000 )

  4. 概日時計による体温調節メカニズムの解明

    Grant number:21H02526  2021.4 - 2024.3

    科学研究費助成事業  基盤研究(B)

    小野 大輔, 山口 裕嗣

      More details

    Authorship:Principal investigator 

    Grant amount:\17290000 ( Direct Cost: \13300000 、 Indirect Cost:\3990000 )

    哺乳類における概日時計の中枢は、視床下部に位置する「視交叉上核」に存在し、時計遺伝子群の転写・翻訳を介したフィードバックループにより24時間のリズムが生成される。そのリズムは外界の明暗環境に同調し、最終的に睡眠・覚醒や体温リズムなど様々な生理機能の時間的調節を行う。これまで研究から、現象的に概日時計がこれらの生理機能を調節している事が示されてきたが、実際どの神経回路がどの生理機能の時間調節に関与するのかは不明であった。本研究では、光遺伝学、光イメージング、神経トレーシング、ゲノム編集など様々な最新の技術を組み合わせ、概日時計による体温調節メカニズムを神経回路レベルで明らかにする。

  5. 時間感覚と睡眠・覚醒リズムを形成する神経基盤の解明

    Grant number:21H00307  2021.4 - 2023.3

    科学研究費助成事業  新学術領域研究(研究領域提案型)

    小野 大輔

      More details

    Authorship:Principal investigator 

    Grant amount:\5200000 ( Direct Cost: \4000000 、 Indirect Cost:\1200000 )

    現代の時間生物学の基盤を創ったユルゲン・アショフは、ヒトの体内には自律的に約24時間周期で振動する時計、「概日時計」の存在を発見し、体温と睡眠・覚醒の概日リズムが乖離する事を報告した。彼は、ヒトの時間感覚は体温リズムではなく、睡眠・覚醒のリズムに影響を受ける事を提示した。これらの事は、ヒトの“時間”は体温調節系と睡眠・覚醒調節系の二種類存在する事を示す。しかし、これら二つの時間調節に関わる神経経路はほとんど明らかにされていない。本研究では中枢概日時計を起点とする、睡眠・覚醒リズムと体温リズム調節に関わる神経経路を明らかにし、ヒトが持つ異なる二つの時間の存在意義に迫る。

  6. 概日時計が制御するシンギュラリティー神経回路の探索

    Grant number:21H00422  2021.4 - 2023.3

    科学研究費助成事業  新学術領域研究(研究領域提案型)

    小野 大輔

      More details

    Authorship:Principal investigator 

    Grant amount:\5720000 ( Direct Cost: \4400000 、 Indirect Cost:\1320000 )

    生体の時間調節機構に重要な役割を持つのが概日時計である。この概日時計は、睡眠・覚醒といった生体の24時間のリズムを作り出すぺースメーカーとして機能し、その中枢概日時計が、脳内の視床下部に位置する視交叉上核に存在する。この視交叉上核を電気的に破壊すると、24時間の体内のリズムが破綻し、様々な生理機能の時間的秩序が崩壊する事から、生理機能のタイミングに視交叉上核が重要な役割を持つことが示唆されている。本研究では、マウスの生理機能のタイミングを調節する神経メカニズムを明らかにし、概日時計が制御するシンギュラリティ神経回路の同定を目指す。

  7. 厳しい地球環境に適応するための哺乳類生体機能の解明

    2022.4 - 2024.3

    科学技術振興機構  創発的研究支援事業 

      More details

    Authorship:Principal investigator 

  8. 自然環境下における睡眠覚醒調節メカニズムの解明 International coauthorship

    2020.11 - 2024.3

    科学研究費補助金 

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\18720000 ( Direct Cost: \14400000 、 Indirect Cost:\432000 )

  9. Understanding of sleep-wake regulatory mechanisms in nature International coauthorship

    Grant number:20KK0177  2020.10 - 2024.3

    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\18720000 ( Direct Cost: \14400000 、 Indirect Cost:\4320000 )

  10. 概日リズムの時刻情報変換に関わる神経回路動作原理の理解

    2018.4 - 2021.3

    科学研究費補助金  基盤研究(B)

    小野 大輔

      More details

    Authorship:Principal investigator 

  11. 概日リズムの時刻情報変換に関わる神経回路動作原理の理解 International coauthorship

    Grant number:18H02477  2018.4 - 2021.3

    小野 大輔

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\17290000 ( Direct Cost: \13300000 、 Indirect Cost:\3990000 )

    概日時計中枢である視交叉上核からの出力経路を同定するため、昨年度までは順行性のトレーシング、光遺伝学を用いた細胞操作により、室傍核CRF神経の活性化により覚醒が誘導されることを明らかにした。本年度は、室傍核CRF神経特異的に、蛍光カルシウムプローブである、GCaMP6を発現させ、光ファイバーを挿入し、REM, NREM睡眠、覚醒の各ステージにおけるカルシウム変動を計測した。室傍核CRF神経の活動は、覚醒時に上昇し、REM, NREM睡眠時には低下する事が明らかとなった。さらに、CRF神経の活動は、覚醒の初期に上昇するが、その後の覚醒の間に徐々に活動が低下していった。この結果は、室傍核CRF神経は、覚醒を誘導するが、その維持には必要ではないことが明らかになった。
    次にDREADDを用いて、室傍核CRF神経特異的に神経活動を抑制する試みを行った、CNOをマウスの活動が高くなる暗期直前に投与し、神経活動の抑制を行った。コントロールは生理食塩水の投与とした。その結果、CNOの投与により、暗期の覚醒量が減少し、NREM睡眠が上昇した。さらに、ジフテリアトキシンA断片を用い、室傍核CRF神経特異的な神経脱落を行い、自発行動量の計測を行った。その結果、室傍核CRF神経の選択的な脱落により、マウスの自発行動量の低下が認められた。これらの結果は、室傍核CRF神経が覚醒に関わることをサポートする結果である。
    室傍核CRF神経の活性化、抑制化実験、ファイバーフォトメトリー実験などメインとなる実験データが得られている事、現在論文を投稿中であり、当初の計画以上の進展があるといえる。
    室傍核CRF神経の上流および下流の神経細胞群の同定を進めると同時に、この経路以外で、視交叉上核の概日リズム情報が出力されている領域を同定する。順行性・逆行性のトレーシング、光遺伝学、光計測などの技術を組みあわせ研究を進める。
    また発光を用いたin vivo光計測ツールの開発およびレポーターマウスの作成を進め、非侵襲的に脳機能を計測可能なシステムを完成させる。

  12. Hierarchical self-organization of circadian system: synchronization of cellular oscillators and pacemaker coupling

    Grant number:15H04679  2015.4 - 2018.3

    HONMA Sato

      More details

    Authorship:Coinvestigator(s) 

    We aimed to clarify the self-organizing mechanisms for the hierarchical multi-oscillator structure of the mammalian circadian clock in the suprachiasmatic nucleus (SCN) using knockout mice for clock genes and neuropeptides functions, luciferase reporter mice for continuous monitoring clock gene expression, and fluorescence sensors for monitoring intracellular calcium and membrane potentials. We demonstrated that both VIP and vasopressin act as synchronizers for cellular rhythms. We also found that their roles change depending on postnatal development, in which clock gene Cry is involved. We also found that GABA in the SCN acts not in cellular rhythm generation but in coherent neural rhythm output from the SCN to make the central circadian clock free of bursts. We further found that Per1 rhythms in the discrete areas in the SCN are involved in transferring photoperiodic signals to behavior rhythm output by changing the phase relations.

  13. Measurement of transcription activity in freely moving mice: Ultradian rhythms and their physiological roles

    Grant number:15K12763  2015.4 - 2018.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Challenging Exploratory Research  Grant-in-Aid for Challenging Exploratory Research

    HONMA Sato, NAKAMURA Wataru, ONO Daisuke

      More details

    In freely moving mice, clock gene expression, continuously recorded by luciferase reporter from the suprachiasmatic nucleus (SCN), exhibits ultradian rhythms in addition to the circadian gene expression rhythm. Since the ultradian periodicities were similar in three clock genes, we hypothesized the common mechanisms generating ultradian rhythms within or near the SCN. In the present study, we aimed to find out the common mechanisms underlying these rhythms.
    We found that the ultradian oscillation originated not in the SCN but in the paraventricular nucleus and subparaventricular zone using the co-culture system and calcium imaging. Glutamate and GABA are involved in generating ultradian rhythms. Using an optical fiber system for measuring bioluminescence continuously, we measured Per1-luc and Bmal1-ELuc expression rhythms and found that two rhythms were transiently uncoupled after phase-delaying light pulse. We further confirmed the two rhythms can be separable in culture system.

  14. 中枢時計のin vivo計測による概日リズムのシステム的理解

    2014 - 2016

    科学研究費補助金  若手研究(B)

    小野 大輔

  15. 概日リズムの生後発達に関わる分子の探索

    2012 - 2013

    科学研究費補助金 

    小野 大輔

  16. 哺乳類概日リズム形成機構の解明 : in vitro, in vivo単一細胞イメージング

    2009 - 2011

    科学研究費補助金 

      More details

    Authorship:Principal investigator 

▼display all

 

Teaching Experience (On-campus) 1

  1. 大学院 基礎医科学実習

    2021

Teaching Experience (Off-campus) 1

  1. 生理学

    2020.4 Aichi Medical University)

     More details

    Level:Undergraduate (specialized)