Updated on 2025/03/04

写真a

 
INAGAKI Tetsuya
 
Organization
Graduate School of Bioagricultural Sciences Department of Forest and Environmental Resources Sciences Associate professor
Graduate School
Graduate School of Bioagricultural Sciences
Undergraduate School
School of Agricultural Sciences Department of Bioenvironmental Sciences
Title
Associate professor
Contact information
メールアドレス

Degree 1

  1. 博士(農学) ( 2011.3   名古屋大学 ) 

Research Interests 16

  1. Plant factory

  2. Image analysis

  3. Wood science

  4. Chemometrics

  5. Machine learning

  6. X-ray diffraction

  7. THz time domain spectroscopy

  8. Near infrared spectroscopy

  9. Spectroscopy

  10. 近赤外分光法

  11. 農業工学

  12. 機械学習

  13. 木質科学

  14. ケモメトリクス

  15. X線回折法

  16. THz分光法

Research Areas 7

  1. Life Science / Forest science

  2. Manufacturing Technology (Mechanical Engineering, Electrical and Electronic Engineering, Chemical Engineering) / Measurement engineering

  3. Informatics / Statistical science

  4. Environmental Science/Agriculture Science / Agricultural environmental engineering and agricultural information engineering

  5. Manufacturing Technology (Mechanical Engineering, Electrical and Electronic Engineering, Chemical Engineering) / Measurement engineering

▼display all

Current Research Project and SDGs 3

  1. 植物対話型植物工場の構築

  2. 木質素材の非破壊材質評価

  3. 農産物の非破壊品質評価

Research History 8

  1. Nagoya University   Associate professor

    2021.4

      More details

    Country:Japan

  2. Nagoya University   Graduate School of Bioagricultural Sciences   Associate professor

    2021.4

  3. Nagoya University   Lecturer

    2016.9 - 2021.3

      More details

    Country:Japan

  4. Nagoya University   Lecturer

    2016.9 - 2021.3

  5. University of Northern British Columbia   Researcher

    2011.10 - 2012.3

      More details

    Country:Canada

▼display all

Education 3

  1. Nagoya University   Graduate School, Division of Agriculture

    2008.4 - 2011.3

      More details

    Country: Japan

  2. Nagoya University   Graduate School, Division of Agriculture

    - 2008.3

      More details

    Country: Japan

  3. Nagoya University   Faculty of Agriculture

    - 2006.3

      More details

    Country: Japan

Professional Memberships 8

  1. 日本分光学会

  2. 近赤外研究会

  3. 日本木材加工技術協会

  4. 日本木材学会

  5. 近赤外研究会

▼display all

Committee Memberships 2

  1. 日本木材学会   常任理事  

    2022 - 2024   

  2. 名古屋大学農学部同窓会   理事  

    2021   

      More details

    Committee type:Other

Awards 7

  1. 日本木材学会賞

    2020.3   一般社団法人日本木材学会   広帯域分光分析による木材の物性解析および非破壊材質評価

    稲垣哲也

     More details

    Award type:Honored in official journal of a scientific society, scientific journal 

  2. 2020年度全学教育科目担当教員顕彰

    2021.4   名古屋大学教養教育院  

    2020年度春学期物理学実験担当

  3. 令和元年度コニカミノルタ画像科学奨励賞

    2020.3   公益財団法人コニカミノルタ科学技術振興財団   近赤外ハイパースペクトラルイメージングのディープラーニング認識

    稲垣哲也

     More details

    Award type:Award from publisher, newspaper, foundation, etc. 

  4. 日本木材学会賞

    2020.3   一般社団法人日本木材学会   広帯域分光分析による木材の物性解析および非破壊材質評価

  5. 紙パルプ技術協会

    2018.10   紙パルプ技術協会賞   近赤外分光法を用いた紙中の木材パルプの複合的評価手法の開発

▼display all

 

Papers 100

  1. Determination of true optical absorption and scattering coefficient of wooden cell wall substance by time-of-flight near infrared spectroscopy Reviewed

    Ryunosuke Kitamura, Tetsuya Inagaki and Satoru Tsuchikawa

    Optic Express   Vol. 24   page: 3999-4009   2016

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

  2. Prediction of oven-dry density of wood by time-domain terahertz spectroscopy Reviewed

    Tetsuya Inagaki, Ian D. Hartley, Satoru Tsuchikawa Matthew Reid

    Holzforschung     2013

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1515/hf-2013-0013

  3. Difference of Cellulosic Crystalline Structure in Wood between Hydrothermal and Ageing Degradation Observed by NIRs and XRD Reviewed

    Tetsuya Inagaki, Heinz W. Siesler, Katsuya Mitsui and Satoru Tsuchikawa

    Biomacromolecules   Vol. 11   page: 2300   2010

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  4. Design and development of a portable Vis-NIR spatially resolved spectroscopic device for nondestructive and rapid evaluation of growth stress in standing trees

    Te Ma, Hiroyuki Yamamoto, Takusu Kajimura, Tetsuya Inagaki, Satoru Tsuchikawa

    Computers and Electronics in Agriculture   Vol. 231   page: 110014 - 110014   2025.4

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Elsevier BV  

    Growth stress (growth strain) is caused by internal stresses that develop within the wood during expansive growth and maturation. Although growth stress evaluations are critical for predicting and mitigating problems such as warping, cracking, and deformation during processing and use, conventional methods have several disadvantages, including notably high operational costs, time-consuming, and relatively destructive. This study aimed to develop a nondestructive, portable, and rapid technique that can evaluate local growth stress in standing trees. A multifiber-based visible-near-infrared (Vis-NIR) spatially resolved spectroscopic (SRS) device was, therefore, designed and used to collect light scattering and absorption information from standing trees. Principal component analysis revealed that the collected Vis-NIR SRS spectra were highly correlated with anatomical features related to growth stress, such as the difference in light scattering (particularly at approximately 846 nm) and moisture content (approximately 970 nm) inside the wood, as well as the wood surface color (approximately 660 nm). The determination coefficient for the cross-validation set was found to be 0.84 with a root mean square error of 333 με using partial least squares regression analysis. In addition to the high prediction accuracy achieved by machine learning algorithms, the results of Monte Carlo modeling of photon migration in 3D wood structure models also demonstrated that the Vis-NIR SRS approach has great potential for on-site applications, offering a new and cost-effective method for evaluating growth stress in green trees.

    DOI: 10.1016/j.compag.2025.110014

    Scopus

  5. Intelligent monitoring of post-processing characteristics in 3D-printed food products: A focus on fermentation process of starch-gluten mixture using NIR and multivariate analysis

    Qian Jiang, Yanru Bao, Te Ma, Satoru Tsuchikawa, Tetsuya Inagaki, Han Wang, Hao Jiang

    Journal of Food Engineering   Vol. 388   2025.3

     More details

    Publishing type:Research paper (scientific journal)  

    The production of three-dimensional (3D)-printed food products requires not only optimal 3D-printing adaptability but also appropriate post-processing characteristics. This study aimed to use near infrared (NIR) spectroscopy to predict the rheological properties of 3D-printed dough, enabling intelligent monitoring of the dough's fermentation process. Utilizing support vector machine (SVM) classification model, the fermentation stages can be classified as under-fermentation, complete fermentation, and over-fermentation. Employing preprocessing methods with Synergy Interval Partial Least Square-Competitive Adaptive Reweighted Sampling (SIPLS-CARS) algorithm, 27, 39, 23, and 27 key wavelengths were filtered from the raw NIR spectral data, corresponding to the prediction of storage modulus (G′), loss modulus (G″), complex viscosity (η∗), and loss factor (tan δ), respectively. Quantitatively, SVM (Support Vector Machine) regression outperformed Partial Least Squares (PLS) with Rc2 values (0.95, 0.94, 0.94) and Rp2 values (0.93, 0.93, 0.94) for G′, G″, and η∗. NIR spectra-based predictive models demonstrated superior performance compared to rheo-fermentation properties models. In summary, these findings show the potential of NIR spectroscopy as a rapid tool for predicting the fermentation progress of 3D-printed doughs.

    DOI: 10.1016/j.jfoodeng.2024.112357

    Scopus

▼display all

Books 10

  1. PythonとChatGPTを活用する スペクトル解析実践ガイド

    稲垣哲也( Role: Sole author)

    談社サイエンティフィク  2025.2  ( ISBN:9784065385906

  2. Near-infrared spectroscopy : theory, spectral analysis, instrumentation, and applications

    ( Role: Joint author)

    Springer Nature Singapore  2020.11  ( ISBN:9811586470

     More details

    Total pages:601   Language:English

    CiNii Books

    ASIN

  3. 近赤外ハイパースぺクトラル画像のディープラーニング認識

    稲垣哲也

    検査技術  2020 

  4. “Time-of-Flight Spectroscopy”, “Wooden Material and Environmental Sciences”

    T. Inagaki( Role: Joint author ,  Time-of-Flight Spectroscopy”, “Wooden Material and Environmental Sciences”)

    Near-Infrared Spectroscopy-Theory, Spectral Analysis, Instrumentation, and Applications-, Editor: Y. Ozaki, C. Huck, S. Tsuchikawa  2020 

  5. 近赤外分光イメージング法の農業・食品分野への応用

    土川覚、稲垣哲也、馬特( Role: Joint author)

    月刊画像ラボ  2020 

▼display all

MISC 4

  1. Application of Near-Infrared Spectroscopy to Forest and Wood Products

    Satoru Tsuchikawa, Tetsuya Inagaki, Te Ma

    Current Forestry Reports   Vol. 9 ( 6 ) page: 401 - 412   2023.12

     More details

    Publishing type:Book review, literature introduction, etc.  

    Purpose of Review: Forest and wood products are often characterized by a uniformity of quality attributes, which necessitates the development of rapid and non-destructive quality evaluation methods to ensure their optimal quality. Near-infrared spectroscopy (NIRS) represents a highly suitable approach for the characterization of organic compounds, and is generally combined with sophisticated multivariate analysis methods. This review article presents a range of scientific and technical reports showcasing the successful use of NIRS for evaluating forest and wood products, mainly published within the past 5 years. Recent Findings: Continuous advancements in spectral imaging techniques and the integration of big-data analytics have greatly enhanced the capabilities of NIR instrumentation, enabling its widespread application across diverse fields. Although NIR spectral imaging methods do have some limitations when it comes to online grading, they can still be used to test small quantities of samples at a batch level. Moreover, the ever-increasing use of handheld devices has made NIRS easily accessible. Summary: We aim to provide a summary of new research in basic spectroscopic research, integrating the improvements of spectral imaging methods and big-data analytics. Furthermore, low-cost and portable devices have been produced, enabling remote analysis and further expanding the scope of NIRS applications. Looking forward, we anticipate that continued advancements in this field will enable even wider applications of NIRS for online or at-line quality monitoring in diverse fields.

    DOI: 10.1007/s40725-023-00203-3

    Scopus

  2. 近赤外ハイパースぺクトラル画像のディープラーニング認識

    検査技術   Vol. 26 ( 6 ) page: 61 - 66   2020.4

     More details

    Authorship:Lead author, Corresponding author  

  3. 近赤外分光イメージング法の農業・食品分野への応用

    土川覚, 稲垣哲也, 馬特

    月刊画像ラボ     page: 29 - 33   2020.4

  4. 近赤外分光法を用いた紙中の木材パルプの複合的評価手法の開発

    JAPAN TAPPI JOURNAL   Vol. 71 ( 3 ) page: 318 - 325   2017

     More details

    Publisher:Japan Technical Association of the Pulp and Paper Industry  

    DOI: 10.2524/jtappij.1603

Presentations 48

  1. 機械学習によるスペクトルデータ解析 _Lambert Beer 則、ケモメトリクス、深 層学習

    稲垣哲也

    <高分子分析研究懇談会> 4 10 回 夏季 例会  2022.7.27 

     More details

    Event date: 2022.7

  2. 多変量解析(ケモメトリックス)の理論と実践 Invited

    稲垣哲也

    第47回近赤外講習会(中・上級コース)・第109回食品技術講習会 

     More details

    Event date: 2021.1

    Language:Japanese   Presentation type:Public lecture, seminar, tutorial, course, or other speech  

  3. -pythonを用いたケモメトリックスの実践- Invited

    稲垣哲也

    日本分光学会スペクトル解析部会 第1回講習会 

     More details

    Event date: 2020.2

    Language:Japanese   Presentation type:Public lecture, seminar, tutorial, course, or other speech  

  4. 多変量解析(ケモメトリックス)の理論と実践

    稲垣哲也

    第43回近赤外講習会(中級・上級コース)・第105回食品技術講習会 

     More details

    Event date: 2019.1

    Language:Japanese   Presentation type:Public lecture, seminar, tutorial, course, or other speech  

  5. スペクトル定量分析の基礎 Invited

    稲垣哲也

    ANS2016, the 5th Asian NIR symposium 

     More details

    Language:Japanese   Presentation type:Public lecture, seminar, tutorial, course, or other speech  

▼display all

Research Project for Joint Research, Competitive Funding, etc. 8

  1. Bi-dual解析による木材物性の3Dインテリジェント情報化

    2024.7 - 2028.7

    2024年度 江間忠研究助成 

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\10000000

  2. 革新的で安価な木材等級非破壊高速測定装置の開発

    A-STEP トライアウト 

      More details

    Grant type:Competitive

  3. 近赤外分光分析法を活用した天然ゴムオンサイト品質評価手法 の開発

    Grant number:28-013019  2014.4 - 2015.3

    第25回研究助成 一般研究助成 

      More details

    Grant type:Competitive

  4. 木質材料に関する可視・近赤外考古計 測学の確立

    Grant number:28-G-G2501 

    平成24年度海外研究者招へい事業助成 

      More details

    Authorship:Principal investigator 

  5. 近赤外ハイパースペクトラルイメージングのディープラーニング認識

    令和元年度コニカミノルタ画像科学奨励賞 

      More details

    Authorship:Principal investigator 

▼display all

KAKENHI (Grants-in-Aid for Scientific Research) 15

  1. Development of THz cellulose crystallography

    Grant number:21H02255  2021.4 - 2024.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)  Grant-in-Aid for Scientific Research (B)

      More details

    Authorship:Principal investigator 

    Grant amount:\12350000 ( Direct Cost: \9500000 、 Indirect Cost:\2850000 )

  2. 超広帯域マルチ分光計測による古材の表層・内部材質評価手法の確立

    2014.4 - 2016.3

    科学研究費補助金  若手研究(B)

      More details

    Authorship:Principal investigator 

  3. ユニークな分光法のカップリングによる脱ケモメトリクス果実評価手法の構築

    2015.4 - 2017.3

    科学研究費補助金 

      More details

    Authorship:Coinvestigator(s) 

  4. NIR-HSI法を活用した木材のハイスループット型材質分析手法の確立

    2013.4 - 2016.3

    科学研究費補助金  基盤研究(B)

      More details

    Authorship:Coinvestigator(s) 

  5. 広帯域マルチ分光計測による木材乾燥現象の微視的~巨視的レベルでの把握

    2013.4 - 2015.3

    科学研究費補助金 

      More details

    Authorship:Coinvestigator(s) 

▼display all

 

Teaching Experience (On-campus) 68

  1. Fundamentals of Physics I

    2023

  2. 理系基礎科目 物理学実験

    2020

  3. 農学部特別講義・農業情報工学

    2020

  4. 生物材料解析学

    2020

  5. 応用分光分析法

    2020

▼display all

Teaching Experience (Off-campus) 11

  1. Pythonを用いたスペクトルデータのケモメトリクス(機械学習)解析

    2022 https://www.udemy.com/course/spectra_chemo_python/?referralCode=D7C73F7FBC6B6A4B8DAB)

  2. データサイエンス3

    2019 Nagoya University)

  3. 応用分光分析法

    2018 Nagoya University)

  4. 物理学基礎I

    2023 Nagoya University)

  5. 生命系物理工学

    2018 Nagoya University)

▼display all