Updated on 2024/03/18

写真a

 
KOIKE, Ryotaro
 
Organization
Graduate School of Informatics Department of Complex Systems Science 2 Assistant Professor
Graduate School
Graduate School of Informatics
Undergraduate School
School of Informatics Department of Natural Informatics
Title
Assistant Professor

Degree 1

  1. 博士(理学) ( 2003.9   京都大学 ) 

Research Areas 2

  1. Others / Others  / 構造バイオインフォマティクス

  2. Others / Others  / 計算構造生物学

Current Research Project and SDGs 1

  1. 計算機による蛋白質の構造変化解析

 

Papers 33

  1. Protein kinases phosphorylate long disordered regions in intrinsically disordered proteins. Reviewed

    Koike R, Amano M, Kaibuchi K, Ota M.

    Protein Sci.     2020.2

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1002/pro.3789

  2. Structural changes of homodimers in the PDB. Reviewed

    Koike R, Amemiya T, Horii T, Ota M.

    J Struct Biol.     2017.12

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.jsb.2017.12.004

  3. Comprehensive analysis of motions in molecular dynamics trajectories of the actin capping protein and its inhibitor complexes. Reviewed

    Koike R, Takeda S, Maeda Y, Ota M.

    Proteins     page: -   2016.7

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  4. Hierarchical description and extensive classification of protein structural changes by Motion Tree. Reviewed

    Koike R, Ota M, Kidera A.

    J Mol Biol   Vol. 426   page: 756-762   2014.2

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  5. SCPC: A method to structurally compare protein complexes. Reviewed

    Koike R, Ota M

    Bioinformatics   Vol. 28   page: 324-330   2012.2

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  6. Elastic network model reveals distinct flexibilities of capping proteins bound to CARMIL and twinfilin-tail Reviewed

    Koike Ryotaro, Ota Motonori

    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS     2023.7

     More details

    Language:English   Publisher:Proteins: Structure, Function and Bioinformatics  

    Capping protein (CP) binds to the barbed end of an actin-filament and inhibits its elongation. CARMIL binds CP and dissociates it from the barbed end of the actin-filament. The binding of CARMIL peptide alters the flexibility of CP, which is considered to facilitate the dissociation. Twinfilin also binds to CP through its C-terminal tail. The complex structures of the CP/twinfilin-tail (TW-tail) peptide indicate that the binding sites of CARMIL and TW-tail overlap. However, TW-tail binding does not facilitate the dissociation of CP from the barbed end. We extensively investigated the flexibilities of CP in the CP/TW-tail or CP/CARMIL complexes using an elastic network model and concluded that TW-tail binding does not alter the flexibility of CP. Our extensive analysis also highlighted that the strong contacts of peptides with the two domains of CP, that is, the CP-L and CP-S domains, are key to changing the flexibilities of CP. CARMIL peptides can interact strongly with both of the domains, while TW-tail peptides exclusively interact with the CP-S domain because the binding site of TW-tail on CP relatively shifts to the CP-S domain compared with that of CP/CARMIL. This result supports our hypothesis that the dissociation of CP from the barbed end is regulated by the flexibility of CP.

    DOI: 10.1002/prot.26560

    Web of Science

    Scopus

    PubMed

  7. Rational design of phase separating peptides based on phase separating protein sequence of p53 Reviewed

    Kamagata Kiyoto, Hando Atsumi, Ariefai Maulana, Iwaki Nanako, Kanbayashi Saori, Koike Ryotaro, Ikeda Keisuke

    SCIENTIFIC REPORTS   Vol. 13 ( 1 ) page: 5648   2023.4

     More details

    Language:English   Publisher:Scientific Reports  

    Artificial phase-separating (PS) peptides can be used in various applications such as microreactors and drug delivery; however, the design of artificial PS peptides remains a challenge. This can be attributed to the limitation of PS-relevant residues that drive phase separation by interactions of their pairs in short peptides and the difficulty in the design involving interaction with target PS proteins. In this study, we propose a rational method to design artificial PS peptides that satisfy the requirements of liquid droplet formation and co-phase separation with target PS proteins based on the target PS protein sequence. As a proof of concept, we designed five artificial peptides from the model PS protein p53 using this method and confirmed their PS properties using differential interference contrast and fluorescence microscopy. Single-molecule fluorescent tracking demonstrated rapid diffusion of the designed peptides in their droplets compared to that of p53 in p53 droplets. In addition, size-dependent uptake of p53 oligomers was observed in the designed peptide droplets. Large oligomers were excluded from the droplet voids and localized on the droplet surface. The uptake of high-order p53 oligomers into the droplets was enhanced by the elongated linker of the designed peptides. Furthermore, we found that the designed peptide droplets recruited p53 to suppress gel-like aggregate formation. Finally, we discuss aspects that were crucial in the successful design of the artificial PS peptides.

    DOI: 10.1038/s41598-023-32632-2

    Web of Science

    Scopus

    PubMed

  8. Prediction of chaperonin GroE substrates using small structural patterns of proteins Reviewed

    Minami Shintaro, Niwa Tatsuya, Uemura Eri, Koike Ryotaro, Taguchi Hideki, Ota Motonori

    FEBS OPEN BIO   Vol. 13 ( 4 ) page: 779 - 794   2023.4

     More details

    Language:English   Publisher:FEBS Open Bio  

    Molecular chaperones are indispensable proteins that assist the folding of aggregation-prone proteins into their functional native states, thereby maintaining organized cellular systems. Two of the best-characterized chaperones are the Escherichia coli chaperonins GroEL and GroES (GroE), for which in vivo obligate substrates have been identified by proteome-wide experiments. These substrates comprise various proteins but exhibit remarkable structural features. They include a number of α/β proteins, particularly those adopting the TIM β/α barrel fold. This observation led us to speculate that GroE obligate substrates share a structural motif. Based on this hypothesis, we exhaustively compared substrate structures with the MICAN alignment tool, which detects common structural patterns while ignoring the connectivity or orientation of secondary structural elements. We selected four (or five) substructures with hydrophobic indices that were mostly included in substrates and excluded in others, and developed a GroE obligate substrate discriminator. The substructures are structurally similar and superimposable on the 2-layer 2α4β sandwich, the most popular protein substructure, implying that targeting this structural pattern is a useful strategy for GroE to assist numerous proteins. Seventeen false positives predicted by our methods were experimentally examined using GroE-depleted cells, and 9 proteins were confirmed to be novel GroE obligate substrates. Together, these results demonstrate the utility of our common substructure hypothesis and prediction method.

    DOI: 10.1002/2211-5463.13590

    Web of Science

    Scopus

    PubMed

  9. Structures and mechanisms of actin ATP hydrolysis Reviewed

    Kanematsu Yusuke, Narita Akihiro, Oda Toshiro, Koike Ryotaro, Ota Motonori, Takano Yu, Moritsugu Kei, Fujiwara Ikuko, Tanaka Kotaro, Komatsu Hideyuki, Nagae Takayuki, Watanabe Nobuhisa, Iwasa Mitsusada, Maeda Yuichiro, Takeda Shuichi

    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA   Vol. 119 ( 43 ) page: e2122641119   2022.10

     More details

    Language:English   Publisher:Proceedings of the National Academy of Sciences of the United States of America  

    The major cytoskeleton protein actin undergoes cyclic transitions between the monomeric G-form and the filamentous F-form, which drive organelle transport and cell motility. This mechanical work is driven by the ATPase activity at the catalytic site in the F-form. For deeper understanding of the actin cellular functions, the reaction mechanism must be elucidated. Here, we show that a single actin molecule is trapped in the F-form by fragmin domain-1 binding and present their crystal structures in the ATP analog-, ADP-Pi-, and ADP-bound forms, at 1.15-Å resolutions. The G-to-F conformational transition shifts the side chains of Gln137 and His161, which relocate four water molecules including W1 (attacking water) and W2 (helping water) to facilitate the hydrolysis. By applying quantum mechanics/molecular mechanics calculations to the structures, we have revealed a consistent and comprehensive reaction path of ATP hydrolysis by the F-form actin. The reaction path consists of four steps: 1) W1 and W2 rotations; 2) PG–O3B bond cleavage; 3) four concomitant events: W1–PO32 formation, OH2 and proton cleavage, nucleophilic attack by the OH2 against PG, and the abstracted proton transfer; and 4) proton relocation that stabilizes the ADP-Pi–bound F-form actin. The mechanism explains the slow rate of ATP hydrolysis by actin and the irreversibility of the hydrolysis reaction. While the catalytic strategy of actin ATP hydrolysis is essentially the same as those of motor proteins like myosin, the process after the hydrolysis is distinct and discussed in terms of Pi release, F-form destabilization, and global conformational changes.

    DOI: 10.1073/pnas.2122641119

    Web of Science

    Scopus

    PubMed

  10. Structural Insights into the Regulation of Actin Capping Protein by Twinfilin C-terminal Tail Reviewed

    Takeda S, Koike R, Fujiwara I, Narita A, Miyata M, Ota M, Maéda Y.

    J Mol Biol   Vol. 433 ( 9 ) page: 166891   2021.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.jmb.2021.166891

    Web of Science

    Scopus

    PubMed

  11. Crystal structure of human V-1 in the apo form Reviewed

    Takeda S, Koike R, Nagae T, Fujiwara I, Narita A, Maéda Y, Ota M.

    Acta Crystallogr F Struct Biol Commun   Vol. 77 ( Pt 1 ) page: 13 - 21   2021.1

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

    DOI: 10.1107/S2053230X20016829

    Web of Science

    Scopus

    PubMed

  12. All Atom Motion Tree detects side chain-related motions and their coupling with domain motion in proteins. Invited Reviewed

    Koike R, Ota M.

    Biophys Physicobiol.     2019.11

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.2142/biophysico.16.0_280

  13. Interface property responsible for effective interactions of protean segments: Intrinsically disordered regions that undergo disorder-to-order transitions upon binding. Reviewed

    Shaji D, Amemiya T, Koike R, Ota M.

    Biochem Biophys Res Commun.   Vol. 478   page: 123-127   2016.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  14. Multiple-Localization and Hub Proteins. Reviewed

    Ota M, Gonja H, Koike R, Fukuchi S.

    PLoS One   Vol. 11   page: e0156455   2016.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  15. Motion Tree Delineates Hierarchical Structure of Protein Dynamics Observed in Molecular Dynamics Simulation. Reviewed

    Moritsugu K, Koike R, Yamada K, Kato H, Kidera A.

    PLoS One   Vol. 10   page: e0131583   2015.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  16. Hierarchical domain-motion analysis of conformational changes in sarcoplasmic reticulum Ca2+ -ATPase. Reviewed

    Kobayashi C, Koike R, Ota M, Sugita Y.

    Proteins     page: -   2015.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  17. Domain-Motion-Enhanced (DoME) Model for Efficient Conformational Sampling of Multidomain Proteins. Reviewed

    Kobayashi C, Matsunaga Y, Koike R, Ota M, Sugita Y.

    Journal of Physical Chemistry B     page: -   2015

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  18. IDEAL in 2014 illustrates interaction networks composed of intrinsically disordered proteins and their binding partners. Reviewed

    Fukuchi S, Amemiya T, Sakamoto S, Nobe Y, Hosoda K, Kado Y, Murakami SD, Koike R, Hiroaki H, Ota M.

    Nucleic Acids Res   Vol. 42   page: D320-D325   2014.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  19. Substrate-shielding and hydrolytic reaction in hydrolases. Reviewed

    Kanematsu Y, Koike R, Amemiya T, Ota M.

    Proteins     page: -   2013.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  20. An assignment of intrinsically disordered regions of proteins based on NMR structures. Reviewed

    Ota M, Koike R, Amemiya T, Tenno T, Romero PR, Hiroaki H, Dunker AK, Fukuchi S.

    J Struct Biol.   Vol. 181   page: 29-36   2013.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  21. Influence of structural symmetry on protein dynamics. Reviewed

    Matsunaga Y, Koike R, Ota M, Tame JR, Kidera A.

    PLoS One   Vol. 7   page: e50011   2012.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  22. PSCDB: a database for protein structural change upon ligand binding.

    Amemiya T, Koike R, Kidera A, Ota M.

    Nucleic Acid Res.   Vol. 40   page: D554-D558   2012.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  23. IDEAL: Intrinsically Disordered proteins with Extensive Annotations and Literature.

    Fukuchi S, Sakamoto S, Nobe Y, Murakami SD, Amemiya T, Hosoda K, Koike R, Hiroaki H, Ota M.

    Nucleic Acid Res.   Vol. 40   page: D507-D511   2012.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  24. Cover and spacer insertions: small nonhydrophobic accessories that assist protein oligomerization.

    Nishi H, Koike R, Ota M.

    Proteins   Vol. 79   page: 2372-2379   2011.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  25. Actin capping protein and its inhibitor CARMIL: how intrinsically disordered regions function.

    Takeda S, Koike R, Nitanai Y, Minakata S, Maéda Y, Ota M.

    Phys Biol   Vol. 8   page: 035005   2011.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  26. Classification and annotation of the relationship between protein structural change and ligand binding.

    Amemiya T, Koike R, Fuchigami S, Ikeguchi M, Kidera A.

    J Mol Biol   Vol. 408   page: 568-584   2011.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  27. SAHG, a comprehensive database of predicted structures of all human proteins.

    Motono C, Nakata J, Koike R, Shimizu K, Shirota M, Amemiya T, Tomii K, Nagano N, Sakaya N, Misoo K, Sato M, Kidera A, Hiroaki H, Shirai T, Kinoshita K, Noguchi T, Ota M.

    Nucleic Acid Res.   Vol. 39   page: D487-D493   2011.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  28. Two distinct mechanisms for actin capping protein regulation--steric and allosteric inhibition. Reviewed

    Takeda S., Minakata S., Koike R., Kawahata I., Narita A., Kitazawa M., Ota M., Yamakuni T., Maéda Y. and Nitanai Y.

    PLoS Biol.   Vol. 8   page: e1000416.   2010

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  29. Alteration of oligomeric state and domain architecture is essential for functional transformation between transferase and hydrolase with the same scaffold. Reviewed

    Koike R., Kidera A. and Ota M.

    Protein Sci.   Vol. 10   page: 2060-2066   2009

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  30. Protein structural change upon ligand binding correlates with enzymatic reaction mechanism. Reviewed

    Koike R., Amemiya T., Ota M. and Kidera A.

    J. Mol. Biol.   Vol. 379   page: 397-401   2008

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  31. Probabilistic alignment detects remote homology in a pair of protein sequences without homologous sequence information. Reviewed

    Koike R., Kinoshita K. and Kidera A.

    Proteins   Vol. 66   page: 655-663   2007

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  32. Probabilistic description of protein alignments for sequences and structures. Reviewed

    Koike R., Kinoshita K. and Kidera A.

    Proteins   Vol. 56   page: 157-166   2004

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  33. Ring and zipper formation is the key to understanding the structural variety in all-beta proteins. Reviewed

    Koike R., Kinoshita K. and Kidera A.

    FEBS Lett.   Vol. 533   page: 9-13   2003

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

▼display all

Books 2

  1. タンパク質の構造解析手法とIn silicoスクリーニングへの応用事例

    小池亮太郎(7章1節タンパク質立体構造データベースPDBと予測構造)

    技術情報協会  2023.7  ( ISBN:9784861049712

     More details

    Advances in structural biology have provided a wealth of information on protein structures. In many proteins, multiple structures under distinct functional states are available. The comparison of such structures reveals structural changes during the transition between the states, for example, those from ligand-free to -bound states. These structural changes are important for understanding the molecular mechanism of protein function. Currently, a number of computational methods have been developed to compare distinct structural states of the same protein and describe protein structural changes. The resulting structural changes are stored in databases. After a brief introduction of pre-existing methods and databases, we introduce Motion Tree, which illustrates various structural changes using a tree diagram and provides an explanation of how to use Motion Tree. We also introduce PSCDB, which presents structural changes for 837 proteins including homodimers. Structural changes are classified into seven categories based on the types of motions and bound ligands. PSCDB is available via the Internet.

  2. Protein Structural Changes Based on Structural Comparison

    Koike R., Ota M.

    Practical Guide to Life Science Databases  2022.1  ( ISBN:9789811658112

     More details

    Advances in structural biology have provided a wealth of information on protein structures. In many proteins, multiple structures under distinct functional states are available. The comparison of such structures reveals structural changes during the transition between the states, for example, those from ligand-free to -bound states. These structural changes are important for understanding the molecular mechanism of protein function. Currently, a number of computational methods have been developed to compare distinct structural states of the same protein and describe protein structural changes. The resulting structural changes are stored in databases. After a brief introduction of pre-existing methods and databases, we introduce Motion Tree, which illustrates various structural changes using a tree diagram and provides an explanation of how to use Motion Tree. We also introduce PSCDB, which presents structural changes for 837 proteins including homodimers. Structural changes are classified into seven categories based on the types of motions and bound ligands. PSCDB is available via the Internet.

    DOI: 10.1007/978-981-16-5812-9_8

    Scopus

Presentations 41

  1. Elastic network model reveals distinct flexibilities of capping proteins bound to CARMIL and twinfilin-tail

    Ryotaro Koike, Motonori Ota

    2023.11.14 

     More details

    Event date: 2023.11

    Language:English   Presentation type:Poster presentation  

    Country:Japan  

  2. ATPアーゼの活性部位における水分子の配置

    小池亮太郎

    第23回日本蛋白質科学会年会  2023.7.6 

     More details

    Event date: 2023.7

    Language:Japanese   Presentation type:Poster presentation  

    Country:Japan  

  3. 天然変性タンパク質データベース:IDEAL

    安保 勲人, 佐久間 航也, 嘉戸 裕美子, 坂本 盛宇, 細田 和男, 鹿間 周子, 大安 裕美, 高木 大輔, 山口 敦子, 畠中 秀樹, 小池 亮太郎, 廣明 秀一, 福地 佐斗志, 太田 元規

    トーゴーの日シンポジウム2022  2022.10.5 

     More details

    Event date: 2022.10

    Language:Japanese   Presentation type:Poster presentation  

    Country:Japan  

    DOI: 10.18908/togo2022.p027

  4. Structural changes of ATPase complexes in the PDB

    Ryotaro Koike

    2022.9.29 

     More details

    Event date: 2022.9

    Language:English   Presentation type:Poster presentation  

    Country:Japan  

  5. Structural flexibility of actin in molecular dynamics simulation International conference

    Ryotaro Koike, Motonori Ota

    2021.12.18 

     More details

    Event date: 2021.12

    Language:English   Presentation type:Oral presentation (general)  

    Country:United States  

  6. Protein kinases phosphorylate long intrinsically disordered regions of substrate proteins International conference

    Motonori Ota, Mutsuki Amano, Kozo Kaibuchi, Ryotaro Koike

    2021.12.18 

     More details

    Event date: 2021.12

    Language:English   Presentation type:Oral presentation (general)  

    Country:United States  

  7. 生体発動分子ATPアーゼの構造変化と機能発現メカニズムの網羅的解析

    小池亮太郎

    第2回発動分子科学研究会  2021.12.1 

     More details

    Event date: 2021.12

    Language:Japanese   Presentation type:Poster presentation  

    Country:Japan  

  8. Elastic network model analysis shows distinct flexibilities of capping protein bound to CARMIL or twinfilin

    Ryotaro Koike, Motonori Ota

    2021.11.25 

     More details

    Event date: 2021.11

    Language:English   Presentation type:Oral presentation (general)  

    Country:Japan  

  9. Relationship between Length of Intrinsically Disordered Regions and Protein Function

    Haruka Tanimoto, Ryotaro Koike, Motonori Ota

    2021.11.25 

     More details

    Event date: 2021.11

    Language:English   Presentation type:Oral presentation (general)  

    Country:Japan  

  10. Directed Protein-Protein Interaction Network Representing Intracellular Signaling Pathways

    Wenruo Cao, Ryotaro Koike, Motonori Ota

    2021.11.27 

     More details

    Event date: 2021.11

    Language:English   Presentation type:Oral presentation (general)  

    Country:Japan  

  11. Structural characterization of homologous hetero-oligomers

    Kota Ito, Clara Shionyu, Yasunobu Sugimoto, Ryotaro Koike, Motonori Ota

    2021.11.25 

     More details

    Event date: 2021.11

    Language:English   Presentation type:Oral presentation (general)  

    Country:Japan  

  12. 天然変性タンパク質データベース:IDEAL(@2021)

    太田 元規, 嘉戸 裕美子, 坂本 盛宇, 細田 和男, 鹿間 周子, 大安 裕美, 高木 大輔, 安保 勲人, 山口 敦子, 畠中 秀樹, 小池 亮太郎, 廣明 秀一, 福地 佐斗志

    トーゴーの日シンポジウム2021  2021.10.5 

     More details

    Event date: 2021.10

    Language:Japanese   Presentation type:Poster presentation  

    Country:Japan  

    DOI: 10.18908/togo2021.p027

  13. 異なる機能状態にあるアクチンの構造ゆらぎとその相関関係

    小池亮太郎,森次圭,太田元規

    第21回日本蛋白質科学会年会  2021.6.17 

     More details

    Event date: 2021.6

    Language:Japanese   Presentation type:Poster presentation  

    Country:Japan  

  14. Structural flexibility of actin studied by molecular dynamics simulation

    Ryotaro Koike, Motonori Ota

     More details

    Event date: 2020.9

    Language:English   Presentation type:Poster presentation  

    Country:Japan  

  15. Phosphorylation on an intrinsically disordered region regulates the DNA binding activity of a transcription factor via transient interactions

     More details

    Event date: 2020.9

    Language:Japanese   Presentation type:Poster presentation  

    Country:Japan  

  16. Full-atom Motion Tree detects side-chain motions and their coupling with domain motions

    Ryotaro Koike, Motonori Ota

     More details

    Event date: 2019.9

    Language:English   Presentation type:Poster presentation  

    Country:Japan  

  17. 全原子Motion Treeとドメイン運動に伴う側鎖の運動

    小池亮太郎,太田元規

    第19回日本蛋白質科学会年会 

     More details

    Event date: 2019.6

    Language:Japanese   Presentation type:Poster presentation  

    Country:Japan  

  18. Description of structural changes by Motion Tree International conference

    Ryotaro Koike

    63rd Annual Meeting of the Biophysical Society 

     More details

    Event date: 2019.3

    Language:English   Presentation type:Poster presentation  

    Venue:The Baltimore Convention Center, Baltimore, Maryland, USA   Country:United States  

  19. リン酸化部位を含む天然変性領域

    小池亮太郎,天野睦紀,貝淵弘三,太田元規

    第18回日本蛋白質科学会 

     More details

    Event date: 2018.6

    Language:Japanese   Presentation type:Poster presentation  

    Country:Japan  

  20. Structural changes of homodimers in the PDB

    Ryotaro Koike

     More details

    Event date: 2017.9

    Language:English   Presentation type:Poster presentation  

    Country:Japan  

  21. ATPase mechanism and dynamic assembly of actin revealed by the F-form crystal structures

    Ryotaro Koike

     More details

    Event date: 2017.9

    Language:English   Presentation type:Symposium, workshop panel (nominated)  

    Country:Japan  

  22. 蛋白質複合体の相互作用面の運動

    小池亮太郎

    第17回日本蛋白質科学会 

     More details

    Event date: 2017.6

    Language:Japanese   Presentation type:Poster presentation  

    Country:Japan  

  23. Description of protein structural changes by full-atom Motion Tree

    Ryotaro Koike

     More details

    Event date: 2016.11

    Language:English   Presentation type:Poster presentation  

    Country:Japan  

  24. Interface property of protean segments: intrinsically disordered regions that undergo disorder-to-order transitions upon binding

    Divya Shaji, Takayuki Amemiya, Ryotaro Koike, Motonori Ota

     More details

    Event date: 2016.11

    Language:English   Presentation type:Poster presentation  

    Country:Japan  

  25. ホモ二量体における構造変化の網羅的解析から見えた蛋白質複合体に特有な運動

    小池亮太郎、雨宮崇之、堀井達哉、太田元規

    第16回日本蛋白質科学会 

     More details

    Event date: 2016.6

    Language:Japanese   Presentation type:Poster presentation  

    Country:Japan  

  26. Database analysis of structural changes in protein complexes

    Ryotaro Koike, Motonori Ota

     More details

    Event date: 2015.9

    Language:English   Presentation type:Poster presentation  

    Country:Japan  

  27. Structural and functional characterization of structural changes in homodimeric proteins

    Takayuki Amemiya, Tatsuya Horii, Ryotaro Koike, Motonori Ota

     More details

    Event date: 2015.9

    Language:English   Presentation type:Oral presentation (general)  

    Country:Japan  

  28. Motion Tree delineates hierarchical structure of protein dynamics observed in molecular dynamics simulation

    Kei Moritsugu, Ryotaro Koike, Akinori Kidera

     More details

    Event date: 2015.9

    Language:English   Presentation type:Poster presentation  

    Country:Japan  

  29. Motion tree analysis of the multidrug transporter AcrB

    Tsutomu Yamane, Ryotaro Koike, Motonori Ota, Satoshi Murakami, Akinori Kidera, Mitsunori Ikeguchi

     More details

    Event date: 2015.9

    Language:English   Presentation type:Poster presentation  

    Country:Japan  

  30. 動的構造に着目したCARMIL蛋白質によるキャップ蛋白質の機能阻害メカニズムの解明

    小池亮太郎、武田修一、前田雄一郎、太田元規

    第15回日本蛋白質科学会 

     More details

    Event date: 2015.6

    Language:Japanese   Presentation type:Poster presentation  

    Country:Japan  

  31. 蛋白質複合体構造の大規模比較から見る構造多様性

    小池亮太郎、太田元規

    第14回日本蛋白質科学会 

     More details

    Event date: 2014.6

    Language:Japanese   Presentation type:Poster presentation  

    Country:Japan  

  32. データベースIDEALの新機能と機能性天然変性領域の配列・構造比較

    福地佐斗志、雨宮崇之、坂本盛宇、野邉由紀子、細田和男、嘉戸裕美子、小池亮太郎、廣明秀一、太田元規

    第14回日本蛋白質科学会 

     More details

    Event date: 2014.6

    Language:Japanese   Presentation type:Poster presentation  

    Country:Japan  

  33. ホモ二量体タンパク質の低分子リガンド結合に伴う立体構造変化の分類

    雨宮崇之、堀井達哉、小池亮太郎、太田元規

    第14回日本蛋白質科学会 

     More details

    Event date: 2014.6

    Language:Japanese   Presentation type:Poster presentation  

    Country:Japan  

  34. Hierarchical description and extensive classification of protein structural changes by Motion Tree.

    Ryotaro Koike, Motonori Ota, Akinori Kidera

     More details

    Event date: 2013.10

    Language:English   Presentation type:Poster presentation  

    Country:Japan  

  35. Motion Tree を利用した capping protein の動的構造解析

    第51回日本生物物理学会 

     More details

    Event date: 2013.10

    Language:English   Presentation type:Poster presentation  

    Country:Japan  

  36. 天然変性タンパク質データベース IDEAL の機能拡張 —PPI ネットワーク

    第51回日本生物物理学会 

     More details

    Event date: 2013.10

    Language:English   Presentation type:Poster presentation  

    Country:Japan  

  37. 多剤排出トランスポーター AcrB の Motion Tree 法による解析

    第51回日本生物物理学会 

     More details

    Event date: 2013.10

    Language:English   Presentation type:Poster presentation  

    Country:Japan  

  38. CARMIL蛋白質の天然変性領域によるアロステリックなキャップ蛋白質の機能制御

    小池亮太郎、武田修一、前田雄一郎、太田元規

    第13回日本蛋白質科学会 

     More details

    Event date: 2013.6

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  39. Motion Tree 法を用いた SERCA のリガンド解離における構造変化の解析

    小林千草,小池亮太郎,太田元規,杉田有治

    第13回日本蛋白質科学会 

     More details

    Event date: 2013.6

    Language:Japanese   Presentation type:Poster presentation  

    Country:Japan  

  40. Structural fluctuations of capping proteins analyzed by molecular dynamics simulations.

    Ryotaro Koike, Shuichi Takeda, Maéda Yuichiro, Motonori Ota

     More details

    Event date: 2012.9

    Language:English   Presentation type:Oral presentation (general)  

    Country:Japan  

  41. 分子動力学法によるcapping protein(CP)の動的構造の解析

    小池亮太郎、武田修一、前田雄一郎、太田元規

    第12回日本蛋白質科学会 

     More details

    Event date: 2012.6

    Language:Japanese   Presentation type:Poster presentation  

    Country:Japan  

▼display all

KAKENHI (Grants-in-Aid for Scientific Research) 4

  1. 大量のシミュレーションデータによるアクチンのファイバー形成に関わる構造変化の解析

    Grant number:23K11318  2023.4 - 2027.3

    科学研究費助成事業  基盤研究(C)

    小池 亮太郎

      More details

    Authorship:Principal investigator 

    Grant amount:\4550000 ( Direct Cost: \3500000 、 Indirect Cost:\1050000 )

    アクチンが重合し,ファイバーを形成するさい,その構造を変化させる.この構造変化をFG変換と呼ぶ.このFG変換の分子メカニズムを調査する.
    分子メカニズムを調べるために,アクチンの分子シミュレーションを行い,計算機上でFG変換を再現する.得られたシミュレーションデータの解析には,申請者らが独自に開発したソフトウェア,Motion Treeを用いる.このソフトを適用することで,FG変換中にアクチンがどのように構造を変化させていくのかを明らかにする.
    また,少数のシミュレーションデータを調べるだけでなく,大量のシミュレーションデータを調べる.これにより,より確からしいFG変換のメカニズムを特定する.

  2. 生体発動分子ATPアーゼの構造変化と機能発現メカニズムの網羅的解析

    Grant number:21H00394  2021.4 - 2023.3

    科学研究費助成事業  新学術領域研究(研究領域提案型)

    小池 亮太郎

      More details

    Authorship:Principal investigator 

    Grant amount:\4680000 ( Direct Cost: \3600000 、 Indirect Cost:\1080000 )

    ATPアーゼはATPを分解することで生じるエネルギーを用いて,細胞内でさまざまな仕事を行っている.本研究ではATPアーゼがどのように仕事を実現しているのか,その分子メカニズム(構造変化)を調査する.ATPアーゼといっても細胞を変形させるものから,分子を輸送するものなど様々な種類が存在する.バイオインフォマティクスの技術を駆使し,蛋白質のデータベースを包括的にスキャンすることで,現時点で得られる限りのATPアーゼの構造変化を解析し,ATPアーゼの一般的な分子メカニズムを調査する.
    ATPアーゼはATPの加水分解から得られるエネルギーを利用し,さまざまな分子機能を実現する蛋白質の総称で,生体発動分子の好例である.ATPアーゼがどのように機能を実現しているのか,そのメカニズムを理解するためには,ATPアーゼの構造変化を明らかにする必要がある.ATPアーゼの構造変化,どの部位がどう動いているか,を明らかにすることで,機能するときにATPアーゼで何が起こっているのかを理解できる.生体内ではたらくさまざまなATPアーゼの構造変化を網羅的に解析し,ATPアーゼに特徴的な構造変化を明らかにする.また,ATPアーゼの機能に応じて,メカニズムがどう違うのか,構造変化と機能の相関関係を調査する.
    網羅的な解析を行うために,ATPアーゼの構造や機能に関するデータをできるだけ大規模に収集した.データの収集には本研究者が開発したATPアーゼのデータベースを活用する.このデータベースから,約350種のATPアーゼに関するデータを取得することができた.これらのATPアーゼには,ATP合成を行うもの,分子輸送を行うものなどが含まれていた.分子機能の観点から多様なATPアーゼを含むデータセットを構築できた.
    また,収集したATPアーゼの構造変化に関する調査を行った.構造変化を網羅的に解析するために,本研究者らが開発した独自プログラム,Motion TreeやSCPCを活用した.ATPアーゼの中には複数の蛋白質からなる複合体として働くものも多い.これらのプログラムを組み合わせることで,複合体として働くATPアーゼの構造変化の網羅的な解析を実現した.その結果,7割程度のATPアーゼでは何らかの構造変化が起こることが確認できた.また,構造変化が起こっているものでは,動いている部位を特定することができた.これにより,ATPアーゼが機能するさいに起こっていることが明らかになる.
    本研究では,ATPアーゼの構造変化を網羅的に解析し,構造変化と機能の関係を明らかにすることを目的とする.そのため,次の4つの作業工程で研究を進める.(1)これまで開発してきたATPアーゼのデータベースから構造データを収集する.(2)集めたデータから構造変化解析の基盤となる構造ペアのリストを作成する.(3)構造ペアから構造変化を特定し,データ化する.(4)構造変化と機能との関連を調査する.初年度は(1),(2)を行った後,(3)に着手する,また,進行にあわせてデータベース化の作業を行う,という計画を立てた.
    研究実績の概要で述べたように,約350種のATPアーゼのデータ収集を行った.収集したATPアーゼに関しては,構造ペアのリストを作成した.構造ペアに対して本研究者らが開発した独自プログラムMotion TreeとSCPCを適用した.これにより,あらかたのATPアーゼについて,構造変化のデータ化を完了できた.そのため,「おおむね順調に進展している」とした.
    本年度は昨年度に引き続きATPアーゼの構造変化のデータ化を進める.また,構造変化と機能との関連の調査を開始する.ATPアーゼの機能に関するデータは,これまで開発してきたATPアーゼのデータベースから収集を行う.この機能のデータに基づき,ATPアーゼをいくつかのグループに分類し,グループごとの構造変化の様子を調べる.このとき,構造変化部位のサイズや機能部位との関係に着目する.すなわち,ドメインのような比較的大きな部位の動きが顕著なのか,ループのような小さい部位の動きが顕著なのか,機能部位と近い部位,あるいは離れた部位,の動きが顕著なのかを調べる.網羅的な大規模解析を行うことで,機能グループごとに顕著な運動を統計的に明らかにする.それにより,各機能に必要な構造変化,すなわち分子メカニズム,がどのようなものかを調査する.

  3. アクチンフィラメントの伸長制御蛋白質によるアロステリックな結合解離機構の研究

    Grant number:19K12217  2019.4 - 2023.3

    科学研究費助成事業  基盤研究(C)

    小池 亮太郎

      More details

    Authorship:Principal investigator 

    Grant amount:\4290000 ( Direct Cost: \3300000 、 Indirect Cost:\990000 )

    アクチンフィラメントの伸び縮みは,細胞の変形や運動という生命にとって普遍的な現象と密接に関わる.本研究では,フィラメントの伸縮に関わるCARMIL蛋白質とキャッピング蛋白質(CP)に着目し,CARMILによるCPのフィラメントからの引きはがし(結合解離)の分子メカニズムを調査する.まず解離過程の分子シミュレーションを行う.このときフィラメントの代わりにV-1蛋白質を用いる.得られたシミュレーションのデータを,独自に開発した計算機ツールMotion Treeを用いて調査し,特徴的な分子運動を特定する.分子運動と結合の関係を探り,結合解離の分子メカニズムを調査する.
    アクチンフィラメントの伸長は細胞の変形や運動という普遍的な生命現象に直結しており,多数の蛋白質によって制御される.アクチンキャッピング蛋白質(CP)はフィラメントの端に結合しその伸長を止めるが,CARMIL蛋白質はCPと結合し,フィラメントに結合したCPを引きはがすことができる(結合解離).「CARMIL蛋白質によるCPの結合解離」の分子メカニズムを調査するために,結合解離の様子を,分子シミュレーションを用い計算機上で再現することを試みた.CPがアクチンとどのように結合しているのか,詳細はいまだ明らかになっていない.そこで,CPとの結合様式が詳細に明らかになっているV-1蛋白質を用い,CP/V-1複合体にCARMILが結合したモデル構造を作成する.そして,CARMILがCPとV-1の結合を解離させる様子をシミュレートし,「CARMIL蛋白質によるCPの結合解離」の分子メカニズムを調査する.
    結合解離はCPの動的構造の変化を介して実現すると考えられている.そのため,昨年度は分子シミュレーションから得られたデータを解析し,動的構造がどのように変化するのかを調査した.動的構造の情報は運動部位の統計データとして表現される.本年度は,さらに追加で分子シミュレーションを行った.解離過程に関するシミュレーションデータを増加させることで,運動部位に関する統計データを充実させ,より正確に動的構造が変化していく様子を割り出すことが期待できる.また,動的構造に影響を及ぼすCARMIL蛋白質の部位を調べるために,弾性ネットワークモデルを使った網羅的な解析を行った.これにより,CARMIL蛋白質中のどの部位が動的構造に与える影響が大きいか推定することができた.
    これまでに結合解離に関するシミュレーションを500ns(ナノ秒)まで実行した.今年度はこのシミュレーションをさらに延伸し,1500ns程度まで行った.また,条件を変えた結合解離シミュレーションを複数実行し,トータルで2000ns以上のシミュレーションデータを収集できた.動的構造を記述するための元データとなるシミュレーションデータを増強することができた.
    また,弾性ネットワークモデルを用いた動機構造の解析も行った.CP/CARMIL複合体の結晶構造をもとに,CARMILの長さが異なる700以上のモデル構造を計算機上で生成し,その動的構造を調べた.これにより,CARMIL蛋白質中のどの部位が動的構造に与える影響が大きいか推定することができた.この知見は結合解離シミュレーションを行うさいの拘束条件の選定に活かすことができる.
    本研究ではシミュレーションデータの入手,動的構造の解析,動的構造と結合解離の関係の調査を行う.本年度はシミュレーションデータの増強を行った.動的構造の解析に関しては昨年度までに先行して500ns分は完了している.解析のためのツールは作成済みであり,追加で得られた分も速やかに解析できる.これらに,結合解離シミュレーションに活用可能な,CARMILの部位とCPの動的構造に関する新たな知見が得られたことも加味して,進捗状況を「おおむね順調に進展している」とした.
    今後はまず,本年度に得られた追加のシミュレーションデータを解析し,結合解離の過程における動的構造を調査する.この解析では昨年度までに作成したクラスタリングツールなどを用いる.また,弾性ネットワークモデルを用いた解析から得られたCARMILの部位とCPの動的構造に関する知見を元に,拘束条件を追加した結合解離のシミュレーションを実行する.得られたデータを解析し,追加の拘束条件がCPの動的構造に与える影響を調べる.
    動的構造を調べることにより,シミュレーションの過程でCPのどの部位の運動が変化していくかを明らかにすることができる.運動に変化が見られた部位と,CPとV-1の結合解離において重要であろう結合部位やその周辺部位との関連を調査する.結合解離に影響する部位を突き止めることで,より具体的なCPとV-1の解離メカニズムを構築する.

  4. Integration of Data Science and Computational Chemistry in pH-Dependent Environments

    Grant number:19H02673  2019.4 - 2022.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    Nagaoka Masataka

      More details

    Authorship:Coinvestigator(s) 

    In the present study, we developed the configuration-selection (CS) constant pH method (CS-CpH method) based on molecular force field (MM) or quantum force field/molecular force field (QM/MM) methods to establish a general methodology to theoretically clarify molecular aggregation and biomolecular functions under solution pH conditions. Furthermore, by applying the Motion Tree (MT) method and time series analysis to large-scale motion information (Big Data) generated from protein molecular simulations, we have developed a non-equilibrium trajectory data analysis method that can also handle structural relaxation information that is deeply involved in protein functional expression. The method can reveal the dynamic conformational change patterns of protein structures, and has established an important technological foundation for the elucidation of biological function regulation mechanism based on conformational changes.

 

Teaching Experience (On-campus) 1

  1. Complex Systems Exercise 1

    2022