Updated on 2024/09/25

写真a

 
YOSHIMURA, Takashi
 
Organization
Institute of Transformative Bio-Molecules Professor
Graduate School
Graduate School of Bioagricultural Sciences
Title
Professor
Contact information
メールアドレス
External link

Degree 2

  1. 博士(農学) ( 1999.3   名古屋大学 ) 

  2. Master of Agriculture ( 1995.3   Nagoya University ) 

Research Interests 8

  1. Systems Biology

  2. Chronobiology

  3. Chemical biology

  4. Animal Molecular Physiology

  5. Systems Biology

  6. Endocrinology

  7. Animal Molecular Physiology

  8. Animal Functional Genomics

Research Areas 4

  1. Others / Others  / Basic Veterinary Science/Basic Animal Science

  2. Others / Others  / Animal Physiology/Behavior

  3. Others / Others  / General Neuroscience

  4. Life Science / Animal physiological chemistry, physiology and behavioral biology

Current Research Project and SDGs 3

  1. Molecular mechanism of seasonal adaptation in vertebrate

  2. Molecular mechanism of vertebrate circadian clock

  3. Molecular mechanism of lunar rhythms

Research History 18

  1. Nagoya University   Professor

    2023.4 - 2024.3

  2. Nagoya University   Director in General

    2022.4

  3. Nagoya University   Professor

    2013.4

      More details

    Country:Japan

  4. 自然科学研究機構   基礎生物学研究所   教授

    2013.4 - 2019.3

      More details

    Country:Japan

  5. Nagoya University   Professor

    2008.4

      More details

    Country:Japan

  6. Nagoya University   Director in General

    2008.4 - 2011.3

  7. Avian Bioscience Research Center, Director

    2008.4 - 2011.3

  8. Nagoya University   Institute for Advanced Research

    2007.8

  9. Graduate School of Bioagricultural Sciences, Nagoya University, Associate Professor

    2007.4 - 2008.3

  10. Nagoya University   Associate professor

    2005.12 - 2008.3

      More details

    Country:Japan

  11. Graduate School of Bioagricultural Sciences Nagoya University, Associate Professor

    2005.12 - 2007.3

  12. Nagoya University   Assistant

    2004.10 - 2007.3

  13. Nagoya University   Assistant

    1999.4 - 2005.12

      More details

    Country:Japan

  14. Graduate School of Bioagricultural Sciences, Nagoya University, Assistant Professor

    1999.4 - 2005.12

  15. Nagoya University   Assistant

    1996.10 - 1999.3

      More details

    Country:Japan

  16. Nagoya University   School of Agricultural Sciences

    1996.10 - 1999.3

  17. 日本学術振興会 特別研究員 (DC1)

    1995.4 - 1996.9

      More details

    Country:Japan

  18. 日本学術振興会 特別研究員 (DC1)

    1995.4 - 1996.9

▼display all

Education 4

  1. Nagoya University   Graduate School, Division of Agriculture

    1995.4 - 1996.9

      More details

    Country: Japan

  2. Nagoya University   Graduate School, Division of Agriculture

    - 1995.3

      More details

    Country: Japan

  3. Nagoya University   Graduate School, Division of Agriculture

    - 1995.3

      More details

    Country: Japan

  4. Nagoya University   Faculty of Agriculture

    - 1993

      More details

    Country: Japan

Professional Memberships 20

  1. European Biological Rhythms Society   Board member

    2024.1

  2. 日本比較内分泌学会   幹事

    2018.1 - 2022.12

  3. 日本学術会議   連携会員

    2017.10

  4. 日本時間生物学会   副理事長

    2017.1 - 2022.12

  5. Society for Research on Biological Rhythms   Executive Board Member

    2014.1 - 2016.12

  6. American Thyroid Association

    2012.9 - 2021.12

  7. Society of Biology

    2010.12

  8. European Biological Rhythms Society

    2009.1 - 2011.12

  9. The Endocrine Society

  10. 日本畜産学会

  11. 日本神経科学学会

  12. American Thyroid Association

  13. European Biological Rhythms Society

  14. Society for Research on Biological Rhythms

  15. Society of Biology

  16. The Endocrine Society

  17. 日本時間生物学会

  18. 日本比較内分泌学会

  19. 日本畜産学会

  20. 日本神経科学学会

▼display all

Committee Memberships 3

  1. 科学技術振興機構   創発的研究支援事業アドバイザー  

    2020.4   

  2. 国立環境研究所難分解性・高濃縮性化学物質の高次捕食動物への毒性試験法の調査・検討業務に係る小委員会   委員  

    2020.4   

  3. 基礎生物学研究所   運営委員  

    2019   

      More details

    Committee type:Government

Awards 12

  1. Aschoff's Rule Prize

    2024.5   Society for Research on Biological Rhythms  

    Takashi Yoshimura

     More details

    Award type:Award from international society, conference, symposium, etc.  Country:United States

  2. 木原記念財団学術賞

    2021.10   木原記念横浜生命科学振興財団   脊椎動物の季節適応機構の解明

    吉村崇

     More details

    Award type:Award from publisher, newspaper, foundation, etc.  Country:Japan

  3. Aschoff and Honma Prize for Biological Rhythm Research

    2020.8   Aschoff and Honma Memorial Foundation  

    Takashi Yoshimura

     More details

    Award type:International academic award (Japan or overseas)  Country:Japan

  4. Axelrod Lectureship Award

    2019.8   European Biological Rhythms Society  

    Takashi Yoshimura

     More details

    Award type:Award from international society, conference, symposium, etc.  Country:France

  5. 日本比較内分泌学会奨励賞

    2015.12   日本比較内分泌学会  

     More details

    Country:Japan

  6. Van Meter Award

    2015.10  

     More details

    Country:United States

  7. 日本畜産学会優秀論文賞

    2014.3   日本畜産学会  

     More details

    Country:Japan

  8. Society for Endocrinology Hoffenberg International Medal

    2010.3   Society for Endocrinology  

  9. 日本畜産学会賞

    2009.3   日本畜産学会  

     More details

    Country:Japan

  10. 日本学術振興会賞

    2009.3   日本学術振興会  

     More details

    Country:Japan

  11. Japan Prize of Agricultural Science for Young Scientist

    2005.11   The Foundation of Agricultural Sciences of Japan  

     More details

    Country:Japan

  12. Young Scientist Award

    2004.11   Japanese Society for Chronobiology  

     More details

    Country:Japan

▼display all

 

Papers 210

  1. Synthesis and preclinical testing of a selective beta-subtype agonist of thyroid hormone receptor ZTA-261

    Masakazu Nambo, Taeko Nishiwaki-Ohkawa, Akihiro Ito, Zachary T. Ariki, Yuka Ito, Yuuki Kato, Muhammad Yar, Jacky C. -H. Yim, Emily Kim, Elizabeth Sharkey, Keiko Kano, Emi Mishiro-Sato, Kosuke Okimura, Michiyo Maruyama, Wataru Ota, Yuko Furukawa, Tomoya Nakayama, Misato Kobayashi, Fumihiko Horio, Ayato Sato, Cathleen M. Crudden, Takashi Yoshimura

    Communications Medicine   Vol. 4 ( 1 )   2024.8

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media LLC  

    Abstract

    Background

    Thyroid hormones (TH) regulate the basal metabolic rate through their receptors THRα and THRβ. TH activates lipid metabolism via THRβ, however, an excess amount of TH can lead to tachycardia, bone loss, and muscle wasting through THRα. In recent years, TH analogs that selectively bind to THRβ have gained attention as new agents for treating dyslipidemia and obesity, which continue to pose major challenges to public health worldwide.

    Methods

    We developed a TH analog, ZTA-261, by modifying the existing THRβ-selective agonists GC-1 and GC-24. To determine the THRβ-selectivity of ZTA-261, an in vitro radiolabeled TH displacement assay was conducted. ZTA-261 was intraperitoneally injected into a mouse model of high-fat diet-induced obesity, and its effectiveness in reducing body weight and visceral fat, and improving lipid metabolism was assessed. In addition, its toxicity in the liver, heart, and bone was evaluated.

    Results

    ZTA-261 is more selective towards THRβ than GC-1. Although ZTA-261 is less effective in reducing body weight and visceral fat than GC-1, it is as effective as GC-1 in reducing the levels of serum and liver lipids. These effects are mediated by the same pathway as that of T<sub>3</sub>, a natural TH, as evidenced by similar changes in the expression of TH-induced and lipid metabolism-related genes. The bone, cardiac, and hepatotoxicity of ZTA-261 are significantly lower than those of GC-1.

    Conclusions

    ZTA-261, a highly selective and less toxic THRβ agonist, has the potential to be used as a drug for treating diseases related to lipid metabolism.

    DOI: 10.1038/s43856-024-00574-z

    Scopus

    Other Link: https://www.nature.com/articles/s43856-024-00574-z

  2. STR mutations on chromosome 15q cause thyrotropin resistance by activating a primate-specific enhancer of MIR7-2/MIR1179

    Grasberger H., Dumitrescu A.M., Liao X.H., Swanson E.G., Weiss R.E., Srichomkwun P., Pappa T., Chen J., Yoshimura T., Hoffmann P., França M.M., Tagett R., Onigata K., Costagliola S., Ranchalis J., Vollger M.R., Stergachis A.B., Chong J.X., Bamshad M.J., Smits G., Vassart G., Refetoff S.

    Nature Genetics   Vol. 56 ( 5 ) page: 877 - 888   2024.5

     More details

    Publisher:Nature Genetics  

    Thyrotropin (TSH) is the master regulator of thyroid gland growth and function. Resistance to TSH (RTSH) describes conditions with reduced sensitivity to TSH. Dominantly inherited RTSH has been linked to a locus on chromosome 15q, but its genetic basis has remained elusive. Here we show that non-coding mutations in a (TTTG)4 short tandem repeat (STR) underlie dominantly inherited RTSH in all 82 affected participants from 12 unrelated families. The STR is contained in a primate-specific Alu retrotransposon with thyroid-specific cis-regulatory chromatin features. Fiber-seq and RNA-seq studies revealed that the mutant STR activates a thyroid-specific enhancer cluster, leading to haplotype-specific upregulation of the bicistronic MIR7-2/MIR1179 locus 35 kb downstream and overexpression of its microRNA products in the participants’ thyrocytes. An imbalance in signaling pathways targeted by these micro-RNAs provides a working model for this cause of RTSH. This finding broadens our current knowledge of genetic defects altering pituitary–thyroid feedback regulation.

    DOI: 10.1038/s41588-024-01717-7

    Scopus

  3. FcRY is a key molecule controlling maternal blook IgY transfer to yolks during egg development in avian species Reviewed

    Okamoto M, Sasaki R, Ikeda K, Doi K, Tatsumi F, Oshima K, Kojima T, Mizushima S, Ikegami K, Yoshimura T, Furukawa K, Kobayashi M, Horio F, Murai A

    Frontiers in Immunology   Vol. 15   page: 1305587   2024.3

     More details

    Language:English  

    DOI: 10.3389/fimmu.2024.1305587

  4. A transcriptional program underlying the circannual rhythms of gonadal development in medaka

    Tomoya Nakayama, Miki Tanikawa, Yuki Okushi, Thoma Itoh, Tsuyoshi Shimmura, Michiyo Maruyama, Taiki Yamaguchi, Akiko Matsumiya, Ai Shinomiya, Ying-Jey Guh, Junfeng Chen, Kiyoshi Naruse, Hiroshi Kudoh, Yohei Kondo, Honda Naoki, Kazuhiro Aoki, Atsushi J. Nagano, Takashi Yoshimura

    Proceedings of the National Academy of Sciences   Vol. 120 ( 52 )   2023.12

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Proceedings of the National Academy of Sciences  

    To cope with seasonal environmental changes, organisms have evolved approximately 1-y endogenous circannual clocks. These circannual clocks regulate various physiological properties and behaviors such as reproduction, hibernation, migration, and molting, thus providing organisms with adaptive advantages. Although several hypotheses have been proposed, the genes that regulate circannual rhythms and the underlying mechanisms controlling long-term circannual clocks remain unknown in any organism. Here, we show a transcriptional program underlying the circannual clock in medaka fish ( Oryzias latipes ). We monitored the seasonal reproductive rhythms of medaka kept under natural outdoor conditions for 2 y. Linear regression analysis suggested that seasonal changes in reproductive activity were predominantly determined by an endogenous program. Medaka hypothalamic and pituitary transcriptomes were obtained monthly over 2 y and daily on all equinoxes and solstices. Analysis identified 3,341 seasonally oscillating genes and 1,381 daily oscillating genes. We then examined the existence of circannual rhythms in medaka via maintaining them under constant photoperiodic conditions. Medaka exhibited approximately 6-mo free-running circannual rhythms under constant conditions, and monthly transcriptomes under constant conditions identified 518 circannual genes. Gene ontology analysis of circannual genes highlighted the enrichment of genes related to cell proliferation and differentiation. Altogether, our findings support the “histogenesis hypothesis” that postulates the involvement of tissue remodeling in circannual time-keeping.

    DOI: 10.1073/pnas.2313514120

    Scopus

  5. Variation in responses to photoperiods and temperatures in Japanese medaka from different latitudes

    Shinomiya A., Adachi D., Shimmura T., Tanikawa M., Hiramatsu N., Ijiri S., Naruse K., Sakaizumi M., Yoshimura T.

    Zoological Letters   Vol. 9 ( 1 )   2023.12

     More details

    Publisher:Zoological Letters  

    Seasonal changes are more robust and dynamic at higher latitudes than at lower latitudes, and animals sense seasonal changes in the environment and alter their physiology and behavior to better adapt to harsh winter conditions. However, the genetic basis for sensing seasonal changes, including the photoperiod and temperature, remains unclear. Medaka (Oryzias latipes species complex), widely distributed from subtropical to cool-temperate regions throughout the Japanese archipelago, provides an excellent model to tackle this subject. In this study, we examined the critical photoperiods and critical temperatures required for seasonal gonadal development in female medaka from local populations at various latitudes. Intraspecific differences in critical photoperiods and temperatures were detected, demonstrating that these differences were genetically controlled. Most medaka populations could perceive the difference between photoperiods for at least 1 h. Populations in the Northern Japanese group required 14 h of light in a 24 h photoperiod to develop their ovaries, whereas ovaries from the Southern Japanese group developed under 13 h of light. Additionally, Miyazaki and Ginoza populations from lower latitudes were able to spawn under short-day conditions of 11 and 10 h of light, respectively. Investigation of the critical temperature demonstrated that the Higashidori population, the population from the northernmost region of medaka habitats, had a critical temperature of over 18 °C, which was the highest critical temperature among the populations examined. The Miyazaki and the Ginoza populations, in contrast, were found to have critical temperatures under 14 °C. When we conducted a transplant experiment in a high-latitudinal environment using medaka populations with different seasonal responses, the population from higher latitudes, which had a longer critical photoperiod and a higher critical temperature, showed a slower reproductive onset but quickly reached a peak of ovarian size. The current findings show that low latitudinal populations are less responsive to photoperiodic and temperature changes, implying that variations in this responsiveness can alter seasonal timing of reproduction and change fitness to natural environments with varying harshnesses of seasonal changes. Local medaka populations will contribute to elucidating the genetic basis of seasonal time perception and adaptation to environmental changes.

    DOI: 10.1186/s40851-023-00215-8

    Scopus

  6. Orphan nuclear receptor nr4a1 regulates winter depression-like behavior in medaka

    Nakayama T., Hirano F., Okushi Y., Matsuura K., Ohashi M., Matsumiya A., Yoshimura T.

    Neuroscience Letters   Vol. 814   2023.9

     More details

    Publisher:Neuroscience Letters  

    About 10% of the population suffers from depression in winter at high latitude. Although it has become a serious public health issue, its underlying mechanism remains unknown and new treatments and therapies are required. As an adaptive strategy, many animals also exhibit depression-like behavior in winter. Previously, it has been reported that celastrol, a traditional Chinese medicine, can rescue winter depression-like behavior in medaka, an excellent model of winter depression. Nuclear receptor subfamily 4 group A member 1 (nr4a1, also known as nur77) is a known target of celastrol, and the signaling pathway of nr4a1 was suggested to be inactive in medaka brain during winter, implying the association of nr4a1 and winter depression-like behavior. However, the direct evidence for its involvement in winter depression-like behavior remains unclear. The present study found that nr4a1 was suppressed in the medaka brain under winter conditions. Cytosporone B, nr4a1 chemical activator, reversed winter depression-like behavior under winter conditions. Additionally, nr4a1 mutant fish generated by CRISPR/Cas9 system showed decreased sociability under summer conditions. Therefore, our results demonstrate that the seasonal regulation of nr4a1 regulates winter depression-like behavior and offers potential therapeutic target.

    DOI: 10.1016/j.neulet.2023.137469

    Scopus

  7. Mimicking seasonal changes in light-dark cycle and ambient temperature modulates gut microbiome in mice under the same dietary regimen Reviewed

    Matsumoto S, Ren L, Iigo M, Murai A, Yoshimura T

    PLoS One   Vol. 18   page: e0278013   2023.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1371/journal.pone.0278013.

  8. Novel hypnotics of Japanese traditional herbal medicines to caffeine-induced insomnia in Drosophila by using Newly-developed automated sleep and rhythm analysis system (AutoCircaS) Reviewed

    Inoue E, Suzuki T, Nakayama T, Yoshimura T, Sudo K, Shimizu Y, Iwaki Y, Kawasaki H, Ishida N

    Gene   Vol. 846   page: 146852   2022.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.gene.2022.146852

    Scopus

  9. Real time monitoring of cold Ca2+ dependent transcription and its modulation by NCX inhibitors Reviewed

    Wang HT, Miyairi S, Kitamura M, Iizuka K, AsanoY, Yoshimura T, Kon N

    Scientific Reports   Vol. 12 ( 1 ) page: 17325   2022.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/s41598-022-22166-4

    Scopus

  10. Level of constitutively expressed BMAL1 affects the robustness of circadian oscillations

    Padlom A., Ono D., Hamashima R., Furukawa Y., Yoshimura T., Nishiwaki-Ohkawa T.

    Scientific Reports   Vol. 12 ( 1 )   2022.12

     More details

    Publisher:Scientific Reports  

    The circadian rhythm is a biological oscillation of physiological activities with a period of approximately 24 h, that is driven by a cell-autonomous oscillator called the circadian clock. The current model of the mammalian circadian clock is based on a transcriptional-translational negative feedback loop in which the protein products of clock genes accumulate in a circadian manner and repress their own transcription. However, several studies have revealed that constitutively expressed clock genes can maintain circadian oscillations. To understand the underlying mechanism, we expressed Bmal1 in Bmal1-disrupted cells using a doxycycline-inducible promoter and monitored Bmal1 and Per2 promoter activity using luciferase reporters. Although the levels of BMAL1 and other clock proteins, REV-ERBα and CLOCK, showed no obvious rhythmicity, robust circadian oscillation in Bmal1 and Per2 promoter activities with the correct phase relationship was observed, which proceeded in a doxycycline-concentration-dependent manner. We applied transient response analysis to the Bmal1 promoter activity in the presence of various doxycycline concentrations. Based on the obtained transfer functions, we suggest that, at least in our experimental system, BMAL1 is not directly involved in the oscillatory process, but modulates the oscillation robustness by regulating basal clock gene promoter activity.

    DOI: 10.1038/s41598-022-24188-4

    Scopus

  11. Prostaglandin E2 synchronizes lunar-regulated beach spawning in grass puffers Reviewed

    Junfeng Chen, Yuma Katada, Kousuke Okimura, Taiki Yamaguchi, Ying-Jey Guh, Tomoya Nakayama, Michiyo Maruyama, Yuko Furukawa, Yusuke Nakane, Naoyuki Yamamoto, Yoshikatsu Sato, Hironori Ando, Asako Sugimura, Kazufumi Tabata, Ayato Sato, Takashi Yoshimura

    Current Biology   Vol. 32 ( 22 ) page: 4881 - 4889.e5   2022.10

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Elsevier BV  

    DOI: 10.1016/j.cub.2022.09.062

    Scopus

  12. Adenylate kinase 1 overexpression increases locomotor activity in medaka fish Reviewed

    Maruyama M, Furukawa Y, Kinoshita M, Mukaiyama A, Akiyama S, Yoshimura T

    PLOS ONE   Vol. 17 ( 1 January ) page: e0257967   2022.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1371/journal.pone.0257967

    DOI: 10.1371/journal.pone.0257967

    Scopus

  13. Modulation of circadian clock by crude drug extracts used in Japanese Kampo medicine. Reviewed International journal

    Manhui Zhang, Kohei Kobayashi, Haruki Atsumi, Yuma Katada, Yusuke Nakane, Junfeng Chen, Ryo Nagano, Naoya Kadofusa, Taeko Nishiwaki-Ohkawa, Naohiro Kon, Tsuyoshi Hirota, Ayato Sato, Toshiaki Makino, Takashi Yoshimura

    Scientific reports   Vol. 11 ( 1 ) page: 21038 - 21038   2021.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Circadian rhythm is an approximately 24 h endogenous biological rhythm. Chronic disruption of the circadian clock leads to an increased risk of diabetes, cardiovascular disease, and cancer. Hence, it is important to develop circadian clock modulators. Natural organisms are a good source of several medicines currently in use. Crude drugs used in Japanese traditional Kampo medicine or folk medicines are an excellent source for drug discovery. Furthermore, identifying new functions for existing drugs, known as the drug repositioning approach, is a popular and powerful tool. In this study, we screened 137 crude drug extracts to act as circadian clock modulators in human U2OS cells stably expressing the clock reporter Bmal1-dLuc, and approximately 12% of these modulated the circadian rhythm. We further examined the effects of several crude drugs in Rat-1 fibroblasts stably expressing Per2-luc, explant culture of lung from Per2::Luciferase knockin mice, and zebrafish larvae in vivo. Notably, more than half of the major ingredients of these crude drugs were reported to target AKT and its relevant signaling pathways. As expected, analysis of the major ingredients targeting AKT signaling confirmed the circadian clock-modulating effects. Furthermore, activator and inhibitor of AKT, and triple knockdown of AKT isoforms by siRNA also modulated the circadian rhythm. This study, by employing the drug repositioning approach, shows that Kampo medicines are a useful source for the identification of underlying mechanisms of circadian clock modulators and could potentially be used in the treatment of circadian clock disruption.

    DOI: 10.1038/s41598-021-00499-w

    DOI: 10.1038/s41598-021-00499-w

    Scopus

    PubMed

  14. Effects of Cryptochrome-modulating compounds on circadian behavioral rhythms in zebrafish. Reviewed International journal

    Mui Iida, Yusuke Nakane, Takashi Yoshimura, Tsuyoshi Hirota

    Journal of biochemistry   Vol. 171 ( 5 ) page: 501 - 507   2021.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The circadian clock controls daily rhythms of various physiological processes, and impairment of its function causes many diseases including sleep disorders. Chemical compounds that regulate clock function are expected to be applied for treatment of circadian clock-related diseases. We previously identified small-molecule compounds KL001, KL101, and TH301 that lengthen the period of cellular circadian clock by directly targeting clock proteins Cryptochromes (CRYs) in mammals. KL001 targets both CRY1 and CRY2 isoforms, while KL101 and TH301 are isoform-selective compounds and require CRY C-terminal region for their effects. For further application of these compounds, the effects on locomotor activity rhythms at the organismal level need to be investigated. Here we used zebrafish larvae as an in vivo model system and found that KL001 lengthened the period of locomotor activity rhythms in a dose-dependent manner. In contrast, KL101 and TH301 showed no effect on the period. The amino acid sequences of CRY C-terminal regions are diverged in zebrafish and mammals, supporting the importance of this region for the effects of KL101 and TH301. This study demonstrated efficacy of CRY modulation for controlling circadian behavioral rhythms in organisms and suggested species-dependent differences in the effects of isoform-selective CRY-modulating compounds.

    DOI: 10.1093/jb/mvab096

    DOI: 10.1093/jb/mvab096

    Scopus

    PubMed

  15. ケミカルゲノミクスで明らかにするメダカの冬季うつ様行動の分子基盤:冬季うつ病の理解と克服にむけて Invited

    沖村光祐,中山友哉,吉村崇

    化学と生物   Vol. 59   page: 369 - 376   2021.8

     More details

    Authorship:Last author, Corresponding author   Language:Japanese   Publishing type:Research paper (scientific journal)  

  16. Photoperiodic regulation of dopamine signaling regulates seasonal changes in retinal photosensitivity in mice. Reviewed International journal

    Kousuke Okimura, Yusuke Nakane, Taeko Nishiwaki-Ohkawa, Takashi Yoshimura

    Scientific reports   Vol. 11 ( 1 ) page: 1843 - 1843   2021.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    At high latitudes, approximately 10% of people suffer from depression during the winter season, a phenomenon known as seasonal affective disorder (SAD). Shortened photoperiod and/or light intensity during winter season are risk factors for SAD, and bright light therapy is an effective treatment. Interestingly, reduced retinal photosensitivity along with the mood is observed in SAD patients in winter. However, the molecular basis underlying seasonal changes in retinal photosensitivity remains unclear, and pharmacological intervention is required. Here we show photoperiodic regulation of dopamine signaling and improvement of short day-attenuated photosensitivity by its pharmacological intervention in mice. Electroretinograms revealed dynamic seasonal changes in retinal photosensitivity. Transcriptome analysis identified short day-mediated suppression of the Th gene, which encodes tyrosine hydroxylase, a rate-limiting enzyme for dopamine biosynthesis. Furthermore, pharmacological intervention in dopamine signaling through activation of the cAMP signaling pathway rescued short day-attenuated photosensitivity, whereas dopamine receptor antagonists decreased photosensitivity under long-day conditions. Our results reveal molecular basis of seasonal changes in retinal photosensitivity in mammals. In addition, our findings provide important insights into the pathogenesis of SAD and offer potential therapeutic interventions.

    DOI: 10.1038/s41598-021-81540-w

    DOI: 10.1038/s41598-021-81540-w

    Scopus

    PubMed

  17. Light and Hormones in Seasonal Regulation of Reproduction and Mood Invited Reviewed

    Chen Junfeng, Okimura Kousuke, Yoshimura Takashi

    ENDOCRINOLOGY   Vol. 161 ( 9 )   2020.9

     More details

    Publisher:Endocrinology (United States)  

    Organisms that inhabit the temperate zone exhibit various seasonal adaptive behaviors, including reproduction, hibernation, molting, and migration. Day length, known as photoperiod, is the most noise-free and widely used environmental cue that enables animals to anticipate the oncoming seasons and adapt their physiologies accordingly. Although less clear, some human traits also exhibit seasonality, such as birthrate, mood, cognitive brain responses, and various diseases. However, the molecular basis for human seasonality is poorly understood. Herein, we first review the underlying mechanisms of seasonal adaptive strategies of animals, including seasonal reproduction and stress responses during the breeding season. We then briefly summarize our recent discovery of signaling pathways involved in the winter depression-like phenotype in medaka fish. We believe that exploring the regulation of seasonal traits in animal models will provide insight into human seasonality and aid in the understanding of human diseases such as seasonal affective disorder (SAD).

    DOI: 10.1210/endocr/bqaa130

    Web of Science

    Scopus

  18. Genetic analysis of body weight in wild populations of medaka fish from different latitudes. Reviewed International journal

    Tamiris I Yassumoto, Mana Nakatsukasa, Atsushi J Nagano, Masaki Yasugi, Takashi Yoshimura, Ai Shinomiya

    PloS one   Vol. 15 ( 6 ) page: e0234803   2020.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The genetic bases of growth and body weight are of economic and scientific interest, and teleost fish models have proven useful in such investigations. The Oryzias latipes species complex (medaka) is an abundant freshwater fish in Japan and suitable for genetic studies. We compared two wild medaka stocks originating from different latitudes. The Maizuru population from higher latitudes weighed more than the Ginoza population. We investigated the genetic basis of body weight, using quantitative trait locus (QTL) analysis of the F2 offspring of these populations. We detected one statistically significant QTL for body weight on medaka chromosome 4 and identified 12 candidate genes that might be associated with body weight or growth. Nine of these 12 genes had at least one single nucleotide polymorphism that caused amino acid substitutions in protein-coding regions, and we estimated the effects of these substitutions. The present findings might contribute to the marker-assisted selection of economically important aquaculture species.

    DOI: 10.1371/journal.pone.0234803

    Web of Science

    Scopus

    PubMed

  19. Artificial selection reveals the role of transcriptional constraints in the maintenance of life history variation

    Pick Joel L., Hatakeyama Masaomi, Ihle Kate E., Gasparini Julien, Haussy Claudy, Ishishita Satoshi, Matsuda Yoichi, Yoshimura Takashi, Kanaoka Masahiro M., Shimizu-Inatsugi Rie, Shimizu Kentaro K., Tschirren Barbara

    EVOLUTION LETTERS   Vol. 4 ( 3 ) page: 200 - 211   2020.6

     More details

    Language:Japanese   Publisher:Evolution Letters  

    The trade-off between reproduction and self-maintenance is a cornerstone of life history theory, yet its proximate underpinnings are elusive. Here, we used an artificial selection approach to create replicated lines of Japanese quail (Coturnix japonica) that differ genetically in their reproductive investment. Whole transcriptome sequencing revealed that females from lines selected for high reproductive output show a consistent upregulation of genes associated with reproduction but a simultaneous downregulation of immune genes. Concordant phenotypic differences in immune function (i.e., specific antibody response against keyhole limpet hemocyanin) were observed between the selection lines, even in males who do not provide parental care. Our findings demonstrate the key role of obligate transcriptional constraints in the maintenance of life history variation. These constraints set fundamental limits to productivity and health in natural and domestic animal populations.

    DOI: 10.1002/evl3.166

    Web of Science

    Scopus

  20. Seasonal changes in NRF2 antioxidant pathway regulates winter depression-like behavior. Reviewed International coauthorship International journal

    Tomoya Nakayama, Kousuke Okimura, Jiachen Shen, Ying-Jey Guh, T Katherine Tamai, Akiko Shimada, Souta Minou, Yuki Okushi, Tsuyoshi Shimmura, Yuko Furukawa, Naoya Kadofusa, Ayato Sato, Toshiya Nishimura, Minoru Tanaka, Kei Nakayama, Nobuyuki Shiina, Naoyuki Yamamoto, Andrew S Loudon, Taeko Nishiwaki-Ohkawa, Ai Shinomiya, Toshitaka Nabeshima, Yusuke Nakane, Takashi Yoshimura

    Proceedings of the National Academy of Sciences of the United States of America   Vol. 117 ( 17 ) page: 9594 - 9603   2020.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Seasonal changes in the environment lead to depression-like behaviors in humans and animals. The underlying mechanisms, however, are unknown. We observed decreased sociability and increased anxiety-like behavior in medaka fish exposed to winter-like conditions. Whole brain metabolomic analysis revealed seasonal changes in 68 metabolites, including neurotransmitters and antioxidants associated with depression. Transcriptome analysis identified 3,306 differentially expressed transcripts, including inflammatory markers, melanopsins, and circadian clock genes. Further analyses revealed seasonal changes in multiple signaling pathways implicated in depression, including the nuclear factor erythroid-derived 2-like 2 (NRF2) antioxidant pathway. A broad-spectrum chemical screen revealed that celastrol (a traditional Chinese medicine) uniquely reversed winter behavior. NRF2 is a celastrol target expressed in the habenula (HB), known to play a critical role in the pathophysiology of depression. Another NRF2 chemical activator phenocopied these effects, and an NRF2 mutant showed decreased sociability. Our study provides important insights into winter depression and offers potential therapeutic targets involving NRF2.

    DOI: 10.1073/pnas.2000278117

    Web of Science

    Scopus

    PubMed

  21. The quail genome: insights into social behaviour, seasonal biology and infectious disease response Reviewed

    Morris Katrina M., Hindle Matthew M., Boitard Simon, Burt David W., Danner Angela F., Eory Lel, Forrest Heather L., Gourichon David, Gros Jerome, Hillier LaDeana W., Jaffredo Thierry, Khoury Hanane, Lansford Rusty, Leterrier Christine, Loudon Andrew, Mason Andrew S., Meddle Simone L., Minvielle Francis, Minx Patrick, Pitel Frederique, Seiler J. Patrick, Shimmura Tsuyoshi, Tomlinson Chad, Vignal Alain, Webster Robert G., Yoshimura Takashi, Warren Wesley C., Smith Jacqueline

    BMC BIOLOGY   Vol. 18 ( 1 )   2020.2

     More details

    Publisher:BMC Biology  

    Background: The Japanese quail (Coturnix japonica) is a popular domestic poultry species and an increasingly significant model species in avian developmental, behavioural and disease research. Results: We have produced a high-quality quail genome sequence, spanning 0.93 Gb assigned to 33 chromosomes. In terms of contiguity, assembly statistics, gene content and chromosomal organisation, the quail genome shows high similarity to the chicken genome. We demonstrate the utility of this genome through three diverse applications. First, we identify selection signatures and candidate genes associated with social behaviour in the quail genome, an important agricultural and domestication trait. Second, we investigate the effects and interaction of photoperiod and temperature on the transcriptome of the quail medial basal hypothalamus, revealing key mechanisms of photoperiodism. Finally, we investigate the response of quail to H5N1 influenza infection. In quail lung, many critical immune genes and pathways were downregulated after H5N1 infection, and this may be key to the susceptibility of quail to H5N1. Conclusions: We have produced a high-quality genome of the quail which will facilitate further studies into diverse research questions using the quail as a model avian species.

    DOI: 10.1186/s12915-020-0743-4

    Web of Science

    Scopus

  22. Interconnection between circadian clocks and thyroid function. Reviewed International coauthorship International journal

    Keisuke Ikegami, Samuel Refetoff, Eve Van Cauter, Takashi Yoshimura

    Nature reviews. Endocrinology   Vol. 15 ( 10 ) page: 590 - 600   2019.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media {LLC}  

    Circadian rhythmicity is an approximately 24-h cell-autonomous period driven by transcription-translation feedback loops of specific genes, which are referred to as 'circadian clock genes'. In mammals, the central circadian pacemaker, which is located in the hypothalamic suprachiasmatic nucleus, controls peripheral circadian clocks. The circadian system regulates virtually all physiological processes, which are further modulated by changes in the external environment, such as light exposure and the timing of food intake. Chronic circadian disruption caused by shift work, travel across time zones or irregular sleep-wake cycles has long-term consequences for our health and is an important lifestyle factor that contributes to the risk of obesity, type 2 diabetes mellitus and cancer. Although the hypothalamic-pituitary-thyroid axis is under the control of the circadian clock via the suprachiasmatic nucleus pacemaker, daily TSH secretion profiles are disrupted in some patients with hypothyroidism and hyperthyroidism. Disruption of circadian rhythms has been recognized as a perturbation of the endocrine system and of cell cycle progression. Expression profiles of circadian clock genes are abnormal in well-differentiated thyroid cancer but not in the benign nodules or a healthy thyroid. Therefore, the characterization of the thyroid clock machinery might improve the preoperative diagnosis of thyroid cancer.

    DOI: 10.1038/s41574-019-0237-z

    Web of Science

    Scopus

    PubMed

  23. Action spectrum for photoperiodic control of thyroid-stimulating hormone in Japanese quail (Coturnix japonica) Reviewed

    Nakane Y, Shinomiya A, Ota W, Ikegami K, Shimmura T, Higashi S, Kamei Y, Yoshimura T

    PLoS One   Vol. 14 ( 9 ) page: e022106 - e0222106   2019.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Public Library of Science (PLoS)  

    DOI: 10.1371/journal.pone.0222106

    Web of Science

    Scopus

  24. The underlying mechanisms of vertebrate seasonal reproduction Invited Reviewed

    Guh Ying-Jey, Tamai Takako Katherine, Yoshimura Takashi

    PROCEEDINGS OF THE JAPAN ACADEMY SERIES B-PHYSICAL AND BIOLOGICAL SCIENCES   Vol. 95 ( 7 ) page: 343 - 357   2019.7

     More details

    Publisher:Proceedings of the Japan Academy Series B: Physical and Biological Sciences  

    Animals make use of changes in photoperiod to adapt their physiology to the forthcoming breeding season. Comparative studies have contributed to our understanding of the mechanisms of seasonal reproduction in vertebrates. Birds are excellent models for studying these phenomena because of their rapid and dramatic responses to changes in photoperiod. Deep brain photoreceptors in birds perceive and transmit light information to the pars tuberalis (PT) in the pituitary gland, where the thyroid-stimulating hormone (TSH) is produced. This PT-TSH locally increases the level of the bioactive thyroid hormone T3 via the induction of type 2 deiodinase production in the mediobasal hypothalamus, and an increased T3 level, in turn, controls seasonal gonadotropin-releasing hormone secretion. In mammals, the eyes are the only photoreceptive structure, and nocturnal melatonin secretion encodes day-length information and regulates the PTTSH signaling cascade. In Salmonidae, the saccus vasculosus plays a pivotal role as a photoperiodic sensor. Together, these studies have uncovered the universality and diversity of fundamental traits in vertebrates.

    DOI: 10.2183/pjab.95.025

    Web of Science

    Scopus

  25. Casein kinase 1 family regulates PRR5 and TOC1 in the Arabidopsis circadian clock. International coauthorship International journal

    Takahiro N Uehara, Yoshiyuki Mizutani, Keiko Kuwata, Tsuyoshi Hirota, Ayato Sato, Junya Mizoi, Saori Takao, Hiromi Matsuo, Takamasa Suzuki, Shogo Ito, Ami N Saito, Taeko Nishiwaki-Ohkawa, Kazuko Yamaguchi-Shinozaki, Takashi Yoshimura, Steve A Kay, Kenichiro Itami, Toshinori Kinoshita, Junichiro Yamaguchi, Norihito Nakamichi

    Proceedings of the National Academy of Sciences of the United States of America   Vol. 116 ( 23 ) page: 11528 - 11536   2019.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The circadian clock provides organisms with the ability to adapt to daily and seasonal cycles. Eukaryotic clocks mostly rely on lineage-specific transcriptional-translational feedback loops (TTFLs). Posttranslational modifications are also crucial for clock functions in fungi and animals, but the posttranslational modifications that affect the plant clock are less understood. Here, using chemical biology strategies, we show that the Arabidopsis CASEIN KINASE 1 LIKE (CKL) family is involved in posttranslational modification in the plant clock. Chemical screening demonstrated that an animal CDC7/CDK9 inhibitor, PHA767491, lengthens the Arabidopsis circadian period. Affinity proteomics using a chemical probe revealed that PHA767491 binds to and inhibits multiple CKL proteins, rather than CDC7/CDK9 homologs. Simultaneous knockdown of Arabidopsis CKL-encoding genes lengthened the circadian period. CKL4 phosphorylated transcriptional repressors PSEUDO-RESPONSE REGULATOR 5 (PRR5) and TIMING OF CAB EXPRESSION 1 (TOC1) in the TTFL. PHA767491 treatment resulted in accumulation of PRR5 and TOC1, accompanied by decreasing expression of PRR5- and TOC1-target genes. A prr5 toc1 double mutant was hyposensitive to PHA767491-induced period lengthening. Together, our results reveal posttranslational modification of transcriptional repressors in plant clock TTFL by CK1 family proteins, which also modulate nonplant circadian clocks.

    DOI: 10.1073/pnas.1903357116

    Web of Science

    Scopus

    PubMed

  26. Seasonal regulation of the lncRNA LDAIR modulates self-protective behaviours during the breeding season

    Nakayama Tomoya, Shimmura Tsuyoshi, Shinomiya Ai, Okimura Kousuke, Takehana Yusuke, Furukawa Yuko, Shimo Takayuki, Senga Takumi, Nakatsukasa Mana, Nishimura Toshiya, Tanaka Minoru, Okubo Kataaki, Kamei Yasuhiro, Naruse Kiyoshi, Yoshimura Takashi

    NATURE ECOLOGY & EVOLUTION   Vol. 3 ( 5 ) page: 845 - 852   2019.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media LLC  

    DOI: 10.1038/s41559-019-0866-6

    Web of Science

    Scopus

    Other Link: http://www.nature.com/articles/s41559-019-0866-6

  27. Cholecystokinin induces crowing in chickens

    Shimmura Tsuyoshi, Tamura Mai, Ohashi Shosei, Sasaki Asuka, TakamichiYamanaka, Nakao Nobuhiro, Ihara Kunio, Okamura Shinsaku, TakashiYoshimura

    SCIENTIFIC REPORTS   Vol. 9 ( 1 )   2019.3

     More details

    Language:Japanese   Publisher:Scientific Reports  

    Animals that communicate using sound are found throughout the animal kingdom. Interestingly, in contrast to human vocal learning, most animals can produce species-specific patterns of vocalization without learning them from their parents. This phenomenon is called innate vocalization. The underlying molecular basis of both vocal learning in humans and innate vocalization in animals remains unknown. The crowing of a rooster is also innately controlled, and the upstream center is thought to be localized in the nucleus intercollicularis (ICo) of the midbrain. Here, we show that the cholecystokinin B receptor (CCKBR) is a regulatory gene involved in inducing crowing in roosters. Crowing is known to be a testosterone (T)-dependent behavior, and it follows that roosters crow but not hens. Similarly, T-administration induces chicks to crow. By using RNA-sequencing to compare gene expression in the ICo between the two comparison groups that either crow or do not crow, we found that CCKBR expression was upregulated in T-containing groups. The expression of CCKBR and its ligand, cholecystokinin (CCK), a neurotransmitter, was observed in the ICo. We also showed that crowing was induced by intracerebroventricular administration of an agonist specific for CCKBR. Our findings therefore suggest that the CCK system induces innate vocalization in roosters.

    DOI: 10.1038/s41598-019-40746-9

    Web of Science

    Scopus

  28. Involvement of TRPM2 and TRPM8 in temperature-dependent masking behavior International journal

    Ota Wataru, Nakane Yusuke, Kashio Makiko, Suzuki Yoshiro, Nakamura Kazuhiro, Mori Yasuo, Tominaga Makoto, Yoshimura Takashi

    SCIENTIFIC REPORTS   Vol. 9 ( 1 ) page: 3706 - 3706   2019.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Masking is a direct behavioral response to environmental changes and plays an important role in the temporal distribution of activity. However, the mechanisms responsible for masking remain unclear. Here we identify thermosensors and a possible neural circuit regulating temperature-dependent masking behavior in mice. Analysis of mice lacking thermosensitive transient receptor potential (TRP) channels (Trpv1/3/4 and Trpm2/8) reveals that temperature-dependent masking is impaired in Trpm2- and Trpm8-null mice. Several brain regions are activated during temperature-dependent masking, including the preoptic area (POA), known as the thermoregulatory center, the suprachiasmatic nucleus (SCN), which is the primary circadian pacemaker, the paraventricular nucleus of the thalamus (PVT), and the nucleus accumbens (NAc). The POA, SCN, PVT are interconnected, and the PVT sends dense projections to the NAc, a key brain region involved in wheel-running activity. Partial chemical lesion of the PVT attenuates masking, suggesting the involvement of the PVT in temperature-dependent masking behavior.

    DOI: 10.1038/s41598-019-40067-x

    Web of Science

    Scopus

    PubMed

  29. Photoperiodic Regulation of Reproduction in Vertebrates International journal

    Nakane Yusuke, Yoshimura Takashi

    ANNUAL REVIEW OF ANIMAL BIOSCIENCES, VOL 7   Vol. 7   page: 173 - 194   2019

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Organisms use changes in photoperiod for seasonal reproduction to maximize the survival of their offspring. Birds have sophisticated seasonal mechanisms and are therefore excellent models for studying these phenomena. Birds perceive light via deep-brain photoreceptors and long day-induced thyroid-stimulating hormone (TSH, thyrotropin) in the pars tuberalis of the pituitary gland (PT), which cause local thyroid hormone activation within the mediobasal hypothalamus. The local bioactive thyroid hormone controls seasonal gonadotropin-releasing hormone secretion and subsequent gonadotropin secretion. In mammals, the eyes are believed to be the only photoreceptor organ, and nocturnal melatonin secretion triggers an endocrine signal that communicates information about the photoperiod to the PT to regulate TSH. In contrast, in Salmonidae fish the input pathway to the neuroendocrine output pathway appears to be localized in the saccus vasculosus. Thus, comparative analysis is an effective way to uncover the universality and diversity of fundamental traits in various organisms.

    DOI: 10.1146/annurev-animal-020518-115216

    Web of Science

    Scopus

    PubMed

  30. 体内時計を標的とした創薬 Invited

    吉村崇

    実験医学   Vol. 37   page: 398 - 399   2019

     More details

    Authorship:Corresponding author  

  31. 光と動物の季節性行動 Invited

    吉村崇

    精神医学   Vol. 61   page: 945 - 953   2019

     More details

    Authorship:Lead author, Corresponding author  

  32. 動物の季節適応機構の解明とその応用:ヒトの季節リズムの解明に向けて Invited

    丸山迪代, 吉村崇

    電気泳動   Vol. 63   page: 25 - 29   2019

  33. 動物が季節を感じる仕組み Invited

    吉村崇

    學士會会報   Vol. 936   page: 62 - 66   2019

     More details

    Authorship:Lead author, Corresponding author  

  34. 脊椎動物の季節感知機構の解明とその応用:動物たちの季節適応戦略の謎に迫る Invited

    中山友哉, 中根右介, 吉村崇

    化学と生物   Vol. 57   page: 121 - 128   2019

  35. Impaired Circadian Photoentrainment in Opn5-Null Mice

    Ota Wataru, Nakane Yusuke, Hattar Samer, Yoshimura Takashi

    ISCIENCE   Vol. 6   page: 299 - +   2018.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.isci.2018.08.010

    Web of Science

    Scopus

  36. Seasonal changes in color perception

    Tsuyoshi Shimmura, Tomoya Nakayama, Ai Shinomiya, Takashi Yoshimura

    General and Comparative Endocrinology   Vol. 260   page: 171 - 174   2018.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Academic Press Inc.  

    In temperate zones, organisms experience dynamic fluctuations in environment including changes in color. To cope with such seasonal changes in the environment, organisms adapt their physiology and behavior. Although color perception has been believed to be fixed throughout life, there is increasing evidence for the alteration in opsin gene expression induced by environmental stimuli in a number of animals. Very recently, dynamic seasonal plasticity in color perception has been reported in the seasonally breeding medaka fish. Interestingly, seasonal changes in human color perception have also been reported. Therefore, plasticity of color perception, induced by environmental stimuli, might be a common phenomenon across various species.

    DOI: 10.1016/j.ygcen.2017.12.010

    Web of Science

    Scopus

  37. Editorial - The Japan Society for Comparative Endocrinology

    Yoshimura Takashi, Ukena Kazuyoshi, Takei Yoshio

    GENERAL AND COMPARATIVE ENDOCRINOLOGY   Vol. 260   page: 162 - 163   2018.5

     More details

  38. Identification of circadian clock modulators from existing drugs. International journal

    T Katherine Tamai, Yusuke Nakane, Wataru Ota, Akane Kobayashi, Masateru Ishiguro, Naoya Kadofusa, Keisuke Ikegami, Kazuhiro Yagita, Yasufumi Shigeyoshi, Masaki Sudo, Taeko Nishiwaki-Ohkawa, Ayato Sato, Takashi Yoshimura

    EMBO molecular medicine   Vol. 10 ( 5 )   2018.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Chronic circadian disruption due to shift work or frequent travel across time zones leads to jet-lag and an increased risk of diabetes, cardiovascular disease, and cancer. The development of new pharmaceuticals to treat circadian disorders, however, is costly and hugely time-consuming. We therefore performed a high-throughput chemical screen of existing drugs for circadian clock modulators in human U2OS cells, with the aim of repurposing known bioactive compounds. Approximately 5% of the drugs screened altered circadian period, including the period-shortening compound dehydroepiandrosterone (DHEA; also known as prasterone). DHEA is one of the most abundant circulating steroid hormones in humans and is available as a dietary supplement in the USA Dietary administration of DHEA to mice shortened free-running circadian period and accelerated re-entrainment to advanced light-dark (LD) cycles, thereby reducing jet-lag. Our drug screen also revealed the involvement of tyrosine kinases, ABL1 and ABL2, and the BCR serine/threonine kinase in regulating circadian period. Thus, drug repurposing is a useful approach to identify new circadian clock modulators and potential therapies for circadian disorders.

    DOI: 10.15252/emmm.201708724

    Web of Science

    PubMed

  39. Seasonal Rhythms: The Role of Thyrotropin and Thyroid Hormones

    Nakayama Tomoya, Yoshimura Takashi

    THYROID   Vol. 28 ( 1 ) page: 4 - 10   2018.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1089/thy.2017.0186

    Web of Science

  40. Seasonal Regulation of Reproduction in Vertebrates: Special Focus on Avian Strategy

    Shinomiya Ai, Yoshimura Takashi

    REPRODUCTIVE AND DEVELOPMENTAL STRATEGIES: THE CONTINUITY OF LIFE     page: 103 - +   2018

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1007/978-4-431-56609-0_6

    Web of Science

  41. 季節性と色覚-メダカの色覚は季節によってダイナミックに変化する Invited

    新村毅,吉村崇

    遺伝   Vol. 72   page: 617 - 622   2018

     More details

    Authorship:Last author, Corresponding author  

  42. Dynamic plasticity in phototransduction regulates seasonal changes in color perception

    Tsuyoshi Shimmura, Tomoya Nakayama, Ai Shinomiya, Shoji Fukamachi, Masaki Yasugi, Eiji Watanabe, Takayuki Shimo, Takumi Senga, Toshiya Nishimura, Minoru Tanaka, Yasuhiro Kamei, Kiyoshi Naruse, Takashi Yoshimura

    NATURE COMMUNICATIONS   Vol. 8 ( 1 )   2017.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:NATURE PUBLISHING GROUP  

    To cope with seasonal changes in the environment, organisms adapt their physiology and behavior. Although color perception varies among seasons, the underlying molecular basis and its physiological significance remain unclear. Here we show that dynamic plasticity in phototransduction regulates seasonal changes in color perception in medaka fish. Medaka are active and exhibit clear phototaxis in conditions simulating summer, but remain at the bottom of the tank and fail to exhibit phototaxis in conditions simulating winter. Mate preference tests using virtual fish created with computer graphics demonstrate that medaka are more attracted to orange-red-colored model fish in summer than in winter. Transcriptome analysis of the eye reveals dynamic seasonal changes in the expression of genes encoding photopigments and their downstream pathways. Behavioral analysis of photopigment-null fish shows significant differences from wild type, suggesting that plasticity in color perception is crucial for the emergence of seasonally regulated behaviors.

    DOI: 10.1038/s41467-017-00432-8

    Web of Science

    Scopus

  43. The hypothalamic-pituitary-thyroid axis and biological rhythms: The discovery of TSH's unexpected role using animal models. International journal

    Keisuke Ikegami, Takashi Yoshimura

    Best practice & research. Clinical endocrinology & metabolism   Vol. 31 ( 5 ) page: 475 - 485   2017.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Thyroid hormones (TH) are important for development, growth, and metabolism. It is also clear that the synthesis and secretion of TH are regulated by the hypothalamic-pituitary-thyroid (HPT) axis. Animal models have helped advance our understanding of the roles and regulatory mechanisms of TH. The animals' bodies develop through coordinated timing of cell division and differentiation. Studies of frog metamorphosis led to the discovery of TH and their role in development. However, to adapt to rhythmic environmental changes, animals also developed various endocrine rhythms. Studies of rodents clarified the neural and molecular mechanisms underlying the circadian regulation of the HPT axis. Moreover, birds have a sophisticated seasonal adaptation mechanism, and recent studies of quail revealed unexpected roles for thyroid-stimulating hormone (TSH) and TH in the seasonal regulation of reproduction. Interestingly, this mechanism is conserved in mammals. Thus, we review how animal studies have shaped our general understanding of the HPT axis in relation to biological rhythms.

    DOI: 10.1016/j.beem.2017.09.002

    Web of Science

    PubMed

  44. Molecular mechanism regulating seasonality Reviewed

    Keisuke Ikegami, Takashi Yoshimura

    Biological Timekeeping: Clocks, Rhythms and Behaviour     page: 589 - 605   2017.1

     More details

    Language:English   Publishing type:Part of collection (book)   Publisher:Springer (India) Private Ltd.  

    The mechanisms of vertebrate seasonal time measurement were a mystery for a long time, but recent comparative studies have uncovered the photoperiodic signal transduction cascades in birds, mammals, and fish. These studies reveal the universality and diversity of photoperiodic mechanisms. That is, the molecules involved are conserved, while the tissues responsible for these mechanisms are different in different species (Nakane and Yoshimura, Front Neurosci 8:115, 2014). It is well established that the circadian clock is involved in photoperiodic time measurement. However, the underlying mechanism that defines the photoinducible phase or critical photoperiod (i.e., how organisms measure day length using a circadian clock) is at the heart of photoperiodic time measurement, and this question remains to be answered by future studies.

    DOI: 10.1007/978-81-322-3688-7_28

    Scopus

  45. Molecular and neuroendocrine mechanisms of avian seasonal reproduction

    T. Katherine Tamai, Takashi Yoshimura

    Advances in Experimental Medicine and Biology   Vol. 1001   page: 125 - 136   2017

     More details

    Language:English   Publishing type:Part of collection (book)   Publisher:Springer New York LLC  

    Animals living outside tropical zones experience seasonal changes in the environment and accordingly, adapt their physiology and behavior in reproduction, molting, and migration. Subtropical birds are excellent models for the study of seasonal reproduction because of their rapid and dramatic response to changes in photoperiod. For example, testicular weight typically changes by more than a 100-fold. In birds, the eyes are not necessary for seasonal reproduction, and light is instead perceived by deep brain photoreceptors. Functional genomic analysis has revealed that long day (LD)-induced thyrotropin from the pars tuberalis of the pituitary gland causes local thyroid hormone (TH) activation within the mediobasal hypothalamus. This local bioactive TH, triiodothyronine (T3), appears to regulate seasonal gonadotropin-releasing hormone (GnRH) secretion through morphological changes in neuro-glial interactions. GnRH, in turn, stimulates gonadotropin secretion and hence, gonadal development under LD conditions. In marked contrast, low temperatures accelerate short day (SD)-induced testicular regression in winter. Interestingly, low temperatures increase circulating levels of T3 to support adaptive thermogenesis, but this induction of T3 also triggers the apoptosis of germ cells by activating genes involved in metamorphosis. This apparent contradiction in the role of TH has recently been clarified. Central activation of TH during spring results in testicular growth, while peripheral activation of TH during winter regulates adaptive thermogenesis and testicular regression.

    DOI: 10.1007/978-981-10-3975-1_8

    Web of Science

    Scopus

    PubMed

  46. The Hypothalamo-Pituitary-Thyroid (HPT)-axis: Animal Studies. (in press) Invited Reviewed

    Ikegami K, Yoshimura T

    Best Practice & Research Clinical Endocrinology & Metabolism     2017

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  47. 組織特異的TSH糖鎖修飾 Invited Reviewed

    池上啓介, 吉村崇

    月刊Mebio   Vol. 33   page: 11 - 18   2016.9

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

  48. Molecular basis for regulating seasonal reproduction in vertebrates Invited Reviewed

    Nishiwaki-Ohkawa T, Yoshimura T

    Journal of Endocrinology   Vol. 229 ( 3 ) page: R117 - R127   2016.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1530/JOE-16-0066

    Web of Science

    Scopus

  49. Comparative analysis reveals the underlying mechanism of vertebrate seasonal reproduction. Reviewed International journal

    Keisuke Ikegami, Takashi Yoshimura

    General and comparative endocrinology   Vol. 227   page: 64 - 68   2016.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Animals utilize photoperiodic changes as a calendar to regulate seasonal reproduction. Birds have highly sophisticated photoperiodic mechanisms and functional genomics analysis in quail uncovered the signal transduction pathway regulating avian seasonal reproduction. Birds detect light with deep brain photoreceptors. Long day (LD) stimulus induces secretion of thyroid-stimulating hormone (TSH) from the pars tuberalis (PT) of the pituitary gland. PT-derived TSH locally activates thyroid hormone (TH) in the hypothalamus, which induces gonadotropin-releasing hormone (GnRH) and hence gonadotropin secretion. However, during winter, low temperatures increase serum TH for adaptive thermogenesis, which accelerates germ cell apoptosis by activating the genes involved in metamorphosis. Therefore, TH has a dual role in the regulation of seasonal reproduction. Studies using TSH receptor knockout mice confirmed the involvement of PT-derived TSH in mammalian seasonal reproduction. In addition, studies in mice revealed that the tissue-specific glycosylation of TSH diversifies its function in the circulation to avoid crosstalk. In contrast to birds and mammals, one of the molecular machineries necessary for the seasonal reproduction of fish are localized in the saccus vasculosus from the photoreceptor to the neuroendocrine output. Thus, comparative analysis is a powerful tool to uncover the universality and diversity of fundamental properties in various organisms.

    DOI: 10.1016/j.ygcen.2015.05.009

    DOI: 10.1016/j.ygcen.2015.05.009

    Web of Science

    Scopus

    PubMed

  50. Different photoperiodic responses in four lines of Japanese quail. Reviewed

    Yusuke Atsumi, Eriko Yorinaga, Wataru Ota, Takashi Yoshimura

    The Journal of Poultry Science   Vol. 53 ( 1 ) page: 63 - 66   2016.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Japan Poultry Science Association  

    Organisms measure day length to better adapt to seasonal changes in the environment; this phenomenon is called photoperiodism. The Japanese quail has a highly sophisticated photoperiodic mechanism and is an excellent model for the study of photoperiodism. Various lines of quail have been established during the domestication process. In the present study, we examined the effect of long day (LD) followed by short day (SD) on testicular weight in four lines of quail (L, AMRP, NIES-Br, and WE). When the quail were raised under SD conditions, testicular development was suppressed in all examined lines. The speed of the LD-induced testicular development of NIES-Br line was faster than that of AMRP line, while the speed of the SD-induced testicular regression of L line was significantly faster than that of WE line. These quail lines provide excellent model to uncover the underlying mechanism of seasonal testicular regression.

    DOI: 10.2141/jpsa.0150097

    Web of Science

    Scopus

    CiNii Books

    Other Link: https://jlc.jst.go.jp/DN/JLC/20019782070?from=CiNii

  51. 春告げホルモンTSHが甲状腺を刺激しない仕組み Invited

    吉村崇

    内分泌・糖尿病・代謝内科   Vol. 42   page: 58 - 62   2016

  52. 脊椎動物の光周性制御機構 Invited

    中根右介, 吉村崇

    生体の科学   Vol. 67   page: 1 - 4   2016

     More details

    Authorship:Last author, Corresponding author  

  53. 組織特異的TSH糖鎖修飾 Invited

    池上啓介, 吉村崇

    月間Mebio   Vol. 33   page: 11 - 18   2016

     More details

    Authorship:Last author, Corresponding author  

  54. なぜ動物は種特有の鳴き方ができるのか?ニワトリの「コケコッコー」を用いた先天的発声の研究 Invited

    新村毅, 吉村崇

    実験医学   Vol. 34   page: 618 - 621   2016

  55. Lactic acid is a sperm motility inactivation factor in the sperm storage tubules

    Mei Matsuzaki, Shusei Mizushima, Gen Hiyama, Noritaka Hirohashi, Kogiku Shiba, Kazuo Inaba, Tomohiro Suzuki, Hideo Dohra, Toshiyuki Ohnishi, Yoshikatsu Sato, Tetsuya Kohsaka, Yoshinobu Ichikawa, Yusuke Atsumi, Takashi Yoshimura, Tomohiro Sasanami

    SCIENTIFIC REPORTS   Vol. 5   2015.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:NATURE PUBLISHING GROUP  

    Although successful fertilization depends on timely encounters between sperm and egg, the decoupling of mating and fertilization often confers reproductive advantages to internally fertilizing animals. In several vertebrate groups, postcopulatory sperm viability is prolonged by storage in specialized organs within the female reproductive tract. In birds, ejaculated sperm can be stored in a quiescent state within oviductal sperm storage tubules (SSTs), thereby retaining fertilizability for up to 15 weeks at body temperature (41 degrees C); however, the mechanism by which motile sperm become quiescent within SSTs is unknown. Here, we show that low oxygen and high lactic acid concentrations are established in quail SSTs. Flagellar quiescence was induced by lactic acid in the concentration range found in SSTs through flagellar dynein ATPase inactivation following cytoplasmic acidification (<pH 6.0). The long-term preservation of sperm morphology under hypoxic and high temperature conditions indicates that a combination of these factors enables sperm cells to survive during the ovulation cycles. Our findings suggested a novel physiological role for lactic acid in promoting sperm quiescence in SSTs and opened up a new opportunity for technological improvement in prolonging sperm longevity at ambient or body temperature.

    DOI: 10.1038/srep17643

    Web of Science

    Scopus

  56. Ontogeny of the Saccus Vasculosus, a Seasonal Sensor in Fish. Reviewed

    Maeda R, Shimo T, Nakane Y, Nakao N, Yoshimura T

    Endocrinology   Vol. 156 ( 11 ) page: 4238 - 4243   2015.11

  57. Disrupted seasonal biology impacts health, food security, and ecosystems Reviewed International coauthorship

    Stevenson TJ, Visser ME, Arnold W, Barrett P, Biello S, Dawson A, Denlinger DL, Dominoni D, Ebling FJ, Elton S, Evans N, Ferguson HM, Foster RG, Hau M, Haydon DT, Hazlerigg DG, Heideman P, Hopcraft JGC, Jonsson NN, Kronfeld-Schor N, Kumar V, Lincoln GA, MacLeod R, Martin SAM, Martinez-Bakker, M, Nelson RJ, Reed T, Robinson JE, Rock D, Schwartz WJ, Steffan-Dewenter I, Tauber E, Thackeray SJ, Umstatter C, Yoshimura T, Helm B

    Proceedings of the Royal Society B   Vol. 282 ( 1817 ) page: 1817   2015.10

  58. Animals' clever adaptation strategy for seasonal changes in environment

    Ikegami Keisuke, Yoshimura Takashi

    JAPANESE JOURNAL OF NEUROPSYCHOPHARMACOLOGY   Vol. 35 ( 4 ) page: 103 - 106   2015.8

     More details

  59. The highest-ranking rooster has priority to announce the break of dawn Reviewed

    Tsuyoshi Shimmura, Shosei Ohashi, Takashi Yoshimura

    SCIENTIFIC REPORTS   Vol. 5   2015.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:NATURE PUBLISHING GROUP  

    The "cock-a-doodle-doo" crowing of roosters, which symbolizes the break of dawn in many cultures, is controlled by the circadian clock. When one rooster announces the break of dawn, others in the vicinity immediately follow. Chickens are highly social animals, and they develop a linear and fixed hierarchy in small groups. We found that when chickens were housed in small groups, the top-ranking rooster determined the timing of predawn crowing. Specifically, the top-ranking rooster always started to crow first, followed by its subordinates, in descending order of social rank. When the top-ranking rooster was physically removed from a group, the second-ranking rooster initiated crowing. The presence of a dominant rooster significantly reduced the number of predawn crows in subordinates. However, the number of crows induced by external stimuli was independent of social rank, confirming that subordinates have the ability to crow. Although the timing of subordinates' predawn crowing was strongly dependent on that of the top-ranking rooster, free-running periods of body temperature rhythms differed among individuals, and crowing rhythm did not entrain to a crowing sound stimulus. These results indicate that in a group situation, the top-ranking rooster has priority to announce the break of dawn, and that subordinate roosters are patient enough to wait for the top-ranking rooster's first crow every morning and thus compromise their circadian clock for social reasons.

    DOI: 10.1038/srep11683

    Web of Science

    Scopus

  60. C-H Activation Generates Period-Shortening Molecules That Target Cryptochrome in the Mammalian Circadian Clock

    Oshima Tsuyoshi, Yamanaka Iori, Kumar Anupriya, Yamaguchi Junichiro, Nishiwaki-Ohkawa Taeko, Muto Kei, Kawamura Rika, Hirota Tsuyoshi, Yagita Kazuhiro, Irle Stephan, Kay Steve A., Yoshimura Takashi, Itami Kenichiro

    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION   Vol. 54 ( 24 ) page: 7193 - 7197   2015.6

  61. Low Temperature-Induced Circulating Triiodothyronine Accelerates Seasonal Testicular Regression

    Ikegami Keisuke, Atsumi Yusuke, Yorinaga Eriko, Ono Hiroko, Murayama Itaru, Nakane Yusuke, Ota Wataru, Arai Natsumi, Tega Akinori, Iigo Masayuki, Darras Veerle M., Tsutsui Kazuyoshi, Hayashi Yoshitaka, Yoshida Shosei, Yoshimura Takashi

    ENDOCRINOLOGY   Vol. 156 ( 2 ) page: 647 - 659   2015.2

  62. A unique mechanism of successful fertilization in a domestic bird

    Tomohiro Sasanami, Shunsuke Izumi, Naoki Sakurai, Toshifumi Hirata, Shusei Mizushima, Mei Matsuzaki, Gen Hiyama, Eriko Yorinaga, Takashi Yoshimura, Kazuyoshi Ukena, Kazuyoshi Tsutsui

    SCIENTIFIC REPORTS   Vol. 5   2015.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:NATURE PUBLISHING GROUP  

    Fertilization is an indispensable step for formation of a zygote in sexual reproduction, leading to species survival. When mating occurs, sperm is transported to the female reproductive tracts via the seminal plasma (SP). SP is derived from male accessory sex glands and it plays pivotal roles for fertilization in animals. However, molecular mechanisms of SP or a fluid derived from male accessory sex glands for successful fertilization remain unclear. Here, we report that in male quail the cloacal gland (CG) produces prostaglandin F-2 alpha (PGF(2 alpha)) that contributes to successful fertilization. PGF(2 alpha), as well as the secretion of CG (CGS), induced vaginal contractions and caused the opening of the entrance of the sperm storage tubules, the structures responsible for the long-term sperm storage and fertilization. The removal of CGS from the male before mating reduced the fertility, but the supplementation of CGS or PGF(2 alpha) rescued the subfertility. We further showed that male CG contains glucose that is utilized as energy source for the intrinsic sperm mobility after transportation to female vagina. This mechanism, in concert with the excitatory effects of PGF(2 alpha) enables successful fertilization in the domestic bird.

    DOI: 10.1038/srep07700

    Web of Science

    Scopus

  63. 季節感知機構の解析から見えてきた動物の巧みな戦略 Invited Reviewed

    池上啓介, 吉村崇

    日本神経精神薬理学雑誌   Vol. 35 ( 4 ) page: 103 - 106   2015

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)   Publisher:(一社)日本神経精神薬理学会  

  64. ホルモンの糖鎖修飾による巧みな生理機能の分担戦略 Invited Reviewed

    池上啓介, 吉村崇

    日本比較内分泌学会   Vol. 41 ( 156 ) page: 127 - 128   2015

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)   Publisher:Japan Society for Comparative Endocrinology  

    DOI: 10.5983/nl2008jsce.41.127

  65. Circannual Cycles and Photoperiodism

    Cassone Vincent M., Yoshimura Takashi

    STURKIE'S AVIAN PHYSIOLOGY, 6TH EDITION     page: 829 - 845   2015

     More details

  66. 季節感知機構の解析から見えてきた動物の巧みな戦略 Invited

    池上啓介, 吉村崇

    日本神経精神薬理学雑誌   Vol. 35   page: 103 - 106   2015

  67. 触媒で体内時計のリズムを変える-異分野融合がもたらした新分子の発見 Invited

    伊丹健一郎, 吉村崇

    月刊化学   Vol. 70   page: 32 - 36   2015

  68. ホルモンの糖鎖修飾による巧みな生理機能の分担戦略 Invited

    池上啓介, 吉村崇

    比較内分泌学   Vol. 41   page: 129 - 130   2015

     More details

    Authorship:Last author, Corresponding author  

  69. Takashi Yoshimura

    Yoshimura Takashi

    CURRENT BIOLOGY   Vol. 24 ( 23 ) page: R1108 - R1109   2014.12

  70. Tissue-specific post-translational modification allows functional targeting of thyrotropin Reviewed

    Ikegami K, Liao XH, Hoshino Y, Ono H, Ota W, Ito Y, Nishiwaki-Ohkawa T, Sato C, Kitajima K, Iigo M, Shigeyoshi Y, Yamada M, Murata Y, Refetoff S, Yoshimura T

    Cell Reports   Vol. 9   page: 801-809   2014.11

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  71. Thyrotoropin receptor knockout changes monoaminergic neuronal system and produces methylphenidate-sensitive emotional and cognitive dysfunction. Reviewed International journal

    Akihiro Mouri, Yuta Hoshino, Shiho Narusawa, Keisuke Ikegami, Hiroyuki Mizoguchi, Yoshiharu Murata, Takashi Yoshimura, Toshitaka Nabeshima

    Psychoneuroendocrinology   Vol. 48   page: 147 - 161   2014.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Attention deficit/hyperactivity disorder (ADHD) has been reported in association with resistance to thyroid hormone, a disease caused by a mutation in the thyroid hormone receptor β (TRβ) gene. TRβ is a key protein mediating down-regulation of thyrotropin (TSH) expression by 3,3',5-tri-iodothyronine (T3), an active form of thyroid hormone. Dysregulation of TSH and its receptor (TSHR) is implicated in the pathophysiology of ADHD but the role of TSHR remains elusive. Here, we clarified a novel role for TSHR in emotional and cognitive functions related to monoaminergic nervous systems. TSHR knockout mice showed phenotypes of ADHD such as hyperactivity, impulsiveness, a decrease in sociality and increase in aggression, and an impairment of short-term memory and object recognition memory. Administration of methylphenidate (1, 5 and 10mg/kg) reversed impulsiveness, aggression and object recognition memory impairment. In the knockout mice, monoaminergic changes including decrease in the ratio of 3-methoxy-4-hydroxyphenylglycol/noradrenaline and increase in the ratio of homovanillic acid/dopamine were observed in some brain regions, accompanied by increase in the expression of noradrenaline transporter in the frontal cortex. When TSH was completely suppressed by the supraphysiological administration of T3 to the adult mice, some behavioral and neurological changes in TSHR KO mice were also observed, suggesting that these changes were not due to developmental hypothyroidism induced by the inactivation of TSHR but to the loss of the TSH-TSHR pathway itself. Taken together, the present findings suggest a novel role for TSHR in behavioral and neurological phenotypes of ADHD.

    DOI: 10.1016/j.psyneuen.2014.05.021

    Web of Science

    Scopus

    PubMed

  72. Intrinsic photosensitivity of a deep brain photoreceptor

    Yusuke Nakane, Tsuyoshi Shimmura, Hideki Abe, Takashi Yoshimura

    CURRENT BIOLOGY   Vol. 24 ( 13 ) page: R596 - R597   2014.7

     More details

    Language:English   Publisher:CELL PRESS  

    DOI: 10.1016/j.cub.2014.05.038

    Web of Science

    Scopus

  73. Universality and diversity in the signal transduction pathway that regulates seasonal reproduction in vertebrates Invited Reviewed

    Yusuke Nakane, Takashi Yoshimura

    FRONTIERS IN NEUROSCIENCE   Vol. 8 ( 8 MAY ) page: 115   2014.5

     More details

    Language:English   Publisher:FRONTIERS RESEARCH FOUNDATION  

    Most vertebrates living outside the tropical zone show robust physiological responses in response to seasonal changes in photoperiod, such as seasonal reproduction, molt, and migration. The highly sophisticated photoperiodic mechanism in Japanese quail has been used to uncover the mechanism of seasonal reproduction. Molecular analysis of quail mediobasal hypothalamus (MBH) revealed that local thyroid hormone activation within the MBH plays a critical role in the photoperiodic response of gonads. This activation is accomplished by two gene switches: thyroid hormone-activating (DIO2) and thyroid hormone-inactivating enzymes (DIO3). Functional genomics studies have shown that long-day induced thyroid-stimulating hormone (TSH) in the pars tuberalis (PT) of the pituitary gland regulates DIO2/3 switching. In birds, light information received directly by deep brain photoreceptors regulates PT TSH. Recent studies demonstrated that Opsin 5-positive cerebrospinal fluid (CSF)-contacting neurons are deep brain photoreceptors that regulate avian seasonal reproduction. Although the involvement of TSH and DIO2/3 in seasonal reproduction has been confirmed in various mammals, the light input pathway that regulates PT TSH in mammals differs from that of birds. In mammals, the eye is the only photoreceptor organ and light information received by the eye is transmitted to the pineal gland through the circadian pacemaker, the suprachiasmatic nucleus. Nocturnal melatonin secretion from the pineal gland indicates the length of night and regulates the PT TSH. In fish, the regulatory machinery for seasonal reproduction, from light input to neuroendocrine output, has been recently demonstrated in the coronet cells of the saccus vasculosus (SV). The SV is unique to fish and coronet cells are CSF-contacting neurons. Here, we discuss the universality and diversity of signal transduction pathways that regulate vertebrate seasonal reproduction.

    DOI: 10.3389/fnins.2014.00115

    DOI: 10.3389/fnins.2014.00115

    Web of Science

    Scopus

  74. Sperm activation by heat shock protein 70 supports the migration of sperm released from sperm storage tubules in Japanese quail (Coturnix japonica). Reviewed International journal

    Gen Hiyama, Mei Matsuzaki, Shusei Mizushima, Hideo Dohra, Keisuke Ikegami, Takashi Yoshimura, Kogiku Shiba, Kazuo Inaba, Tomohiro Sasanami

    Reproduction (Cambridge, England)   Vol. 147 ( 2 ) page: 167 - 178   2014.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Systems for maintaining the viability of ejaculated sperm in the female reproductive tract are widespread among vertebrates and invertebrates. In birds, this sperm storage function is performed by specialized simple tubular invaginations called sperm storage tubules (SSTs) in the uterovaginal junction (UVJ) of the oviduct. Although the incidence and physiological reasons for sperm storage in birds have been reported extensively, the mechanisms of sperm uptake by the SSTs, sperm maintenance within the SSTs, and control of sperm release from the SSTs are poorly understood. In this study, we demonstrated that the highly conserved heat shock protein 70 (HSP70) stimulates sperm motility in vitro and also that HSP70 expressed in the UVJ may facilitate the migration of sperm released from the SSTs. Quantitative RT-PCR analysis demonstrated that the expression of HSP70 mRNA in the UVJ increases before ovulation/oviposition. Gene-specific in situ hybridization and immunohistochemical analysis with a specific antibody to HSP70 demonstrated that HSP70 is localized in the surface epithelium of the UVJ. Furthermore, injection of anti-HSP70 antibody into the vagina significantly inhibited fertilization in vivo. In addition, we found that recombinant HSP70 activates flagellar movement in the sperm and that the binding of recombinant HSP70 to the sperm surface is mediated through an interaction with voltage-dependent anion channel protein 2 (VDAC2). Our results suggest that HSP70 binds to the sperm surface by interacting with VDAC2 and activating sperm motility. This binding appears to play an important role in sperm migration within the oviduct.

    DOI: 10.1530/REP-13-0439

    Web of Science

    Scopus

    PubMed

  75. Seasonal sensor in fish

    Comparative Endocrinology   Vol. 40 ( 152 ) page: 65 - 67   2014

     More details

    Language:Japanese   Publisher:Japan Society for Comparative Endocrinology  

    DOI: 10.5983/nl2008jsce.40.65

    CiNii Books

  76. Regulation of seasonal reproduction by hypothalamic activation of thyroid hormone. Reviewed International journal

    Shinomiya A, Shimmura T, Nishiwaki-Ohkawa, T, Yoshimura T

    Frontiers in Endocrinology   Vol. 5 ( FEB ) page: 12 - 12   2014

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Organisms living outside the tropics measure the changes in the length of the day to adapt to seasonal changes in the environment. Animals that breed during spring and summer are called long-day breeders, while those that breed during fall are called short-day breeders. Although the influence of thyroid hormone in the regulation of seasonal reproduction has been known for several decades, its precise mechanism remained unknown. Recent studies revealed that the activation of thyroid hormone within the mediobasal hypothalamus plays a key role in this phenomenon. This localized activation of the thyroid hormone is controlled by thyrotropin (thyroid-stimulating hormone) secreted from the pars tuberalis of the pituitary gland. Although seasonal reproduction is a rate-limiting factor in animal production, genes involved in photoperiodic signal transduction pathway could emerge as potential targets to facilitate domestication.

    DOI: 10.3389/fendo.2014.00012

    DOI: 10.3389/fendo.2014.00012

    Web of Science

    Scopus

    PubMed

  77. 季節リズムの制御メカニズム Invited

    大川妙子, 吉村崇

    睡眠医療   Vol. 8   page: 203 - 209   2014

     More details

    Authorship:Last author, Corresponding author  

  78. Helix-loop-helix protein Id2 stabilizes mammalian circadian oscillation under constant light conditions. Reviewed

    Akihito A Adachi, Atsuko Fujioka, Mamoru Nagano, Koh-hei Masumoto, Toru Takumi, Takashi Yoshimura, Shizufumi Ebihara, Kentaro Mori, Yoshifumi Yokota, Yasufumi Shigeyoshi

    Zoological science   Vol. 30 ( 12 ) page: 1011 - 1018   2013.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The mammalian circadian oscillator is composed of interacting positive and negative transcription events. The clock proteins PER1 and PER2 play essential roles in a negative limb of the feedback loop that generates the circadian rhythm in mammals. In addition, the proteins CLOCK and BMAL1 (also known as ARNTL) form a heterodimer that drives the Per genes via the E-box consensus sequences within their promoter regions. In the present study, we demonstrate that Id2 is involved in stabilization of the amplitudes of the circadian oscillations by suppressing transcriptional activation of clock genes Clock and Bmal1. Id2 shows dynamic oscillation in the SCN, with a peak in the late subjective night. Under constant dark conditions (DD), Id2(-/-) mice showed no apparent difference in locomotor activity, however, under constant light conditions (LL), Id2(-/-) mice exhibit aberrant locomotor activity, with lower circadian oscillation amplitudes, although the free running periods in Id2(-/-) mice show no differences from those in either wild type or heterozygous mice. Id2(-/-) animals also exhibit upregulation of Per1 in constant light, during both the subjective night and day. In wild type mice, Id2 is upregulated by constant light exposure during the subjective night. We propose that Id2 expression in the SCN contributes to maintenance of dynamic circadian oscillations.

    DOI: 10.2108/zsj.30.1011

    Web of Science

    Scopus

    PubMed

  79. Thyroid hormone and seasonal regulation of reproduction Invited Reviewed

    Yoshimura T

    Frontiers in Neuroendocrinology   Vol. 34 ( 3 ) page: 157 - 166   2013.8

  80. Seasonal time measurement during reproduction. Reviewed

    Keisuke Ikegami, Takashi Yoshimura

    The Journal of reproduction and development   Vol. 59 ( 4 ) page: 327 - 333   2013.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Most species living outside the tropical zone undergo physiological adaptations to seasonal environmental changes and changing day length (photoperiod); this phenomenon is called photoperiodism. It is well known that the circadian clock is involved in the regulation of photoperiodism such as seasonal reproduction, but the mechanism underlying circadian clock regulation of photoperiodism remains unclear. Recent molecular analysis have revealed that, in mammals and birds, the pars tuberalis (PT) of the pituitary gland acts as the relay point from light receptors, which receive information about the photoperiod, to the endocrine responses. Long-day (LD)-induced thyroid-stimulating hormone (TSH) in the PT acts as a master regulator of seasonal reproduction in the ependymal cells (ECs) within the mediobasal hypothalamus (MBH) and activates thyroid hormone (TH) by inducing the expression of type 2 deiodinase in both LD and short-day (SD) breeding animals. Furthermore, the circadian clock has been found to be localized in the PT and ECs as well as in the circadian pacemaker(s). This review purposes to summarize the current knowledge concerning the involvement of the neuroendocrine system and circadian clock in seasonal reproduction.

    DOI: 10.1262/jrd.2013-035

    DOI: 10.1262/jrd.2013-035

    Web of Science

    Scopus

    PubMed

  81. The saccus vasculosus of fish is a sensor of seasonal changes in day length

    Nakane Yusuke, Ikegami Keisuke, Iigo Masayuki, Ono Hiroko, Takeda Korenori, Takahashi Daisuke, Uesaka Maiko, Kimijima Meita, Hashimoto Ramu, Arai Natsumi, Suga Takuya, Kosuge Katsuya, Abe Tomotaka, Maeda Ryosuke, Senga Takumi, Amiya Noriko, Azuma Teruo, Amano Masafumi, Abe Hideki, Yamamoto Naoyuki, Yoshimura Takashi

    NATURE COMMUNICATIONS   Vol. 4   2013.7

  82. Next-generation sequencing reveals genomic features in the Japanese quail Reviewed

    Ryouka Kawahara-Miki, Satoshi Sano, Mitsuo Nunome, Tsuyoshi Shimmura, Takehito Kuwayama, Shinji Takahashi, Takaharu Kawashima, Yoichi Matsuda, Takashi Yoshimura, Tomohiro Kono

    GENOMICS   Vol. 101 ( 6 ) page: 345 - 353   2013.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    The Japanese quail has several advantages as a laboratory animal for biological and biomedical investigations. In this study, the draft genome of the Japanese quail was sequenced and assembled using next-generation sequencing technology. To improve the quality of the assembly, the sequence reads from the Japanese quail were aligned against the reference genome of the chicken. The final draft assembly consisted of 1.75 Gbp with an N50 contig length of 11,409 bp. On the basis of the draft genome sequence obtained, we developed 100 microsatellite markers and used these markers to evaluate the genetic variability and diversity of 11 lines of Japanese quail. Furthermore, we identified Japanese quail orthologs of spermatogenesis markers and analyzed their expression using in situ hybridization. The Japanese quail genome sequence obtained in the present study could enhance the value of this species as a model animal. (C) 2013 Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.ygeno.2013.03.006

    Web of Science

    Scopus

    PubMed

    Other Link: http://orcid.org/0000-0003-2072-8851

  83. Circadian clock determines the timing of rooster crowing Reviewed

    Tsuyoshi Shimmura, Takashi Yoshimura

    CURRENT BIOLOGY   Vol. 23 ( 6 ) page: R231 - R233   2013.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:CELL PRESS  

    DOI: 10.1016/j.cub.2013.02.015

    Web of Science

    Scopus

  84. Circadian clock gene Per2 is not necessary for the photoperiodic response in mice. Reviewed International journal

    Keisuke Ikegami, Masayuki Iigo, Takashi Yoshimura

    PloS one   Vol. 8 ( 3 ) page: e58482   2013.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    In mammals, light information received by the eyes is transmitted to the pineal gland via the circadian pacemaker, i.e., the suprachiasmatic nucleus (SCN). Melatonin secreted by the pineal gland at night decodes night length and regulates seasonal physiology and behavior. Melatonin regulates the expression of the β-subunit of thyroid-stimulating hormone (TSH; Tshb) in the pars tuberalis (PT) of the pituitary gland. Long day-induced PT TSH acts on ependymal cells in the mediobasal hypothalamus to induce the expression of type 2 deiodinase (Dio2) and reduce type 3 deiodinase (Dio3) that are thyroid hormone-activating and hormone-inactivating enzymes, respectively. The long day-activated thyroid hormone T3 regulates seasonal gonadotropin-releasing hormone secretion. It is well established that the circadian clock is involved in the regulation of photoperiodism. However, the involvement of the circadian clock gene in photoperiodism regulation remains unclear. Although mice are generally considered non-seasonal animals, it was recently demonstrated that mice are a good model for the study of photoperiodism. In the present study, therefore, we examined the effect of changing day length in Per2 deletion mutant mice that show shorter wheel-running rhythms under constant darkness followed by arhythmicity. Although the amplitude of clock gene (Per1, Cry1) expression was greatly attenuated in the SCN, the expression profile of arylalkylamine N-acetyltransferase, a rate-limiting melatonin synthesis enzyme, was unaffected in the pineal gland, and robust photoperiodic responses of the Tshb, Dio2, and Dio3 genes were observed. These results suggested that the Per2 clock gene is not necessary for the photoperiodic response in mice.

    DOI: 10.1371/journal.pone.0058482

    Web of Science

    Scopus

    PubMed

  85. 新規光受容器「オプシン5」欠損マウスの行動解析

    太田 航, 中根 右介, 池上 啓介, 吉村 崇

    日本畜産学会大会講演要旨集   Vol. 116回   page: 97 - 97   2013.3

     More details

    Language:Japanese   Publisher:(公社)日本畜産学会  

  86. 脊椎動物の光周性の制御機構 Invited

    頼永恵理子, 吉村崇

    生物科学   Vol. 64   page: 205 - 211   2013

  87. 脊椎動物が季節を感知する仕組みの解明 Invited Reviewed

    前田遼介, 吉村崇

    トレーサー   Vol. 54   page: 3 - 8   2013

  88. 哺乳類における新規光受容器Opsin 5の発現解析

    太田 航, 中根 右介, 池上 啓介, 吉村 崇

    日本畜産学会大会講演要旨集   Vol. 115回   page: 216 - 216   2012.3

     More details

    Language:Japanese   Publisher:(公社)日本畜産学会  

  89. Circadian clocks and the measurement of daylength in seasonal reproduction

    Ikegami Keisuke, Yoshimura Takashi

    MOLECULAR AND CELLULAR ENDOCRINOLOGY   Vol. 349 ( 1 ) page: 76 - 81   2012.2

  90. Understanding mechanism of seasonal reproduction and deep brain photoreceptor

    Nakane Y., Yoshimura T.

    Seikagaku   Vol. 83 ( 2 ) page: 114 - 117   2011.12

     More details

    Publisher:Seikagaku  

    Scopus

  91. Photoperiodism in vertebrates.

    Wataru Ota, Takashi Yoshimura

    Journal of the Society of Biomechanisms   Vol. 35 ( 4 ) page: 251 - 257   2011.11

     More details

    Language:Japanese  

    DOI: 10.3951/sobim.35.251

    CiNii Books

  92. Progesterone Is a Sperm-Releasing Factor from the Sperm-Storage Tubules in Birds

    Ito Tomomi, Yoshizaki Norio, Tokumoto Toshinobu, Ono Hiroko, Yoshimura Takashi, Tsukada Akira, Kansaku Norio, Sasanami Tomohiro

    ENDOCRINOLOGY   Vol. 152 ( 10 ) page: 3952 - 3962   2011.10

  93. ウズラの季節性精巣退縮機構の解明

    渥美 優介, 池上 啓介, 小野 ひろ子, 村山 至, 中根 右介, 太田 航, 新井 菜津美, 手賀 明倫, 飯郷 雅之, 吉田 松生, 吉村 崇

    The Journal of Reproduction and Development   Vol. 57 ( Suppl. ) page: j103 - j103   2011.8

     More details

    Language:Japanese   Publisher:(公社)日本繁殖生物学会  

  94. Opsin 5 as a deep brain photoreceptor regulating photoperiodism

    Yusuke Nakane, Keisuke Ikegami, Hiroko Ono, Naoyuki Yamamoto, Shosei Yoshida, Yasuhiro Kamei, Sho-ichi Higashi, Kanjun Hirunagi, Shizufumi Ebihara, Yoshihiro Kubo, Takashi Yoshimura

    NEUROSCIENCE RESEARCH   Vol. 71   page: E171 - E171   2011

     More details

    Language:English   Publisher:ELSEVIER IRELAND LTD  

    DOI: 10.1016/j.neures.2011.07.740

    Web of Science

  95. Oocytic expression of zona pellucida protein ZP4 in Japanese quail (<i>Coturnix japonica</i>)

    Serizawa Mami, Kinoshita Mihoko, Rodler Daniela, Tsukada Akira, Ono Hiroko, Yoshimura Takashi, Kansaku Norio, Sasanami Tomohiro

    ANIMAL SCIENCE JOURNAL   Vol. 82 ( 2 ) page: 227 - 235   2011

     More details

    Publisher:Animal Science Journal  

    The avian perivitelline layer, an extracellular matrix homologous to the zona pellucida (ZP) of mammalian oocytes, is composed mainly by zona pellucida gene family glycoproteins. Our previous studies in Japanese quail have demonstrated that the matrix's components, ZP3 and ZPD, are synthesized in ovarian granulosa cells. Another component, ZP1, is synthesized in the liver. Recently, we demonstrated that another minor constituent, ZP2 is produced in the oocytes of the immature follicles. In the present study, we report the isolation of complementary DNA encoding quail ZP4 and its expression and origin in the female birds. By ribonuclease protection assay and in situ hybridization, we demonstrated that ZP4 transcripts were transcribed in the oocytes of small white follicles. The expression level of ZP4 decreased dramatically during follicular development, and the highest expression was observed in the small white follicles. Western blot analysis using the specific antibody against ZP4 indicated that the immunoreactive 58.2kDa protein was present in the lysates of the small white follicles. These results demonstrate for the first time that the avian ZP4 is expressed in the oocyte, and that the expression pattern of the gene is similar to that of ZP2. © 2011 The Authors. Journal compilation © 2011 Japanese Society of Animal Science.

    DOI: 10.1111/j.1740-0929.2010.00830.x

    Web of Science

    Scopus

  96. 季節繁殖の制御機構と脳深部光受容器の解明 Invited

    中根右介, 吉村崇

    生化学   Vol. 83   page: 114 - 117   2011

     More details

    Authorship:Last author, Corresponding author  

  97. 脊椎動物の光周性 Invited

    太田航, 吉村崇

    バイオメカニズム学会誌   Vol. 35   page: 251 - 257   2011

  98. Deep brain photoreceptors and a seasonal signal transduction cascade in birds

    Yusuke Nakane, Takashi Yoshimura

    CELL AND TISSUE RESEARCH   Vol. 342 ( 3 ) page: 341 - 344   2010.12

     More details

    Language:English   Publisher:SPRINGER  

    Our current understanding of the mechanism underlying seasonal reproduction in birds is reviewed.

    DOI: 10.1007/s00441-010-1073-6

    Web of Science

    Scopus

  99. A mammalian neural tissue opsin (Opsin 5) is a deep brain photoreceptor in birds

    Nakane Yusuke, Ikegami Keisuke, Ono Hiroko, Yamamoto Naoyuki, Yoshida Shosei, Hirunagi Kanjun, Ebihara Shizufumi, Kubo Yoshihiro, Yoshimura Takashi

    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA   Vol. 107 ( 34 ) page: 15264 - 15268   2010.8

  100. Usp46, encoding a ubiquitin specific peptidase, is a quantitative trait gene underlying "behavioral despair" in mice Reviewed

    Shizufumi Ebihara, Shigeru Tomida, Takayoshi Mamiya, Hirotake Sakamaki, Masami Miura, Toshihiko Aosaki, Masao Masuda, Minae Niwa, Tsutomu Kameyama, Junya Kobayashi, Yuka Iwaki, Saki Imai, Akira Ishikawa, Kuniya Abe, Takashi Yoshimura, Toshitaka Nabeshima

    SLEEP AND BIOLOGICAL RHYTHMS   Vol. 8 ( 2 ) page: 114 - 119   2010.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:WILEY-BLACKWELL  

    CS mice exhibit several distinct phenotypes of circadian behavioral rhythms and sleep properties. Because many mental illnesses are associated with abnormalities in the circadian rhythms and sleep pattern, we characterized the behavioral phenotypes in CS mice with a battery of behavioral tests. Among these phenotypes, we found that CS mice exhibit an extremely low immobility time in both the tail suspension test (TST) and forced swimming test (FST). To uncover the genetic basis for lower immobility time, we first performed quantitative trait locus (QTL) mapping using CS and C57BL/6J mice, which revealed significant QTLs on chromosomes (Chrs) 4 (FST) and 5 (TST and FST). To identify the quantitative trait gene on Chr 5, we narrowed the QTL interval to 0.5 Mb using several congenic and subcongenic strains. Ubiquitin-specific peptidase 46 (Usp46) with a lysine codon deletion was located in this region. This deletion affected nest-building, muscimol-induced righting reflex, and anti-immobility effects of imipramine. The muscimol-induced current in the hippocampal CA1 pyramidal neurons and hippocampal expression of the 67-kDa isoform of glutamic acid decarboxylase significantly decreased in Usp46 mutant mice. All these phenotypes were rescued in transgenic mice with bacterial artificial chromosomes containing wild-type Usp46. Thus, Usp46 affects the immobility in the TST and FST, and it is implicated in the regulation of GABA action.

    DOI: 10.1111/j.1479-8425.2010.00435.x

    Web of Science

    Scopus

  101. Influence of the estrous cycle on clock gene expression in reproductive tissues: Effects of fluctuating ovarian steroid hormone levels Reviewed

    Takahiro J. Nakamura, Michael T. Sellix, Takashi Kudo, Nobuhiro Nakao, Takashi Yoshimura, Shizufumi Ebihara, Christopher S. Colwell, Gene D. Block

    STEROIDS   Vol. 75 ( 3 ) page: 203 - 212   2010.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ELSEVIER SCIENCE INC  

    Circadian rhythms in physiology and behavior are known to be influenced by the estrous cycle in female rodents. The clock genes responsible for the generation of circadian oscillations are widely expressed both within the central nervous system and peripheral tissues, including those that comprise the reproductive system. To address whether the estrous cycle affects rhythms of clock gene expression in peripheral tissues, we first examined rhythms of clock gene expression (Per1, Per2, Bmal1) in reproductive (uterus, ovary) and non-reproductive (liver) tissues of cycling rats using quantitative real-time PCR (in vivo) and luminescent recording methods to measure circadian rhythms of PER2 expression in tissue explant cultures from cycling PER2:: LUCIFERASE (PER2::LUC) knockin mice (ex vivo). We found significant estrous variations of clock gene expression in all three tissues in vivo, and in the uterus ex Vivo. We also found that exogenous application of estrogen and progesterone altered rhythms of PER2::LUC expression in the uterus. In addition, we measured the effects of ovarian steroids on clock gene expression in a human breast cancer cell line (MCF-7 cells) as a model for endocrine cells that contain both the steroid hormone receptors and clock genes, We found that progesterone, but not estrogen, acutely up-regulated Per1, Per2, and Binal1 expression in MCF-7 cells. Together, our findings demonstrate that the timing of the circadian clock in reproductive tissues is influenced by the estrous cycle and suggest that fluctuating steroid hormone levels may be responsible, in part, through direct effects on the timing of clock gene expression, (C) 2010 Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.steroids.2010.01.007

    Web of Science

    Scopus

    PubMed

  102. Zona pellucida protein ZP2 is expressed in the oocyte of Japanese quail (<i>Coturnix japonica</i>)

    Kinoshita Mihoko, Rodler Daniela, Sugiura Kenichi, Matsushima Kayoko, Kansaku Norio, Tahara Kenichi, Tsukada Akira, Ono Hiroko, Yoshimura Takashi, Yoshizaki Norio, Tanaka Ryota, Kohsaka Tetsuya, Sasanami Tomohiro

    REPRODUCTION   Vol. 139 ( 2 ) page: 359 - 371   2010.2

     More details

    Publisher:Reproduction  

    The avian perivitelline layer (PL), a vestment homologous to the zona pellucida (ZP) of mammalian oocytes, is composed of at least three glycoproteins. Our previous studies have demonstrated that the matrix's components, ZP3 and ZPD, are synthesized in ovarian granulosa cells. Another component, ZP1, is synthesized in the liver and is transported to the ovary by blood circulation. In this study, we report the isolation of cDNA encoding quail ZP2 and its expression in the female bird. By RNase protection assay and in situ hybridization, we demonstrate that ZP2 transcripts are restricted to the oocytes of small white follicles (SWF). The expression level of ZP2 decreased dramatically during follicular development, and the highest expression was observed in the SWF.Western blot and immunohistochemical analyses using the specific antibody against ZP2 indicate that the 80 kDa protein is the authentic ZP2, and the immunoreactive ZP2 protein is also present in the oocytes. Moreover, ultrastructural analysis demonstrated that the immunoreactive ZP2 localizes to the zona radiata, the perivitelline space, and the oocyte cytoplasm in the SWF. By means of western blot analysis and immunofluorescence microscopy, we detected a possible interaction of the recombinant ZP2 with ZP3 and that this interaction might lead to the formation of amorphous structure on the cell surface. These results demonstrate for the first time that the avian ZP gene is expressed in the oocyte, and that the ZP2 protein in the oocyte might play a role for the PL formation in the immature follicles of the ovary. © 2010 Society for Reproduction and Fertility.

    DOI: 10.1530/REP-09-0222

    Web of Science

    Scopus

  103. Photoperiodic Control of <i>TSH-β</i> Expression in the Mammalian Pars Tuberalis has Different Impacts on the Induction and Suppression of the Hypothalamo-Hypopysial Gonadal Axis

    Yasuo S., Yoshimura T., Ebihara S., Korf H. -W.

    JOURNAL OF NEUROENDOCRINOLOGY   Vol. 22 ( 1 ) page: 43 - 50   2010.1

     More details

    Publisher:Journal of Neuroendocrinology  

    Seasonal reproduction depends on photoperiod-regulated activation or suppression of the gonadal axis. Recent studies in quail have identified long-day induced . TSH-β expression in the pars tuberalis (PT) as a rapid trigger of gonadal activation. Thyroid-stimulating hormone (TSH) induces type 2 deiodinase (. Dio2) in the ependymal cell layer (EC) of the infundibular recess to stimulate the gonadal axis. A similar mechanism is proposed in sheep and mice, but the experimental data on the temporal patterns of induction and suppression of . TSH-β and . Dio2 expression are incomplete. In the present study, we examined the expression of . TSH-β and . Dio2 in hamsters transferred from short- to long-day conditions for 9 days, and demonstrate the induction of . TSH-β and . Dio2 on day 8 after transition. These data demonstrate the close relationship between . TSH-β and . Dio2 expression in the inductive pathway. The temporal expression of . TSH-β and . Dio2 in the suppressive pathway was also examined by s.c. melatonin injection, which mimics the transition from long to short days. Importantly, . Dio2 expression in the EC is suppressed on day 1 after the onset of injection, whereas . TSH-β expression in the PT was not suppressed until day 10. These data suggest that regulated transcription of . TSH-β is involved in the induction of the gonadal axis in mammals, whereas the suppression of this axis is mediated by different mechanisms. © 2009 The Authors. Journal Compilation © 2009 Blackwell Publishing Ltd.

    DOI: 10.1111/j.1365-2826.2009.01936.x

    Web of Science

    Scopus

  104. Neuroendocrine mechanism of seasonal reproduction in birds and mammals Invited Reviewed

    Yoshimura T

    Animal Science Journal   Vol. 81   page: 302-410   2010

     More details

    Authorship:Lead author   Language:English  

  105. 動物が季節を感じるしくみをさぐる Invited Reviewed

    吉村崇

    日本の科学者   Vol. 45   page: 54-57   2010

     More details

    Authorship:Lead author   Language:Japanese  

  106. Deep brain photoreceptors and a seasonal signal transduction cascade in birds Invited Reviewed

    Nakane Y, Yoshimura T

    Cell and Tissue Research   Vol. in press   2010

     More details

    Authorship:Lead author   Language:English  

  107. 脊椎動物の季節繁殖の制御機構 Invited

    池上啓介、吉村崇

    日本生殖内分泌学会雑誌   Vol. 15   page: 55-57   2010

     More details

    Authorship:Lead author   Language:Japanese  

  108. 哺乳類の光周性におけるメラトニンの作用機構 Invited

    星野佑太、小野ひろ子、吉村崇

    比較内分泌学   Vol. 36   page: 96-101   2010

     More details

    Authorship:Lead author   Language:Japanese  

  109. Thyrotropin receptor (TSHR) null mice show methylphenidate-responsive ADHD-like behavioral alternations

    Shiho Narusawa, Yuta Hoshino, Akihiro Mouri, Takashi Yoshimura, Toshitaka Nabeshima

    JOURNAL OF PHARMACOLOGICAL SCIENCES   Vol. 112   page: 229P - 229P   2010

     More details

    Language:English   Publisher:JAPANESE PHARMACOLOGICAL SOC  

    Web of Science

  110. Neuroendocrine mechanism of seasonal reproduction in birds and mammals

    Takashi Yoshimura

    ANIMAL SCIENCE JOURNAL   Vol. 81 ( 4 ) page: 403 - 410   2010

     More details

    Language:English   Publisher:WILEY-BLACKWELL  

    In temperate zones, animals use changes in day length as a calendar to time their breeding season. However, the photoreceptive and neuroendocrine mechanisms of seasonal reproduction are considered to differ markedly between birds and mammals. This can be understood from the fact that the eye is the only photoreceptive organ, and melatonin mediates the photoperiodic information in mammals, whereas in birds, photoperiodic information is directly received by the deep brain photoreceptors and melatonin is not involved in seasonal reproduction. Recent molecular and functional genomics analysis uncovered the gene cascade regulating seasonal reproduction in birds and mammals. Long day-induced thyroid stimulating hormone in the pars tuberalis of the pituitary gland regulates thyroid hormone catabolism within the mediobasal hypothalamus. Further, this local thyroid hormone catabolism appears to regulate seasonal gonadotropin-releasing hormone secretion. These findings suggest that although the light input pathway is different between birds and mammals (i.e. light or melatonin), the core mechanisms are conserved in these vertebrates.

    DOI: 10.1111/j.1740-0929.2010.00777.x

    Web of Science

    Scopus

  111. Localization of circadian clock protein BMAL1 in the photoperiodic signal transduction machinery in Japanese quail. Reviewed International journal

    Keisuke Ikegami, Yasuhiro Katou, Kumiko Higashi, Takashi Yoshimura

    The Journal of comparative neurology   Vol. 517 ( 3 ) page: 397 - 404   2009.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The circadian clock is a fundamental property of living organisms and is involved in seasonal (photoperiodic) time measurement. Among vertebrates, birds have multiple circadian pacemakers in the eye, the pineal gland, and the suprachiasmatic nucleus (SCN), and have highly sophisticated photoperiodic mechanisms. However, because the removal of these circadian pacemakers fails to abolish the photoperiodic response, the existence of another "photoperiodic clock" has been suggested. Recent studies have revealed that the mediobasal hypothalamus (MBH) and the adjacent pars tuberalis (PT) of the pituitary gland constitute key components of the photoperiodic signal transduction machinery. In the present study, we generated a polyclonal antibody against the chicken circadian clock protein BMAL1 to examine BMAL1 distribution in the Japanese quail brain by using immunohistochemistry. BMAL1-like immunoreactivity (lir) was confirmed in the pineal gland and the medial SCN, which are critical circadian pacemakers. We also observed strong immunoreactivity in the MBH, including the ependymal cells (ECs), the infundibular nucleus (IN), the median eminence (ME), and the adjacent PT. Furthermore, semiquantitative analysis suggested that BMAL1-lir shows daily fluctuation in these regions. It is possible that circadian clocks in the photoperiodic signal transduction machinery such as the PT and the EC may be involved in the regulation of photoperiodism.

    DOI: 10.1002/cne.22165

    Web of Science

    Scopus

    PubMed

  112. Comparative analysis of the molecular basis of photoperiodic signal transduction in vertebrates

    Yasuo Shinobu, Yoshimura Takashi

    INTEGRATIVE AND COMPARATIVE BIOLOGY   Vol. 49 ( 5 ) page: 507 - 518   2009.11

     More details

    Publisher:Integrative and Comparative Biology  

    In temperate zones, the reproductive physiology of most vertebrates is controlled by changes in photoperiod. Mechanisms for the regulation of photoperiodic gonadal responses are known to differ between mammals and birds: in mammals, melatonin is the photoperiodic signal messenger, whereas in birds, photoperiodic information is received by deep brain photoreceptors. Recently, the molecular mechanism of photoperiodism has been revealed by studies on Japanese quail, which exhibit a most remarkable responsiveness to photoperiod among vertebrates, and molecular cascades involved in photoperiodism have been elucidated. Long-day stimulus induces expression of the β-subunit of thyroid stimulating hormone (TSH-β) in the pars tuberalis (PT) of the pituitary gland, and TSH derived from the PT regulates reciprocal switching of genes encoding types 2 and 3 deiodinases (Dio2 and Dio3, respectively) in the mediobasal hypothalamus (MBH) by retrograde action. Dio2 locally converts prohormone thyroxine (T4) to bioactive triiodothyronine (T3) in the MBH, which subsequently stimulates the gonadal axis. These events have been confirmed to occur in mammals with seasonal breeding, such as hamsters and sheep, suggesting that similar mechanisms are involved among various vertebrates. In addition, nonphotoperiodic mice also appeared to possess the same molecular mechanisms at the hypothalamo-hypophysial level. It has been noted that melatonin regulates the above-mentioned key genes (Dio2, Dio3, and TSH-β) in mammals, while photoperiod directly regulates these genes in birds. Thus, the input pathway of photoperiod is different between mammals and birds (i.e., melatonin versus light); however, the essential mechanisms are conserved among these vertebrates.

    DOI: 10.1093/icb/icp011

    Web of Science

    Scopus

  113. Usp46 is a quantitative trait gene regulating mouse immobile behavior in the tail suspension and forced swimming tests

    Tomida Shigeru, Mamiya Takayoshi, Sakamaki Hirotake, Miura Masami, Aosaki Toshihiko, Masuda Masao, Niwa Minae, Kameyama Tsutomu, Kobayashi Junya, Iwaki Yuka, Imai Saki, Ishikawa Akira, Abe Kuniya, Yoshimura Takashi, Nabeshima Toshitaka, Ebihara Shizufumi

    NATURE GENETICS   Vol. 41 ( 6 ) page: 688 - 695   2009.6

     More details

  114. Red jungle fowl (Gallus gallus) as a model for studying the molecular mechanism of seasonal reproduction. Reviewed

    Ono H, Nakao N, Yamamura T, Kinoshita K, Mizutani M, Namikawa T, Iigo M, Ebihara S, Yoshimura T

    Animal science journal = Nihon chikusan Gakkaiho   Vol. 80 ( 3 ) page: 328 - 332   2009.6

  115. Melatonin Transmits Photoperiodic Signals through the MT1 Melatonin Receptor

    Yasuo Shinobu, Yoshimura Takashi, Ebihara Shizufumi, Korf Horst-Werner

    JOURNAL OF NEUROSCIENCE   Vol. 29 ( 9 ) page: 2885 - 2889   2009.3

  116. Molecular and Endocrine Mechanisms of Vertebrate Photoperiodic Response

    Yoshimura T.

    INTEGRATIVE AND COMPARATIVE BIOLOGY   Vol. 49   page: E187 - E187   2009.2

     More details

  117. Molecular characterization of egg envelope glycoprotein ZPD in the ovary of Japanese quail (<i>Coturnix japonica</i>)

    Sato Tsukasa, Kinoshita Mihoko, Kansaku Norio, Tahara Kenichi, Tsukada Akira, Ono Hiroko, Yoshimura Takashi, Dohra Hideo, Sasanami Tomohiro

    REPRODUCTION   Vol. 137 ( 2 ) page: 333 - 343   2009.2

     More details

    Publisher:Reproduction  

    The egg envelope surrounding avian oocytes exhibits a three-dimensional network of coarse fibers between the granulosa cells and the oocyte. Our previous studies have demonstrated that one of the matrix's components, ZP3, is synthesized in the ovarian granulosa cells. Another component, ZP1, which is critically involved in triggering the sperm acrosome reaction, is synthesized in the liver. We have previously isolated cDNAs encoding quail ZP3 and ZP1, and we now report the isolation of cDNA encoding quail ZPD. By RNase protection assay and in situ hybridization, we have demonstrated that ZPD transcripts are restricted to the granulosa cells of preovulatory follicles. The expression level of ZPD increased progressively during follicular development, and the highest expression was observed in the largest follicles. Western blot analyses using the specific antibody against ZPD indicate that the 40 kDa protein is the authentic ZPD, and the contents of ZPD protein also increased during follicular development. Moreover, we found that the addition of FSH to the culture media enhances the ZPD secretion in the cultured granulosa cells. Two-dimensional gel electrophoresis revealed the presence of several ZPD isoforms with different pI values ranging from 5.5 to 7. Immunohistochemical analyses indicate that the materials recognized with anti-quail ZPD antibody were accumulated in the egg envelope of large yellow follicles. These results demonstrate the presence of ZPD protein in the egg envelope, and that the amount of ZPD in the egg envelope as well as the mRNA in the cells increases at the latter stages of folliculogenesis. © 2009 Society for Reproduction and Fertility.

    DOI: 10.1530/REP-08-0057

    Web of Science

    Scopus

  118. Genetic and molecular analysis of wild-derived arrhythmic mice. Reviewed

    Watanabe T, Suzuki T, Ishikawa A, Yokota Y, Ueda HR, Yamada RG, Tei H, Imai S, Tomida S, Kobayashi J, Naito E, Yasuo S, Nakao N, Namikawa T, Yoshimura T, Ebihara S

    PloS one   Vol. 4 ( 1 ) page: e4301   2009.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:PUBLIC LIBRARY SCIENCE  

    A new circadian variant was isolated by screening the intercross offspring of wild-caught mice (Mus musculus castaneus). This variant was characterized by an initial maintenance of damped oscillations and subsequent loss of rhythmicity after being transferred from light-dark (LD) cycles to constant darkness (DD). To map the genes responsible for the persistence of rhythmicity (circadian ratio) and the length of free-running period (tau), quantitative trait locus (QTL) analysis was performed using F-2 mice obtained from an F-1 cross between the circadian variant and C57BL/6J mice. As a result, a significant QTL with a main effect for circadian ratio (Arrhythmicity; Arrh-1) was mapped on Chromosome (Chr) 8. For tau, four significant QTLs, Short free-running period (Sfp-1) (Chr 1), Sfp-2 (Chr 6), Sfp-3 (Chr 8), Sfp-4 (Chr 11) were determined. An epistatic interaction was detected between Chr 3 (Arrh-2) and Chr 5 (Arrh-3). An in situ hybridization study of clock genes and mouse Period1::luciferase (mPer1::luc) real-time monitoring analysis in the suprachiasmatic nucleus (SCN) suggested that arrhythmicity in this variant might not be attributed to core circadian mechanisms in the SCN neurons. Our strategy using wild-derived variant mice may provide a novel opportunity to evaluate circadian and its related disorders in human that arise from the interaction between multiple variant genes.

    DOI: 10.1371/journal.pone.0004301

    Web of Science

    Scopus

    PubMed

  119. Identification of the photoperiodic signal transduction pathway regulating seasonal reproduction using the functional genomics approach. Invited Reviewed

    Ono H, Nakao N, Yoshimura T

    General and Comparative Endocrinology   Vol. 163   page: 2-6   2009

     More details

    Authorship:Lead author   Language:English  

  120. Molecular mechanism of seasonal time measurement in vertebrates

    Yoshimura Takashi

    NEUROSCIENCE RESEARCH   Vol. 65   page: S23 - S23   2009

  121. Localization of circadian clock protein in the photoperiodic signal transduction machinery

    Ikegami Keisuke, Katou Yasuhiro, Higashi Kumiko, Yoshimura Takashi

    NEUROSCIENCE RESEARCH   Vol. 65   page: S232 - S232   2009

  122. Effect of dorsal hypothalamic lesion on seasonal reproduction in Japanese quail

    Nakane Yusuke, Higashi Kumiko, Iigo Masayuki, Ebihara Shizufumi, Yoshimura Takashi

    NEUROSCIENCE RESEARCH   Vol. 65   page: S232 - S232   2009

  123. QTL analysis of behavioral despair in mice

    Saki Imai, Shigeru Tomida, Takashi Yoshimura, Shizufumi Ebihara

    GENES & GENETIC SYSTEMS   Vol. 83 ( 6 ) page: 491 - 491   2008.12

     More details

    Language:English   Publisher:GENETICS SOC JAPAN  

    Web of Science

  124. Functional genomics of seasonal time measurement

    Yoshimura Takashi

    GENES & GENETIC SYSTEMS   Vol. 83 ( 6 ) page: 530 - 530   2008.12

     More details

  125. Identification of a quantitative trait gene underlying behavioral despair using CS mice with abnormal circadian rhythms

    Shizufumi Ebihara, Shigeru Tomida, Takayoshi Mamiya, Hirotake Sakamaki, Tsutomu Kameyama, Toshitaka Nabeshima, Junya Kobayashi, Yuka Iwaki, Saki Imai, Akira Ishikawa, Kuniya Abe, Takashi Yoshimura

    GENES & GENETIC SYSTEMS   Vol. 83 ( 6 ) page: 531 - 531   2008.12

     More details

    Language:English   Publisher:GENETICS SOC JAPAN  

    Web of Science

  126. Involvement of thyrotropin in photoperiodic signal transduction in mice

    Ono Hiroko, Hoshino Yuta, Yasuo Shinobu, Watanabe Miwa, Nakane Yusuke, Murai Atsushi, Ebihara Shizufumi, Korf Horst-Werner, Yoshimura Takashi

    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA   Vol. 105 ( 47 ) page: 18238 - 18242   2008.11

  127. Thyroid hormones and seasonal reproductive neuroendocrine interactions

    Nakao Nobuhiro, Ono Hiroko, Yoshimura Takashi

    REPRODUCTION   Vol. 136 ( 1 ) page: 1 - 8   2008.7

  128. Reorganization of the suprachiasmatic nucleus by photic and non-photic environments Reviewed

    Shizufumi Ebihara, Emiko Naito, Tsuyoshi Watanabe, Takashi Yoshimura

    SLEEP AND BIOLOGICAL RHYTHMS   Vol. 6 ( 2 ) page: 62 - 66   2008.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:BLACKWELL PUBLISHING  

    To better understand alterations in suprachiasmatic nucleus (SCN) physiology by photic and non-photic environments, we analyzed clock gene expression in the mouse SCN by in situ hybridization and real-time monitoring of mPerl::luc bioluminescence. An artificial light : dark : light : dark 7:5:7:S condition induced antiphase oscillation of the clock gene in the dorsomedial-like (DM-like) and the ventrolateral-like (VL-like) subdivisions of the SCN, in parallel with maintaining synchronization between the two sides of the SCN. This antiphase oscillation seems to be responsible for the bimodal rhythms of mPer1 bioluminescence observed in the entire SCN and the components of splitting locomotor activity. A long photoperiod (LP) induced the phase advance of the rhythms of clock gene expression in the caudal SCN relative to those in the rostral SCN. In addition, in the middle SCN, the rhythms of the VL-like subdivision phase-led those in the DM-like subdivision. The mPer1::luc rhythms in the entire coronal slice obtained from the middle SCN exhibited two peaks with a wide peak width under LP conditions. Imaging analysis of the mPerl::luc rhythms revealed wide regional variations in the peak time in the rostral half of the SCN. These variations were not due to alterations in the waveform of a single SCN neuronal rhythm. In CS mice which easily entrain to daily restricted feeding (RF) cycles, the peak width for mPer1::luc bioluminescence rhythms in the SCN markedly increased during the RF schedule under LID conditions. These data in CS mice suggest non-photic cues alter SCN organization and provided a new method to reveal subdivisional changes of the SCN by feeding cues.

    DOI: 10.1111/j.1479-8425.2008.00345.x

    Web of Science

  129. Reorganization of the suprachiasmatic nucleus coding for day length Reviewed

    Emiko Naito, Tsuyoshi Watanabe, Hajime Tei, Takashi Yoshimura, Shizufumi Ebihara

    JOURNAL OF BIOLOGICAL RHYTHMS   Vol. 23 ( 2 ) page: 140 - 149   2008.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SAGE PUBLICATIONS INC  

    In mammals, the suprachiasmatic nucleus (SCN), the circadian pacemaker, receives light information via the retina and functions in the entrainment of circadian rhythms and in phasing the seasonal responses of behavioral and physiological functions. To better understand photoperiod-related alterations in the SCN physiology, we analyzed the clock gene expression in the mouse SCN by performing in situ hybridization and real-time monitoring of the mPer1::luc bioluminescence. Under long photoperiod ( LP) conditions, the expression rhythms of mPer1 and Bma11 in the caudal SCN phase-led those in the rostral SCN; further, within the middle SCN, the rhythms in the ventrolateral (VL)-like subdivision advanced compared with those in the dorsomedial (DM)-like subdivision. The mPer1::luc rhythms in the entire coronal slice obtained from the middle SCN exhibited 2 peaks with a wide peak width under LP conditions. Imaging analysis of the mPer1::luc rhythms in several subdivisions of the rostral, middle, caudal, and horizontal SCN revealed wide regional variations in the peak time in the rostral half of the SCN under LP conditions. These variations were not due to alterations in the waveform of a single SCN neuronal rhythm. Our results indicate that LP conditions induce phase changes in the rhythms in multiple regions in the rostral half of the SCN; this leads to different circadian waveforms in the entire SCN, coding for day length.

    DOI: 10.1177/0748730408314572

    Web of Science

    Scopus

    PubMed

  130. Thyrotrophin in the pars tuberalis triggers photoperiodic response

    Nakao Nobuhiro, Ono Hiroko, Yamamura Takashi, Anraku Tsubasa, Takagi Tsuyoshi, Higashi Kumiko, Yasuo Shinobu, Katou Yasuhiro, Kageyama Saburo, Uno Yumiko, Kasukawa Takeya, Iigo Masayuki, Sharp Peter J., Iwasawa Atsushi, Suzuki Yutaka, Sugano Sumio, Niimi Teruyuki, Mizutani Makoto, Namikawa Takao, Ebihara Shizufumi, Ueda Hiroki R., Yoshimura Takashi

    NATURE   Vol. 452 ( 7185 ) page: 317 - U1   2008.3

  131. 春を告げる甲状腺刺激ホルモン Invited

    中尾暢宏、小野ひろ子、吉村崇

    比較内分泌学   Vol. 34   page: 77-82   2008

     More details

    Authorship:Lead author   Language:Japanese  

  132. 脊椎動物が春を感知するしくみをさぐる Invited

    吉村崇

    蛋白質 核酸 酵素   Vol. 53   page: 1865-1872   2008

     More details

    Authorship:Lead author   Language:Japanese  

  133. 鳥類の光周性の機能ゲノミクス Invited

    小野ひろ子、中尾暢宏、吉村崇

    時間生物学   Vol. 14   page: 2-8   2008

     More details

    Authorship:Lead author   Language:Japanese  

  134. 春を告げる甲状腺刺激ホルモン Invited

    中尾暢宏, 小野ひろ子, 吉村崇

    比較内分泌学   Vol. 34   page: 77-82   2008

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

  135. Positional identification of a quantitative trait gene that controls "behavioral despair" in mice

    Shigeru Tomida, Hirotake Sakamaki, Junya Kobayashi, Kuniya Abe, Tsutomu Kameyama, Takayoshi Mamiya, Akira Ishikawa, Takashi Yoshimura, Shizufumi Ebihara

    NEUROSCIENCE RESEARCH   Vol. 61   page: S70 - S70   2008

     More details

    Language:English   Publisher:ELSEVIER IRELAND LTD  

    Web of Science

  136. Molecular mechanisms of vertebrate photoperiodism

    Shizufumi Ebihara, Shinobu Yasuo, Nobuhiro Nakao, Takashi Yoshimura

    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B-BIOCHEMISTRY & MOLECULAR BIOLOGY   Vol. 148 ( 3 ) page: 338 - 338   2007.11

     More details

    Language:English   Publisher:ELSEVIER SCIENCE INC  

    DOI: 10.1016/j.cbpb.2007.07.020

    Web of Science

  137. Temporal dynamics of type 2 deiodinase expression after melatonin injections in Syrian hamsters

    Yasuo Shinobu, Yoshimura Takashi, Ebihara Shizufumi, Korf Horst-Werner

    ENDOCRINOLOGY   Vol. 148 ( 9 ) page: 4385 - 4392   2007.9

  138. Photoperiodic changes in hypothalamic insulin receptor gene expression are regulated by gonadal testosterone

    Anraku Tsubasa, Takagi Tsuyoshi, Nakao Nobuhiro, Watanabe Miwa, Yasuo Shinobu, Katou Yasuhiro, Ueda Yukihiro, Murai Atsushi, Ligo Masayuki, Ebihara Shizufumi, Yoshimura Takashi

    BRAIN RESEARCH   Vol. 1163   page: 86 - 90   2007.8

  139. Circadian clock gene regulation of steroidogenic acute regulatory protein gene expression in preovulatory ovarian follicles

    Nakao Nobuhiro, Yasuo Shinobu, Nishimura Atsuko, Yamamura Takashi, Watanabe Tsuyoshi, Anraku Tsubasa, Okano Toshiyuki, Fukada Yoshitaka, Sharp Peter J., Ebihara Shizufumi, Yoshimura Takashi

    ENDOCRINOLOGY   Vol. 148 ( 7 ) page: 3031 - 3038   2007.7

  140. Molecular evolution of prepro-thyrotropin-releasing hormone in the chicken (Gallus gallus) and its expression in the brain Reviewed

    Aoki, Y., Ono, H., Yasuo, S., Masuda, T., Yoshimura, T., Ebihara, S., Iigo, M., Yanagisawa, T.

    Zoological Science   Vol. 24 ( 7 ) page: 686 - 692   2007.7

     More details

    Publishing type:Research paper (scientific journal)   Publisher:7  

    DOI: 10.2108/zsj.24.686

    Web of Science

    Scopus

    PubMed

  141. Involvement of transforming growth factor alpha in the photoperiodic regulation of reproduction in birds

    Takagi Tsuyoshi, Yamamura Takashi, Anraku Tsubasa, Yasuo Shinobu, Nakao Nobuhiro, Watanabe Miwa, Iigo Masayuki, Ebihara Shizufumi, Yoshimura Takashi

    ENDOCRINOLOGY   Vol. 148 ( 6 ) page: 2788 - 2792   2007.6

  142. Bimodal clock gene expression in mouse suprachiasmatic nucleus and peripheral tissues under a 7-hour light and 5-hour dark schedule. Reviewed

    Watanabe T, Naito E, Nakao N, Tei H, Yoshimura T, Ebihara S

    Journal of biological rhythms   Vol. 22 ( 1 ) page: 58 - 68   2007.2

  143. 時計遺伝子の進化 Invited

    吉村崇, 海老原史樹文

    生体の科学   Vol. 57   page: 440-441   2007

     More details

    Authorship:Lead author   Language:Japanese  

  144. Photoperiodic changes in hypothalamic insulin receptor gene expression are regulated by gonadal testosterone Reviewed

      Vol. 1163   page: 86-90   2007

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  145. Temporal dynamics of type 2 deiodinase expression after melatonin injections in Syrian hamsters Reviewed

    Yasuo S, Yoshimura T, Ebihara S, Korf HW

    Endocrinology   Vol. 148   page: 4385-4392   2007

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  146. Involvement of transforming growth factor alpha in the photoperiodic regulation of reproduction in birds. Reviewed

    Takagi T, Yamamura T, Anraku T, Yasuo S, Nakao N, Watanabe M, Iigo M, Ebihara S, Yoshimura T

    Endocrinology   Vol. 148   page: 2788-2792   2007

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  147. Differential response of type 2 deiodinase gene expression to photoperiod between photoperiodic F344 and nonphotoperiodic Wistar rats Reviewed

    Yasuo S, Watanabe M, Iigo M, Nakamura TJ, Watanabe T, Takagi T, Ono H, Ebihara S, Yoshimura T

    American Journal of Physiology   Vol. 292   page: R1315-R1319   2007

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  148. Hypothalamic expression of thyroid hormone-activating and -inactivating enzyme genes in relation to photorefractoriness in birds and mammals Reviewed

    Watanabe T, Yamamura T, Watanabe M, Yasuo S, Nakao N, Dawson A, Ebihara S, Yoshimura T

    American Journal of Physiology   Vol. 292   page: R568-R572   2007

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  149. Photoperiodic regulation of seasonal reproduction in birds

    T. Yoshimura, S. Yasuo, N. Nakao, T. Yamamura, S. Ebihara

    JOURNAL OF ORNITHOLOGY   Vol. 147 ( 5 ) page: 65 - 65   2006.8

     More details

    Language:English   Publisher:SPRINGER  

    Web of Science

  150. Overview of avian circadian system

    Ebihara S., Yasuo S., Tada A., Yoshimura T.

    JOURNAL OF ORNITHOLOGY   Vol. 147 ( 5 ) page: 64 - 65   2006.8

     More details

  151. Reciprocal switching of type 2 and type 3 deiodinase genes triggers photoperiodic gonadal response in Japanese Quail

    S. Yasuo, M. Watanabe, N. Nakao, T. Takagi, S. Ebihara, T. Yoshimura

    JOURNAL OF ORNITHOLOGY   Vol. 147 ( 5 ) page: 276 - 277   2006.8

     More details

    Language:English   Publisher:SPRINGER  

    Web of Science

  152. Molecular mechanism of the photoperiodic response of gonads in birds and mammals

    T Yoshimura

    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY   Vol. 144 ( 3 ) page: 345 - 350   2006.7

     More details

    Language:English   Publisher:ELSEVIER SCIENCE INC  

    Appropriate timing of various seasonal processes is crucial to the survival and reproductive success of animals living in temperate regions. When seasonally breeding animals are subjected to annual changes in day length, dramatic changes in neuroendocrine-gonadal activity take place. However, the molecular mechanism underlying the photoperiodic response of gonads remains unknown for all living organisms. It is well known that a circadian clock is somehow involved in the regulation of photoperiodism. Recently, rhythmic expression of circadian clock genes was observed in the mediobasal hypothalamus (MBH) of Japanese quail. The MBH is believed to be the center for photoperiodism. In addition, long-day-induced hormone conversion of the prohormone thyroxine (T-4) to the bioactive triiodothyronine (T-3) by deiodinase in the MBH has been proven to be important to the photoperiodic response of the gonads. Although the regulating mechanism for the photoperiodic response of gonads in birds and mammals has long been considered to be quite different, the long-day-induced expression of the deiodinase gene in the hamster hypothalamus suggests the existence of a conserved regulatory mechanism in avian and mammalian photoperiodism. (c) 2005 Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.cbpa.2005.09.009

    Web of Science

    Scopus

  153. T<sub>3</sub> implantation mimics photoperiodically reduced encasement of nerve terminals by glial processes in the median eminence of Japanese quail

    Yamamura T, Yasuo S, Hirunagi K, Ebihara S, Yoshimura T

    CELL AND TISSUE RESEARCH   Vol. 324 ( 1 ) page: 175 - 179   2006.4

     More details

    Publisher:Cell and Tissue Research  

    Photoperiodically generated triiodothyronin (T3) in the mediobasal hypothalamus (MBH) has critical roles in the photoperiodic response of the gonads in Japanese quail. In a previous study, we demonstrated seasonal morphological changes in the neuro-glial interaction between gonadotrophin-releasing hormone (GnRH) nerve terminals and glial endfeet in the median eminence (ME). However, a direct relationship between photoperiodically generated T3 and seasonal neuro-glial plasticity in the ME remained unclear. In the present study, we examined the effect of T3 implantation into the MBH on the neuro-glial interaction in the ME. T 3 implantation caused testicular growth and reduced encasement of nerve terminals in the external zone of the ME. In contrast, no morphological changes were observed in birds given an excessive dose of T3, which did not cause testicular growth. These results support the hypothesis that thyroid hormone regulates photoperiodic GnRH secretion via neuro-glial plasticity in the ME. © Springer-Verlag 2006.

    DOI: 10.1007/s00441-005-0126-8

    Web of Science

    Scopus

  154. Peripheral clock gene expression in CS mice with bimodal locomotor rhythms. Reviewed

    Watanabe T, Kojima M, Tomida S, Nakamura TJ, Yamamura T, Nakao N, Yasuo S, Yoshimura T, Ebihara S

    Neuroscience research   Vol. 54 ( 4 ) page: 295 - 301   2006.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:4  

    DOI: 10.1016/j.neures.2005.12.009

    Web of Science

    Scopus

    PubMed

    CiNii Books

  155. Possible involvement of organic anion transporting polypeptide 1c1 in the photoperiodic response of gonads in birds

    Nakao N, Takagi T, Iigo M, Tsukamoto T, Yasuo S, Masuda T, Yanagisawa T, Ebihara S, Yoshimura T

    ENDOCRINOLOGY   Vol. 147 ( 3 ) page: 1067 - 1073   2006.3

  156. Molecular analysis of photoperiodic time measurement in birds and mammals

    Yoshimura T

    JOURNAL OF EXPERIMENTAL ZOOLOGY PART A-COMPARATIVE EXPERIMENTAL BIOLOGY   Vol. 305A ( 2 ) page: 196 - 196   2006.2

     More details

  157. Long-day suppressed expression of type 2 deiodinase gene in the mediobasal hypothalamus of the saanen goat, a short-day breeder: Implication for seasonal window of thyroid hormone action on reproductive neuroendocrine

    Yasuo S, Nakao N, Ohkura S, Iigo M, Hagiwara S, Goto A, Ando H, Yamamura T, Watanabe M, Watanabe T, Oda SI, Maeda KI, Lincoln GA, Okamura H, Ebihara S, Yoshimura T

    ENDOCRINOLOGY   Vol. 147 ( 1 ) page: 432 - 440   2006.1

  158. Molecular mechanism of the photoperiodic response of gonads in birds and mammals Invited Reviewed

    Yoshimura T

    Comparative Biochemistry and Physiology   Vol. 144   page: 345-350   2006

     More details

    Authorship:Lead author   Language:English  

  159. Molecular mechanism of photoperiodic time measurement in the brain of Japanese quail

    Yasuo S, Watanabe M, Iigo M, Yamamura T, Nakao N, Takagi T, Ebihara S, Yoshimura T

    CHRONOBIOLOGY INTERNATIONAL   Vol. 23 ( 1-2 ) page: 307 - 315   2006

     More details

    Publisher:Chronobiology International  

    In most organisms living in temperate zones, reproduction is under photoperiodic control. Although photoperiodic time measurement has been studied in organisms ranging from plants to vertebrates, the underlying molecular mechanism is not well understood. The Japanese quail (Coturnix japonica) represents an excellent model to study this problem because of the rapid and dramatic photoperiodic response of its hypothalamic-pituitary-gonadal axis. Recent investigations of Japanese quail show that long-day-induced type 2 deiodinase (Dio2) expression in the mediobasal hypothalamus (MBH) plays an important role in the photoperiodic gonadal regulation by catalyzing the conversion of the prohormone thyroxine (T4) to bioactive 3,5,3′-triiodothyronine (T3). The T3 content in the MBH is approximately 10-fold higher under long than short days and conditions, and the intracerebroventricular infusion of T3 under short days and conditions mimics the photoperiodic gonadal response. While Dio2 generates active T3 from T4 by outer ring deiodination, type 3 deiodinase (Dio3) catalyzes the conversion of both T3 and T 4 into inactive forms by inner ring deiodination. In contrast to Dio2 expression, Dio3 expression in the MBH is suppressed under the long-day condition. Photoperiodic changes in the expression of both genes during the photoinduction process occur before the changes in the level of luteinizing hormone (LH) secretion, suggesting that the reciprocal changes in Dio2 and Dio3 expression act as gene switches of the photoperiodic molecular cascade to trigger induction of LH secretion. Copyright © Taylor & Francis Group, LLC.

    DOI: 10.1080/07420520500521913

    Web of Science

    Scopus

  160. Conservation of novel <i>Mahya</i> genes shows the existence of neural functions common between Hymenoptera and Deuterostome

    Tsuchimoto M, Yasuo S, Funada M, Aoki M, Sasagawa H, Yoshimura T, Tadauchi O, Cameron SA, Kitagawa Y, Kadowaki T

    DEVELOPMENT GENES AND EVOLUTION   Vol. 215 ( 11 ) page: 564 - 574   2005.11

     More details

    Publisher:Development Genes and Evolution  

    Honeybees have been shown to exhibit cognitive performances that were thought to be specific to some vertebrates. However, the molecular and cellular mechanisms of such cognitive abilities of the bees have not been understood. We have identified a novel gene, Mahya, expressed in the brain of the honeybee, Apis mellifera, and other Hymenoptera. Mahya orthologues are present in Deuterostomes but are absent or highly diverged in nematodes and, intriguingly, in two dipteran insects (fruit fly and mosquito) and Lepidoptera (silk moth). Mahya genes encode novel secretory proteins with a follistatin-like domain (Kazal-type serine/ threonine protease inhibitor domain and EF-hand calcium-binding domain), two immunoglobulin domains, and a C-terminal novel domain. Honeybee Mahya is expressed in the mushroom bodies and antennal lobes of the brain. Zebra fish Mahya orthologues are expressed in the olfactory bulb, telencephalon, habenula, optic tectum, and cerebellum of the brain. Mouse Mahya orthologues are expressed in the olfactory bulb, hippocampus, and cerebellum of the brain. These results suggest that Mahya may be involved in learning and memory and in processing of sensory information in Hymenoptera and vertebrates. Furthermore, the limited existence of Mahya in the genomes of Hymenoptera and Deuterostomes supports the hypothesis that the genes typically represented by Mahya were lost or highly diverged during the evolution of the central nervous system of specific Bilaterian branches under the specific selection and subsequent adaptation associated with different ecologies and life histories. © Springer-Verlag 2005.

    DOI: 10.1007/s00427-005-0021-z

    Web of Science

    Scopus

  161. The reciprocal switching of two thyroid hormone-activating and -inactivating enzyme genes is involved in the photoperiodic gonadal response of Japanese quail

    Yasuo S, Watanabe M, Nakao N, Takagi T, Follett BK, Ebihara S, Yoshimura T

    ENDOCRINOLOGY   Vol. 146 ( 6 ) page: 2551 - 2554   2005.6

  162. 脊椎動物の光周性の分子機構の解明にむけて Invited

    吉村崇

    時間生物学   Vol. 11   page: 3-7   2005

     More details

    Authorship:Lead author   Language:Japanese  

  163. 脊椎動物の光周性 Invited

    中尾暢宏, 安尾しのぶ, 山村崇, 海老原史樹文, 吉村崇

    比較生理生化学   Vol. 22   page: 20-26   2005

     More details

    Language:Japanese  

  164. 生物はいかにして季節を読み取っているか?-春を知らせる甲状腺ホルモン- Invited

    山村崇,安尾しのぶ,中尾暢宏,海老原史樹文,吉村崇

    化学と生物   Vol. 43   page: 172-176   2005

     More details

    Authorship:Lead author   Language:Japanese  

  165. 脊椎動物における光周性の制御機構 Invited Reviewed

    海老原史樹文, 安尾しのぶ, 吉村崇

    生物物理   Vol. 45   page: 185-191   2005

     More details

    Language:Japanese  

  166. 生物はいかにして季節を読み取っているか?-春を知らせる甲状腺ホルモン- Invited

    山村崇, 安尾しのぶ, 中尾暢宏, 海老原史樹文, 吉村崇

    化学と生物   Vol. 43   page: 172-176   2005

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

  167. Seasonal morphological changes in the neuro-glial interaction between gonadotropin-releasing hormone nerve terminals and glial endfeet in Japanese quail

    Yamamura T, Hirunagi K, Ebihara S, Yoshimura T

    ENDOCRINOLOGY   Vol. 145 ( 9 ) page: 4264 - 4267   2004.9

     More details

    Publisher:Endocrinology  

    In a previous study we showed that photoperiodically generated T 3 in the hypothalamus is critical for the photoperiodic response of gonads in Japanese quail. The expression of thyroid hormone receptors in the median eminence (ME) suggested that photoperiodically generated T3 acts on the ME. Because thyroid hormone is known to play a critical role in the development and plasticity of the central nervous system, in the present study we have examined ultrastructure of the ME in Japanese quail kept in short-day and long-day environments. Immunoelectron microscopy revealed that GnRH nerve terminals are in close proximity to the basal lamina under long-day conditions, and conventional transmission electron microscopy demonstrated the encasement of the terminals by the endfeet of glia under short-day conditions. These morphological changes may regulate photoperiodic GnRH secretion.

    DOI: 10.1210/en.2004-0366

    Web of Science

    Scopus

  168. Circadian expression of clock gene in the optic tectum of Japanese quail

    Yasuo S, Ebihara S, Yoshimura T

    BRAIN RESEARCH   Vol. 1005 ( 1-2 ) page: 193 - 196   2004.4

     More details

    Publisher:Brain Research  

    The physiological activity of avian optic tectum (TeO) is known to be regulated by the circadian system. In a previous study, we found clock gene expression in the TeO of Japanese quail. Here we report rhythmic expression of the Per2 gene in the stratum griseum et fibrosum (SGF) of the TeO under a light-dark (LD) cycle, constant darkness (DD), and constant light (LL) conditions. However, light pulse did not affect Per2 expression in the TeO. These results suggest that light stimulus and melatonin rhythm are not essential for rhythmic expression of Per2 in the avian TeO in spite of the localization of melatonin receptors and retinal input. © 2004 Elsevier B.V. All rights reserved.

    DOI: 10.1016/j.brainres.2004.01.031

    Web of Science

    Scopus

  169. Characterization of the two distinct subtypes of metabotropic glutamate receptors from honeybee, Apis mellifera

    M Funada, S Yasuo, T Yoshimura, S Ebihara, H Sasagawa, Y Kitagawa, T Kadowaki

    NEUROSCIENCE LETTERS   Vol. 359 ( 3 ) page: 190 - 194   2004.4

     More details

    Language:English   Publisher:ELSEVIER SCI IRELAND LTD  

    L-Glutamate is a major neurotransmitter at the excitatory synapses in the vertebrate brain. It is also the excitatory neurotransmitter at neuromuscular junctions in insects, however its functions in their brains remain to be established. We identified and characterized two different subtypes (AmGluRA and AmGluRB) of metabotropic glutamate receptors (mGluRs) from an eusocial insect, honeybee. Both AmGluRA and AmGluRB form homodimers independently on disulfide bonds, and bind [H-3]glutamate with K-D values of 156.7 and 80.7 nM, respectively. AmGluRB is specifically expressed in the brain, while AmGluRA is expressed in the brain and other body parts, suggesting that AmGluRA is also present at the neuromuscular junctions. Both mGluRs are expressed in the mushroom bodies and the brain regions of honeybees, where motor neurons are clustered. Their expression in the brain apparently overlaps, suggesting that they may interact with each other to modulate the glutamatergic neurotransmission. (C) 2004 Elsevier Ireland Ltd. All rights reserved.

    DOI: 10.1016/j.neulet.2004.02.004

    Web of Science

    Scopus

  170. Photoperiodic regulation of type 2 deiodinase gene in Djungarian hamster: Possible homologies between avian and mammalian photoperiodic regulation of reproduction

    Watanabe M, Yasuo S, Watanabe T, Yamamura T, Nakao N, Ebihara S, Yoshimura T

    ENDOCRINOLOGY   Vol. 145 ( 4 ) page: 1546 - 1549   2004.4

  171. Photoinducible phase-specific light induction of Cry1 gene in the pars tuberalis of Japanese quail

    Yasuo S, Watanabe M, Tsukada A, Takagi T, Iigo M, Shimada K, Ebihara S, Yoshimura T

    ENDOCRINOLOGY   Vol. 145 ( 4 ) page: 1612 - 1616   2004.4

  172. ウズラ Coturnix japonica Invited

    吉村崇

    細胞工学   Vol. 23   page: 492-493   2004.4

     More details

    Authorship:Lead author   Language:Japanese  

  173. Circadian expression of clock gene in the optic tectum of Japanese quail

    Yasuo S, Ebihara S, Yoshimura T

    Brain Research   Vol. 1005   page: 193-196   2004.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  174. 鳥類の時計遺伝子と光周性 Invited Reviewed

    安尾しのぶ, 渡邊美和, 海老原史樹文, 吉村崇

    時間生物学   Vol. 10   page: 35-40   2004

     More details

    Language:Japanese  

  175. Molecular bases for seasonal reproduction in birds Invited Reviewed

    Yoshimura T

    Journal of Poultry Science   Vol. 41   page: 251-258   2004

     More details

    Authorship:Lead author   Language:English  

  176. Oral thyroxine administration mimics photoperiodically induced gonadal growth in Japanese quail Reviewed

    Animal Science Journal   Vol. 75   page: 497-410   2004

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  177. Seasonal morphological changes in the neuro-glial interaction between gonadotropin-releasing hormone nerve terminals and glial endfeet in Japanese quail. Reviewed

    Yamamura T, Hirunagi K, Ebihara S, Yoshimura T

    Endocrinology   Vol. 145   page: 4264-4267   2004

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  178. 鳥類の時計遺伝子と光周性 Invited Reviewed

    安尾しのぶ, 渡邊美和, 海老原史樹文, 吉村崇

    時間生物学   Vol. 10   page: 35-40   2004

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

  179. Expression of IKKα mRNA in the suprachiasmatic nucleus and circadian rhythms of mice lacking IKKα

    Hayashi N, Yasuo S, Ebihara S, Yoshimura T

    BRAIN RESEARCH   Vol. 993 ( 1-2 ) page: 217 - 221   2003.12

     More details

    Publisher:Brain Research  

    In our previous study, quantitative trait locus (QTL) analysis using mice with abnormal circadian rhythm detected a suggestive QTL, which affects the length of free-running period, on the distal region of Chromosome 19. Among the candidate genes, we have focused on Ikkα gene and found that Ikkα mRNA is expressed in the mammalian circadian pacemaker, the suprachiasmatic nucleus (SCN) in the present study. Expression of Ikkα mRNA in the SCN indicated the possibility that IKKα is involved in the regulation of circadian clock. Therefore, to examine the role of IKKα in the regulation of circadian rhythms, we have further examined wheel-running activity rhythms under light-dark cycle and constant darkness, and circadian response to light. However, we could not detect any statistically significant difference between IKKα+/- mice and wild type mice. Roles of IKKα in the regulation of circadian system remains to be clarified in the future study. © 2003 Elsevier B.V. All rights reserved.

    DOI: 10.1016/j.brainres.2003.09.007

    Web of Science

    Scopus

  180. Ontogeny of circadian clock gene expression in the pineal and the suprachiasmatic nucleus of chick embryo

    Okabayashi N, Yasuo S, Watanabe M, Namikawa T, Ebihara S, Yoshimura T

    BRAIN RESEARCH   Vol. 990 ( 1-2 ) page: 231 - 234   2003.11

     More details

    Publisher:Brain Research  

    Avian circadian rhythms are regulated by a multiple oscillatory system consisting of the pineal, the suprachiasmatic nucleus (SCN) and the eye. In the present study, ontogeny of circadian clock in the pineal and the SCN of chick embryo was examined using Per2 expression as a marker. A daily rhythmicity of Per2 expression was first detectable at embryonic day (ED) 18 in the pineal and at ED 16 in the SCN under light-dark (LD) cycles. The amplitude of the rhythmicity increased during the development. In contrast, little expression was observed during the development in constant darkness. These results suggest that although circadian clock matures by the end of the embryonic life in chicken, LD cycles are required for the expression of the Per2. © 2003 Elsevier B.V. All rights reserved.

    DOI: 10.1016/S0006-8993(03)03531-5

    Web of Science

    Scopus

  181. Light-induced hormone conversion of T-4 to T-3 regulates photoperiodic response of gonads in birds

    T Yoshimura, S Yasuo, M Watanabe, M Iigo, T Yamamura, K Hirunagi, S Ebihara

    NATURE   Vol. 426 ( 6963 ) page: 178 - 181   2003.11

     More details

    Language:English   Publisher:NATURE PUBLISHING GROUP  

    Reproduction of many temperate zone birds is under photoperiodic control. The Japanese quail is an excellent model for studying the mechanism of photoperiodic time measurement because of its distinct and marked response to changing photoperiods. Studies on this animal have suggested that the mediobasal hypothalamus (MBH) is an important centre controlling photoperiodic time measurement(1-8). Here we report that expression in the MBH of the gene encoding type 2 iodothyronine deiodinase (Dio2), which catalyses the intracellular deiodination of thyroxine (T-4) prohormone to the active 3,5,3'-triiodothyronine (T-3), is induced by light in Japanese quail. Intracerebroventricular administration of T-3 mimics the photoperiodic response, whereas the Dio2 inhibitor iopanoic acid prevents gonadal growth. These findings demonstrate that light-induced Dio2 expression in the MBH may be involved in the photoperiodic response of gonads in Japanese quail.

    DOI: 10.1038/nature02117

    Web of Science

    Scopus

  182. Circadian clock genes and photoperiodism: Comprehensive analysis of clock gene expression in the mediobasal hypothalamus, the Suprachiasmatic nucleus, and the pineal gland of Japanese quail under various light schedules

    Yasuo S, Watanabe M, Okabayashi N, Ebihara S, Yoshimura T

    ENDOCRINOLOGY   Vol. 144 ( 9 ) page: 3742 - 3748   2003.9

     More details

    Publisher:Endocrinology  

    In birds, the mediobasal hypothalamus (MBH) including the infundibular nucleus, inferior hypothalamic nucleus, and median eminence is considered to be an important center that controls the photoperiodic time measurement. Here we show expression patterns of circadian clock genes in the MBH, putative suprachiasmatic nucleus (SCN), and pineal gland, which constitute the circadian pacemaker under various light schedules. Although expression patterns of clock genes were different between long and short photoperiod in the SCN and pineal gland, the results were not consistent with those under night interruption schedule, which causes testicular growth. These results indicate that different expression patterns of the circadian clock genes in the SCN and pineal gland are not an absolute requirement for encoding and decoding of seasonal information. In contrast, expression patterns of clock genes in the MBH were stable under various light conditions, which enables animals to keep a steady-state photoinducible phase.

    DOI: 10.1210/en.2003-0435

    Web of Science

    Scopus

  183. Sleep properties of CS mice with spontaneous rhythm splitting in constant darkness

    Ebihara S, Miyazaki S, Sakamaki H, Yoshimura T

    BRAIN RESEARCH   Vol. 980 ( 1 ) page: 121 - 127   2003.8

     More details

    Publisher:Brain Research  

    In mice, genetic differences between inbred strains have been shown for several parameters of sleep and circadian activity rhythms. Our previous studies have demonstrated that CS mice have three remarkable characteristics in the circadian rhythm of locomotor activity: (1) high activity both during the day and night, (2) unstable freerunning period and (3) spontaneous rhythm splitting. In order to characterize sleep properties of CS mice, we compared circadian sleep patterns of CS with those of C57BL/6J and C3H/He mice which have normal circadian activity rhythms. Although C57BL/6J and C3H/He mice exhibited clear daily sleep-wake rhythms in the amount of each sleep parameter (Awake, SWS, PS), CS mice did not show clear rhythms in these parameters. The differences were particularly conspicuous in PS; no apparent day-night differences in the amount of PS, PS counts and PS interval (the interval between successive PS episodes) in CS mice. In addition, the ratio of PS to total sleep time was significantly larger in CS mice than other strains. Of these parameters, the most considerable was PS latency which was extremely short and direct transition from Awake to PS without appearance of SWS frequently occurred in these mice. These results indicate that CS mice may be useful for the understanding of sleep mechanisms and its dysfunction. © 2003 Elsevier B.V. All rights reserved.

    DOI: 10.1016/S0006-8993(03)02947-0

    Web of Science

    Scopus

  184. Unimodal circadian rhythm in the suprachiasmatic nucleus of behaviorally splitting mice

    Watanabe T, Yoshimura T, McMahon DG, Ebihara S

    NEUROSCIENCE LETTERS   Vol. 345 ( 1 ) page: 49 - 52   2003.7

     More details

    Publisher:Neuroscience Letters  

    CS mice exhibit rhythm splitting in constant darkness (DD). To examine the anatomical and physiological bases of this phenomenon, mouse Period1 (mPer1)-driven green fluorescent protein (GFP) mice with rhythm splitting were produced by crossing CS and mPer1::GFP mice. GFP expression in the suprachiasmatic nucleus (SCN) slices showed a clear unimodal rhythm with the highest level at circadian time (CT) 8 or CT12 in splitting and non-splitting GFP mice under DD and no essential differences in the pattern of GFP expression were found between these mice. Moreover, there were no significant differences in the degree of symmetry in the paired rostral, central and caudal SCN between splitting and non-splitting mice. These results indicate that behavioral rhythm splitting in CS mice does not reflect the pattern of clock gene expression in the SCN. © 2003 Elsevier Science Ireland Ltd. All rights reserved.

    DOI: 10.1016/S0304-3940(03)00484-1

    Web of Science

    Scopus

  185. Ontogeny of circadian clock gene expression in the pineal gland and the suprachiasmatic nucleus of chick embryo

    "N. Okabayashi, S. Yasuo, M. Watanabe, T. Namikawa, S. Ebihara, T. Yoshimura"

    Brain Research   Vol. 990   page: 231-234   2003.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  186. Expression of IKKalpha mRNA in the suprachiasmatic nucleus and circadian rhythms of mice lacking IKKalpha Reviewed

    Hayashi N, Yasuo S, Ebihara S, Yoshimura T

    Brain Research   Vol. 993   page: 217-221   2003.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  187. Circadian clock genes and photoperiodism: Comprehensive analysis of clock gene expression in the mediobasal hypothalamus, suprachiasmatic nucleus, and the pineal gland of Japanese quail under various light schedules Reviewed

    Yasuo S, Watanabe M, Okabayashi N, Ebihara S, Yoshimura T

    Endocrinology   Vol. 144   page: 3742-3748   2003.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  188. Unimodal circadian rhythm in the suprachiasmatic nucleus of behaviorally splitting mice Reviewed

    Watanabe T, Yoshimura T, McMahon D.G., Ebihara S

    Neuroscience Letters   Vol. 345   page: 49-52   2003.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  189. Mapping quantitative trait loci affecting circadian photosensitivity in retinally degenerate mice

    Yoshimura T, Yokota Y, Ishikawa A, Yasuo SD, Hayashi N, Suzuki T, Okabayashi N, Namikawa T, Ebihara S

    JOURNAL OF BIOLOGICAL RHYTHMS   Vol. 17 ( 6 ) page: 512 - 519   2002.12

  190. Effect of melatonin administration on qPer2, qPer3, and qClock gene expression in the suprachiasmatic nucleus of Japanese quail

    Yasuo S, Yoshimura T, Bartell PA, Iigo M, Makino E, Okabayashi N, Ebihara S

    EUROPEAN JOURNAL OF NEUROSCIENCE   Vol. 16 ( 8 ) page: 1541 - 1546   2002.10

  191. ウズラの排卵・放卵周期の制御機構

    吉村崇

    日本時間生物学会会誌   Vol. 8   page: 38-41   2002.1

     More details

    Language:Japanese  

  192. QTL解析

    "海老原史樹文,鈴木亨,吉村崇,石川明"

    分子精神医学   Vol. 2   page: 78-80   2002.1

     More details

    Language:Japanese  

  193. 脊椎動物の概日光受容

    "海老原史樹文,吉村崇"

    神経研究の進歩   Vol. 45   page: 797-805   2001.10

     More details

    Language:Japanese  

  194. Quantitative trait locus analysis of abnormal circadian period in CS mice

    Suzuki T, Ishikawa A, Yoshimura T, Namikawa T, Abe H, Honma S, Honma K, Ebihara S

    MAMMALIAN GENOME   Vol. 12 ( 4 ) page: 272 - 277   2001.4

     More details

    Publisher:Mammalian Genome  

    CS mice show a free-running period (τ) longer than 24 h and rhythm splitting in constant darkness (DD). These features in behavioral circadian rhythms are distinctive as compared with other inbred strains of mice, which exhibit robust free-running rhythms with τ shorter than 24 h. To identify the genes affecting τ, quantitative trait locus (QTL) analysis was initially conducted by using 289 F2 mice derived from a cross between CS and C57BL/6J strain. A suggestive QTL (LOD = 3.71) with CS allele increasing τ was detected on the distal region of Chromosome (Chr) 19. Next, using 192 F2 mice from a cross between CS and MSM strain, the presence of the QTL on Chr 19 was examined, and we confirmed the QTL at the genome-wide significant level (LOD = 4.61 with 10.4% of the total variance explained). This QTL was named long free-running period (Lfp). Three other suggestive QTLs (LOD = 3.24-4.28) were mapped to the midportion of Chr 12 in (CS×C57BL/6J)F2 mice, and to the proximal and middle region of Chr 19 in (CS×MSM)F2 mice, respectively, of which, CS alleles for two QTLs on Chr 19 have the effect of lengthening τ. None of these QTLs were mapped to the chromosomal regions of previously described QTLs for τ and known clock genes (Clock, mPer1, Bma11, mCry1, mCry2, mTim, and Csnkle).

    DOI: 10.1007/s003350010280

    Web of Science

    Scopus

  195. Identification of the suprachiasmatic nucleus in birds

    Yoshimura T, Yasuo S, Suzuki Y, Makino E, Yokota Y, Ebihara S

    AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY   Vol. 280 ( 4 ) page: R1185 - R1189   2001.4

  196. Mapping quantitative trait loci for circadian behavioral rhythms in SMXA recombinant inbred strains

    Tohru Suzuki, Akira Ishikawa, Masahiko Nishimura, Takashi Yoshimura, Takao Namikawa, Shizufumi Ebihara

    Behavior Genetics   Vol. 30 ( 6 ) page: 447 - 453   2000.11

     More details

    Language:English  

    SM/J and A/J inbred strain of mice have different characteristics in circadian behaviors such as free-running period (τ), phase relationship (ψ) between light-dark cycles and activity rhythms, and amount of wheel-running activity. To determine the genes which affect these behaviors, a quantitative trait locus (QTL) analysis using SMXA recombinant inbred strains derived from SM/J and A/J mice was performed. Concerning τ, two regions on chromosomes (Chrs) 7 and 18 surpassed the genome-wide suggestive level. As for ψ, one suggestive QTL was detected on Chr 7. The QTLs which affect daily activity counts under light-dark cycles and constant darkness were mapped to the same chromosomal regions on Chrs 1 and 17, respectively. The provisional QTLs detected in the present study might be useful for understanding the complex mechanism regulating circadian behaviors.

    DOI: 10.1023/A:1010298701251

    Web of Science

    Scopus

    PubMed

  197. Molecular analysis of avian circadian clock genes

    Yoshimura T, Suzuki Y, Makino E, Suzuki T, Kuroiwa A, Matsuda Y, Namikawa T, Ebihara S

    Molecular Brain Research   Vol. 78 ( 1-2 ) page: 207 - 215   2000.5

     More details

  198. 光とサーカディアンリズム

    "吉村崇,海老原史樹文"

    医学のあゆみ   Vol. 190   page: 269-272   1999.1

     More details

    Language:Japanese  

  199. 鳥類の概日リズムの分子機構

    "吉村崇,海老原史樹文"

    日本比較内分泌学会ニュース   Vol. 95   page: 34-37   1999.1

     More details

    Language:Japanese  

  200. Decline of circadian photosensitivity associated with retinal degeneration in CBA/J-rd/rd mice

    Yoshimura T, Ebihara S

    BRAIN RESEARCH   Vol. 779 ( 1-2 ) page: 188 - 193   1998.1

  201. 時計遺伝子

    海老原史樹文、吉村崇

    ファルマシア   Vol. 34   page: 563-567   1998.1

     More details

    Language:Japanese  

  202. Chromosomal mapping of the gene encoding serotonin N-acetyltransferase to rat chromosome 10q32.3 and mouse Chromosome 11E2 Reviewed

    Takashi Yoshimura, A. Nagabukuro, Y. Matsuda, T. Suzuki, A. Kuroiwa, M. Ligo, T. Namikawa, S. Ebihara

    Cytogenetic and Genome Research   Vol. 79 ( 3-4 ) page: 172 - 175   1997.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Pineal melatonin is produced during the night. Its nocturnal increase regulates circadian rhythms and the photo-periodic reproductive response. Serotonin is acetylated to N-acetylserotonin by serotonin N-acetyltransferase (SNAT) and then methylated to form melatonin by hydroxyindole-O-methyltransferase (HIOMT). The rhythmicity of melatonm synthesis is regulated by the rhythmic activity of SNAT. Most laboratory mice do not have melatonin because of a genetic defect in the activity of SNAT and/or HIOMT. In a previous study using a recombinant inbred strain, we have found that the locus controlling pineal SNAT activity (Nat4) is located on mouse Chromosome 11. Recently, SNAT has been cloned in the rat. In the present study, the gene encoding SNAT was localized, using a rat cDNA fragment, on rat and mouse chromosomes by direct R-banding fluorescence in situ hybridization (FISH). In addition, using molecular linkage analysis with interspecific back-cross mice, a gene encoding SNAT was mapped on a mouse chromosome. The gene encoding SNAT was localized to rat chromosome 10q32.3 and mouse Chromosome 11E2 by FISH. The molecular linkage analysis demonstrated that the gene encoding SNAT maps 1.5 cM distal to DUMit11. The data suggest that Nat4 encodes SNAT. These chromosomal locations are in a region of conserved linkage homology between the two species. © 1997 S. Karger AG, Basel.

    DOI: 10.1159/000134713

    Scopus

    PubMed

  203. In vivo microdialysis studies of pineal a ocular melatonin rhythms in birds. Reviewed

    Ebihara S, Adachi A, Hasegawa M, Nogi T, Yoshimura T, Hirunagi K

    Biological Signals   Vol. 6   page: 233-240   1997.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  204. メラトニンの基礎

    海老原史樹文、吉村崇

    神経精神薬理   Vol. 19   page: 177-184   1997.1

     More details

    Language:Japanese  

  205. 脊椎動物の時計遺伝子

    海老原史樹文、吉村崇、鈴木亨

    日本時間生物学会誌   Vol. 3   page: 30-45   1997.1

     More details

    Language:Japanese  

  206. Vitamin B-12 affects non-photic entrainment of circadian locomotor activity rhythms in mice

    Ebihara S, Mano N, Kurono N, Komuro G, Yoshimura T

    BRAIN RESEARCH   Vol. 727 ( 1-2 ) page: 31 - 39   1996.7

     More details

  207. Spectral sensitivity of photoreceptors mediating phase-shifts of circadian rhythms in retinally degenerate CBA/J (rd/rd) a CBA/N (+/+) mice. Reviewed

    Yoshimura T, Ebihara S.

    Journal of Comparative Physiology A   Vol. 178   page: 797-802   1996.1

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  208. CIRCADIAN RESPONSES TO LIGHT AND FOS INDUCTION IN THE SCN AND RETINA OF CBA-AND-C57 RD/RD MICE

    IRELAN W, ARTHUR M, YOSHIMURA T, EBIHARA S, FOSTER RG

    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE   Vol. 36 ( 4 ) page: S913 - S913   1995.3

     More details

  209. RETINALLY PERCEIVED LIGHT IS NOT ESSENTIAL FOR PHOTIC REGULATION OF PINEAL MELATONIN RHYTHMS IN THE PIGEON - STUDIES WITH MICRODIALYSIS

    HASEGAWA M, ADACHI A, YOSHIMURA T, EBIHARA S

    JOURNAL OF COMPARATIVE PHYSIOLOGY A-NEUROETHOLOGY SENSORY NEURAL AND BEHAVIORAL PHYSIOLOGY   Vol. 175 ( 5 ) page: 581 - 586   1994.11

     More details

  210. Differences in circadian photosensitivity between retinally degenerate CBA/J mice (rd/rd) and normal CBA/N mice (+/+) Reviewed

    Yoshimura T, Nishio M, Goto M, Ebihara S

    Journal of Biological Rhythms   Vol. 9 ( 1 ) page: 51-60   1994

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

▼display all

Books 32

  1. Circadian Clocks

    Yoshimura T( Role: Contributor ,  Towards understanding molecular mechanisms of infradian rhythms)

    Aschoff and Honma Memorial Foundation  2023 

     More details

    Total pages:397   Responsible for pages:3-11   Language:English

  2. Circadian Clocks, Neuromethods

    Nakayama T, Okubo K, Ansai S, Yoshimura T(Identification and characterization of genes involved in vertebrate photoperiodism.)

    Humana Press  2022  ( ISBN:978-1-0716-2576-7

     More details

    Total pages:429   Responsible for pages:231-257   Language:English

    DOI: https://doi.org/10.1007/978-1-0716-2577-4

  3. Identification and Characterization of Genes Involved in Vertebrate Photoperiodism

    Nakayama T., Okubo K., Ansai S., Yoshimura T.

    Neuromethods  2022 

     More details

    To cope with seasonal changes in the environment, animals change their physiology and behavior, such as reproduction, metabolism, immune function, migration, and hibernation. Among various seasonally fluctuating environmental cues, photoperiod is a dominant cue that drives different seasonal responses. The responses of organisms to photoperiodic changes are called photoperiodism. Although mechanisms of seasonal reproduction have been uncovered in the past several decades, the molecular mechanisms of other photoperiodically regulated physiology and behavior remain unknown. Recent advances in genome sequencing and genome editing techniques in non-model animals have enabled us to identify and characterize the genes involved in photoperiodism. In the present chapter, we discuss the background of photoperiodism, followed by a description of the methods used to identify and characterize genes involved in vertebrate photoperiodism.

    DOI: 10.1007/978-1-0716-2577-4_11

    Scopus

  4. 糖鎖生物学

    池上啓介、吉村崇( Role: Contributor)

    2020 

     More details

    Responsible for pages:152-153   Language:Japanese

  5. Seasonal reproduction: Photoperiodism, birds

    Nakane Y., Yoshimura T.

    Encyclopedia of Reproduction  2018.1  ( ISBN:9780128151457

     More details

    Seasonal changes in photoperiod are crucial cues for seasonal reproduction in birds inhabiting non-tropical regions. Birds possess photoreceptors in their eyes, pineal organs, and deep brain regions. It is known that birds detect light information of photoperiod, via deep brain photoreceptors. Several studies have revealed that photoinduced thyroid-stimulating hormone, originating from the pars tuberalis of the pituitary gland, prompt the local activation of thyroid hormone in the hypothalamus, which in turn leads to morphological changes in neurons and the secretion of gonadotropin-releasing hormone. In this article, we describe the mechanism for photoperiodism, using the seasonal reproduction of birds as an example.

    DOI: 10.1016/B978-0-12-809633-8.20585-2

    Scopus

  6. Reproductive and Developmental Strategies

    Shinomiya A, Yoshimura T

    Springer  2018 

     More details

    Responsible for pages:103-122   Language:English

  7. 動物学の百科事典

    中根右介、吉村崇

    2018 

     More details

    Responsible for pages:462-465   Language:Japanese

  8. 魚類学の百科事典

    中根右介、吉村崇( Role: Contributor)

    2018 

     More details

    Responsible for pages:368-369   Language:Japanese

  9. Encyclopedia of Reproduction

    Nakane Y, Yoshimura T( Role: Contributor)

    2018 

     More details

    Responsible for pages:409-414   Language:English

  10. Biological Timekeeping: Clocks, Rhythms and Behaviour

    Ikegami K, Yoshimura T( Role: Contributor)

    2017 

     More details

    Responsible for pages:589-605   Language:English

  11. Circadian Clocks

    Shimmura T, Shinomiya A, Yoshimura T( Role: Contributor)

    2015 

     More details

    Responsible for pages:85-93   Language:English

  12. Sturkie's Avian Physiology Sixth Edition International journal

    Cassone V, Yoshimura T

    2014 

     More details

    Responsible for pages:829-845   Language:English

  13. 時間生物学

    海老原史樹文、吉村崇 編( Role: Joint author)

    化学同人  2012 

     More details

    Language:Japanese

  14. 時間生物学

    海老原史樹文, 吉村崇 編( Role: Joint author)

    化学同人  2012 

     More details

    Responsible for pages:165-176   Language:Japanese

  15. Genetic and Molecular Mechanisms of Avian Photoperiodism

    Yoshimura T., Sharp P.

    Photoperiodism: The Biological Calendar  2010.5  ( ISBN:9780195335903

     More details

    Many birds have highly sophisticated photoperiodic mechanisms and show robust responses to changing photoperiod. William Rowan is generally credited with the first demonstration of the avian photoperiodic response when he photostimulated dark eyed juncos (Junco hyemalis) during the Canadian winter and observed stimulation of testicular growth. The application of molecular biological techniques to understanding the mechanisms controlling the avian photoperiodic response continue Rowan's pioneering tradition of using birds to study vertebrate photoperiodism. This chapter focuses on current understanding of genetic and molecular mechanisms underlying the avian photoperiodic response.

    DOI: 10.1093/acprof:oso/9780195335903.003.0018

    Scopus

  16. Photoperiodism The Biological Calendar (Nelson R.J., Denlinger D.L. & Somers D.E. eds.)

    Takashi Yoshimura & Peter J. Sharp( Role: Joint author)

    Oxford University Press  2010 

     More details

    Language:English

  17. めぐる

    中村桂子編( Role: Joint author)

    新曜社  2010 

     More details

    Language:Japanese

  18. めぐる

    中村桂子編( Role: Joint author)

    新曜社  2010 

     More details

    Responsible for pages:142-151   Language:Japanese

  19. Photoperiodism The Biological Calendar (Nelson R.J., Denlinger D.L. & Somers D.E. eds.)

    Takashi Yoshimura, Peter J. Sharp( Role: Joint author)

    Oxford University Press  2010 

     More details

    Responsible for pages:446-460   Language:English

  20. 光周性の分子生物学(海老原史樹史、井澤毅編)

    中尾暢宏、小野ひろ子、吉村崇( Role: Joint author)

    シュプリンガー・ジャパン  2009.7 

     More details

    Language:Japanese

  21. 光周性の分子生物学(海老原史樹史、井澤毅編)

    中尾暢宏, 小野ひろ子, 吉村崇( Role: Joint author)

    シュプリンガー・ジャパン  2009.7 

     More details

    Responsible for pages:141-149   Language:Japanese

  22. 時間生物学事典(本間研一、石田直理雄編)

    吉村崇( Role: Joint author)

    朝倉書店  2008.5 

     More details

    Language:Japanese

  23. 時間生物学事典(本間研一、石田直理雄編)

    吉村崇( Role: Joint author)

    朝倉書店  2008.5 

     More details

    Responsible for pages:24,25,100-103,152-155   Language:Japanese

  24. Functional Avian Endocrinology (Dawson A, Sharp PJ eds)

    Yoshimura T, Yasuo S, Yamamura T, Nakao N, Ebihara S( Role: Joint author)

    Narosa Publishing House, New Delhi  2005 

     More details

    Language:English

  25. Functional Avian Endocrinology (Dawson A, Sharp PJ eds.)

    Ebihara S, Yasuo S, Yoshimura T( Role: Joint author)

    Narosa Publishing House, New Delhi  2005 

     More details

    Language:English

  26. Functional Avian Endocrinology (Dawson A, Sharp PJ eds)

    Yoshimura T, Yasuo S, Yamamura T, Nakao N, Ebihara S( Role: Joint author)

    Narosa Publishing House, New Delhi  2005 

     More details

    Responsible for pages:141-150   Language:English

  27. 時計遺伝子の分子生物学(編:岡村均、深田吉孝)

    海老原史樹文、吉村崇( Role: Joint author)

    シュプリンガー・フェアラーク  2004 

     More details

    Language:Japanese

  28. 時計遺伝子の分子生物学(編:岡村均、深田吉孝)

    海老原史樹文, 吉村崇( Role: Joint author)

    シュプリンガー・フェアラーク  2004 

     More details

    Responsible for pages:105-111   Language:Japanese

  29. Zeitgebers, Entrainment and Masking of the Circadian System (Honma K, Honma S eds.)

    Ebihara S, Yoshimura T, Adachi A, Suzuki Y, Makino E, Suzuki T, Kuroiwa A, Matsuda Y, Namikawa T( Role: Joint author)

    Hokkaido University Press  2001 

     More details

    Language:English

    Avian circadian clock: toward the understanding of molecular mechanisms

  30. Zeitgebers, Entrainment and Masking of the Circadian System (Honma K, Honma S eds.)

    Ebihara S, Yoshimura T, Adachi A, Suzuki Y, Makino E, Suzuki T, Kuroiwa A, Matsuda Y, Namikawa T( Role: Joint author)

    Hokkaido University Press  2001 

     More details

    Responsible for pages:259-265   Language:English

    Avian circadian clock: toward the understanding of molecular mechanisms

  31. 生物時計の分子機構( 編:海老原史樹文,深田吉孝)

    吉村崇,鈴木亨,海老原史樹文( Role: Joint author)

    シュプリンガー・フェアラーク  1999 

     More details

    Language:Japanese

    生物時計の分子機構-遺伝学的研究

  32. 生物時計の分子機構( 編:海老原史樹文,深田吉孝)

    吉村崇, 鈴木亨, 海老原史樹文( Role: Joint author)

    シュプリンガー・フェアラーク  1999 

     More details

    Responsible for pages:50-57   Language:Japanese

    生物時計の分子機構-遺伝学的研究

▼display all

MISC 44

  1. メダカに学ぶ脊椎動物の冬季適応戦略 Invited Reviewed

    中山友哉、吉村崇

    低温科学   Vol. 81   page: 61 - 70   2023

     More details

    Authorship:Last author, Corresponding author   Language:Japanese  

  2. メダカの見ている世界. 眼の光感受性と色覚の季節変化について Invited

    中山友哉、吉村崇

    アクアライフ   Vol. 593   page: 72 - 73   2023

     More details

    Authorship:Last author, Corresponding author   Language:Japanese  

  3. 脊椎動物の季節感知機構の解明とその応用 動物たちの季節適応戦略の謎に迫る Invited Reviewed

    中山 友哉, 中根 右介, 吉村 崇

    化学と生物   Vol. 57 ( 2 ) page: 121 - 128   2019.1

     More details

    Language:Japanese  

  4. 大型スペクトログラフを用いた季節繁殖を制御する脳深部光受容器の探索

    中根右介, 中根右介, 四宮愛, 太田航, 太田航, 池上啓介, 池上啓介, 新村毅, 新村毅, 新村毅, 東正一, 亀井保博, 吉村崇, 吉村崇, 吉村崇, 吉村崇

    Annual Meeting of Japanese Avian Endocrinology   Vol. 42nd   2018

     More details

  5. Molecular and neuroendocrine mechanisms of avian seasonal reproduction

    T. Katherine Tamai, Takashi Yoshimura

    Advances in Experimental Medicine and Biology   Vol. 1001   page: 125 - 136   2017

     More details

    Language:English   Publishing type:Rapid communication, short report, research note, etc. (scientific journal)   Publisher:Springer New York LLC  

    Animals living outside tropical zones experience seasonal changes in the environment and accordingly, adapt their physiology and behavior in reproduction, molting, and migration. Subtropical birds are excellent models for the study of seasonal reproduction because of their rapid and dramatic response to changes in photoperiod. For example, testicular weight typically changes by more than a 100-fold. In birds, the eyes are not necessary for seasonal reproduction, and light is instead perceived by deep brain photoreceptors. Functional genomic analysis has revealed that long day (LD)-induced thyrotropin from the pars tuberalis of the pituitary gland causes local thyroid hormone (TH) activation within the mediobasal hypothalamus. This local bioactive TH, triiodothyronine (T3), appears to regulate seasonal gonadotropin-releasing hormone (GnRH) secretion through morphological changes in neuro-glial interactions. GnRH, in turn, stimulates gonadotropin secretion and hence, gonadal development under LD conditions. In marked contrast, low temperatures accelerate short day (SD)-induced testicular regression in winter. Interestingly, low temperatures increase circulating levels of T3 to support adaptive thermogenesis, but this induction of T3 also triggers the apoptosis of germ cells by activating genes involved in metamorphosis. This apparent contradiction in the role of TH has recently been clarified. Central activation of TH during spring results in testicular growth, while peripheral activation of TH during winter regulates adaptive thermogenesis and testicular regression.

    DOI: 10.1007/978-981-10-3975-1_8

    Scopus

    PubMed

  6. 脊椎動物の光周性制御機構

    中根右介, 吉村崇

    生体の科学   Vol. 67 ( 6 ) page: 560 - 563   2016

     More details

    Language:Japanese  

    DOI: 10.11477/mf.2425200552

  7. 魚類の季節繁殖を制御する分子機構-2 血管嚢はサクラマスの季節センサーである

    飯郷雅之, 小菅克弥, 武田維倫, 中根右介, 池上啓介, 前田遼介, 千賀琢己, 阿見彌典子, 天野勝文, 山本直之, 阿部秀樹, 吉村崇

    日本水産学会大会講演要旨集   Vol. 2014   2014

     More details

  8. 魚類の季節繁殖を制御する分子機構-1 季節繁殖関連遺伝子群のサクラマス血管嚢における発現

    飯郷雅之, 中根右介, 池上啓介, 小野ひろ子, 武田維倫, 高橋大輔, 上坂真衣子, 君嶋明太, 橋本蘭夢, 新井菜津美, 菅琢哉, 小菅克弥, 阿部朋孝, 阿見彌典子, 天野勝文, 東照雄, 山本直之, 吉村崇

    日本水産学会大会講演要旨集   Vol. 2014   2014

     More details

  9. サクラマス血管嚢における季節繁殖関連遺伝子群の発現

    飯郷雅之, 中根右介, 池上啓介, 小野ひろ子, 武田維倫, 武田維倫, 武田維倫, 高橋大輔, 上坂真衣子, 君嶋明太, 橋本蘭夢, 新井菜津美, 菅琢哉, 小菅克弥, 阿部朋孝, 阿部朋孝, 阿見彌典子, 東照雄, 天野勝文, 山本直之, 吉村崇, 吉村崇

    時間生物学   Vol. 19 ( 2 )   2013

     More details

  10. サクラマスの血管嚢は季節繁殖を制御する季節センサーである

    池上啓介, 池上啓介, 飯郷雅之, 中根右介, 前田遼介, 千賀琢己, 阿部秀樹, 山本直之, 吉村崇, 吉村崇

    時間生物学   Vol. 19 ( 2 )   2013

     More details

  11. ウズラ精巣の季節性制御機構の解明

    池上啓介, 渥美優介, 小野ひろ子, 村山至, 中根右介, 太田航, 新井菜津美, 手賀明倫, 飯郷雅之, 吉田松生, 吉村崇

    日本畜産学会大会講演要旨   Vol. 115th   2012

     More details

  12. 鳥類の季節繁殖を制御する脳深部光受容器の探索

    中根右介, 亀井保博, 東正一, 新村毅, 小野ひろ子, 池上啓介, 山中貴達, 村山至, 吉田松生, 吉村崇

    日本畜産学会大会講演要旨   Vol. 115th   2012

     More details

  13. [Understanding mechanism of seasonal reproduction and deep brain photoreceptor]. Reviewed

    Nakane Y, Yoshimura T

    Seikagaku. The Journal of Japanese Biochemical Society   Vol. 83 ( 2 ) page: 114 - 117   2011.2

     More details

  14. 鳥類の季節繁殖における精子幹細胞システムの解析

    村山至, 池上啓介, 中根右介, 市川理恵, 吉田松生, 吉村崇, 吉村崇

    時間生物学   Vol. 17 ( 2 )   2011

     More details

  15. ウズラの季節性精巣退縮における低温刺激の影響

    渥美優介, 渥美優介, 池上啓介, 村山至, 中根右介, 吉田松生, 吉村崇, 吉村崇

    時間生物学   Vol. 17 ( 2 )   2011

     More details

  16. ウズラの季節性精巣退縮における甲状腺ホルモンの機能解析

    池上啓介, 渥美優介, 渥美優介, 小野ひろ子, 村山至, 中根右介, 太田航, 新井奈津美, 手賀明倫, 飯郷雅之, 吉村崇, 吉村崇

    時間生物学   Vol. 17 ( 2 )   2011

     More details

  17. 光周性マスター制御因子TSHの発現誘導を指標とした光周反応の作用スペクトル

    中根右介, 亀井保博, 東正一, 新村毅, 小野ひろ子, 池上啓介, 山中貴達, 村山至, 吉田松生, 吉村崇

    時間生物学   Vol. 17 ( 2 )   2011

     More details

  18. 季節繁殖を制御する脳深部光受容器の同定

    中根右介, 池上啓介, 小野ひろ子, 山本直之, 吉田松生, 蛭薙観順, 海老原史樹文, 久保義弘, 吉村崇

    Annual Meeting of Japanese Avian Endocrinology   Vol. 35th   2010

     More details

  19. 脊椎動物の季節繁殖の制御機構 Invited

    池上啓介, 吉村崇

    日本生殖内分泌学会雑誌   Vol. 15   page: 55-57   2010

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  20. 鳥類の脳深部光受容器の同定

    中根右介, 池上啓介, 小野ひろ子, 山本直之, 吉田松生, 蛭薙観順, 海老原史樹文, 久保義弘, 吉村崇

    時間生物学   Vol. 16 ( 2 )   2010

     More details

  21. Identification of the photoperiodic signaling pathway regulating seasonal reproduction using the functional genomics approach Invited Reviewed

    Hiroko Ono, Nobuhiro Nakao, Takashi Yoshimura

    GENERAL AND COMPARATIVE ENDOCRINOLOGY   Vol. 163 ( 1-2 ) page: 2 - 6   2009.8

     More details

    Language:English   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)   Publisher:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    Animals measure photoperiod (daylength) and adapt to seasonal changes in the environment by altering their physiology and behavior accordingly. Although this photoperiodic response has long been of interest, the underlying mechanism has only recently begun to be uncovered at the molecular level. Japanese quail provide an excellent model to study the molecular mechanism underlying the vertebrate photoperiodic response. The recent sequencing of the chicken genome allowed a system-level analysis of photoperiodic time measurement in quail, and this approach uncovered the key event in the photoperiodic signaling cascade that regulates seasonal reproduction. Long photoperiod-induced expression of thyrotropin in the pars tuberalis of the pituitary gland was found to trigger local thyroid hormone catabolism in the mediobasal hypothalamus, which increases the activity of the reproductive neuroendocrine system resulting in gonadal development. Since thyrotropin was only known to stimulate the thyroid gland, a traditional hypothesi s-d riven approach would not have been expected to predict this discovery. Thus, a functional genomics approach, which is a discovery-driven approach, provides new insights in the field of endocrinology. (C) 2008 Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.ygcen.2008.11.017

    Web of Science

  22. ウズラ脳内の光周刺激伝達部位におけるBMAL1の局在

    池上啓介, 加藤泰弘, 東久美子, 吉村崇, 吉村崇

    Program & Abstracts. 6th Congress of Asian Sleep Research Society, 34th Annual Meeting of Japanese Society of Sleep Research, 16th Annual Meeting of Japanese Society for Chronobiology Joint Congress 2009     2009

     More details

  23. 脊椎動物が春を感知するしくみをさぐる Invited

    吉村崇

    蛋白質 核酸 酵素   Vol. 53   page: 1865-1872   2008

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  24. 抗ニワトリBMAL1,CRY1抗体の作製

    池上啓介, 加藤泰弘, 東久美子, 吉村崇, 吉村崇

    時間生物学   Vol. 14 ( 2 )   2008

     More details

  25. 抗ニワトリBMAL1,CRY1抗体の作製とウズラ脳における時計タンパク質の発現

    池上啓介, 加藤泰弘, 東久美子, 吉村崇, 吉村崇

    Annual Meeting of Japanese Avian Endocrinology   Vol. 33rd   2008

     More details

  26. 鳥類の光周性の機能ゲノミクス Invited

    小野ひろ子, 中尾暢宏, 吉村崇

    時間生物学   Vol. 14   page: 2-8   2008

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  27. Differential response of type 2 deiodinase gene expression to photoperiod between photoperiodic Fischer 344 and nonphotoperiodic Wistar rats Reviewed

    Shinobu Yasuo, Miwa Watanabe, Masayuki Iigo, Takahiro J. Nakamura, Tsuyoshi Watanabe, Tsuyoshi Takagi, Hiroko Ono, Shizufumi Ebihara, Takashi Yoshimura

    AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY   Vol. 292 ( 3 ) page: R1315 - R1319   2007.3

     More details

    Language:English   Publishing type:Rapid communication, short report, research note, etc. (scientific journal)   Publisher:AMER PHYSIOLOGICAL SOC  

    The molecular basis of seasonal or nonseasonal breeding remains unknown. Although laboratory rats are generally regarded as photoperiod-insensitive species, the testicular weight of the Fischer 344 (F344) strain responds to photoperiod. Recently, it was clarified that photoperiodic regulation of type 2 iodothyronine deiodinase (Dio2) in the mediobasal hypothalamus (MBH) is critical in photoperiodic gonadal regulation. Strain-dependent differences in photoperiod sensitivity may now provide the opportunity to address the regulatory mechanism of seasonality by studying Dio2 expression. Therefore, in the present study, we examined the effect of photoperiod on Dio2 expression in photoperiod-sensitive F344 and photoperiod-insensitive Wistar rats. A statistically significant difference was observed between short and long days in terms of testicular weight and Dio2 expression in the F344 strain, while no difference was observed in the Wistar strain. These results suggest that differential responses of the Dio2 gene to photoperiod may determine the strain-dependent differences in photoperiod sensitivity in laboratory rats.

    DOI: 10.1152/ajpregu.00396.2006

    Web of Science

  28. Hypothalamic expression of thyroid hormone-activating and -inactivating enzyme genes in relation to photorefractoriness in birds and mammals Reviewed

    Tsuyoshi Watanabe, Takashi Yamamura, Miwa Watanabe, Shinobu Yasuo, Nobuhiro Nakao, Alistair Dawson, Shizufumi Ebihara, Takashi Yoshimura

    AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY   Vol. 292 ( 1 ) page: R568 - R572   2007.1

     More details

    Language:English   Publishing type:Rapid communication, short report, research note, etc. (scientific journal)   Publisher:AMER PHYSIOLOGICAL SOC  

    Photorefractoriness is the insensitivity of gonadal development to the stimulatory effects of long photoperiods in birds and to the inhibitory effects of short photoperiods in small mammals. Its molecular mechanism remains unknown. Recently, it has been shown that reciprocal expression of thyroid hormone-activating enzyme [type 2 deiodinase (Dio2)] and-inactivating enzyme [type 3 deiodinase (Dio3)] genes in the mediobasal hypothalamus is critical for photoperiodically induced gonadal growth. Since thyroid hormones are required not only for photoinduction, but also for the induction of photorefractoriness, we examined the expression of these genes in relation to photorefractoriness in birds and mammals. Transfer of birds to long photoperiods induced strong expression of Dio2. This was maintained in tree sparrow when they later became photorefractory, but decreased somewhat in quail. In hamsters, transfer to long photoperiods also induced strong expression of Dio2. High values were not maintained under long photoperiods, and, indeed, expression decreased at the same rate as in animals transferred to short photoperiods. There was no renewed expression of Dio2 associated with testicular growth as animals became refractory to short photoperiods. Expression of Dio3 was high under short photoperiods and low under long photoperiods in all the animals examined, except for the short photoperiod-refractory hamsters. Our present study revealed complex regulation of deiodinase genes in the photoinduction and photorefractory processes in birds and mammals. These gene changes may be involved in the regulation of photorefractoriness, as well as photoinduction.

    DOI: 10.1152/ajpregu.00521.2006

    Web of Science

  29. 時計遺伝子の進化 Invited

    吉村崇, 海老原史樹文

    生体の科学   Vol. 57   page: 440-441   2007

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  30. 脊椎動物における光周性の制御機構 Invited Reviewed

    海老原史樹文, 安尾しのぶ, 吉村崇

    生物物理   Vol. 45   page: 185-191   2005

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  31. Oral thyroxine administration mimics photoperiodically induced gonadal growth in Japanese quail Reviewed

    Shinobu Yasuo, Shizufumi Ebihara, Takashi Yoshimura

    Animal Science Journal   Vol. 75 ( 5 ) page: 407 - 410   2004.10

     More details

    Language:English   Publishing type:Rapid communication, short report, research note, etc. (scientific journal)  

    Most temperate-zone animals are seasonal breeders. In a previous study, it was found that light-induced hormone conversion of thyroxine (T4) prohormone to active 3,5,3′-triiodothyronine (T3) in the mediobasal hypothalamus regulates photoperiodic response of gonads in Japanese quail. Here the effect of T4 or T3, administered in drinking water, on testicular growth in the Japanese quail kept under short days is shown. Testicular length was significantly increased in birds given T 4 at doses of 4, 8 and 10 mg/L, while any dose of T3 had little effect on testicular growth. High doses (8 and 10 mg/L) of T4 and T3 resulted in high mortality and/or reduction of bodyweight. Among all of the treatment, 4 mg/L of T4 was the most effective on photoperiodic testicular growth, which caused little reduction in bodyweight. These data provide a new conventional method for promoting gonadal growth under short days.

    DOI: 10.1111/j.1740-0929.2004.00205.x

    Scopus

  32. ウズラ Coturnix japonica Invited

    吉村崇

    細胞工学   Vol. 23   page: 492-493   2004.4

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  33. Circadian expression of clock gene in the optic tectum of Japanese quail

    Yasuo S, Ebihara S, Yoshimura T

    Brain Research   Vol. 1005   page: 193-196   2004.1

     More details

    Language:English   Publishing type:Rapid communication, short report, research note, etc. (scientific journal)  

  34. Molecular Bases for Seasonal Reproduction in Birds Invited Reviewed

    Takashi Yoshimura

    Journal of Poultry Science   Vol. 41 ( 4 ) page: 251 - 258   2004

     More details

    Language:English   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

    Appropriate timing of various seasonal processes is crucial to the survival and reproductive success of animals inhabiting temperate regions. When seasonally breeding animals are subjected to annual changes in daylength, dramatic changes in neuroendocrine-gonadal activity ensue. However, the molecular mechanism of photoperiodic (or seasonal) time measurement (PTM) is not well understood for any organism living. Japanese quail is an excellent model for studying PTM because of the rapid and dramatic response to photoperiod. Here I describe recent progress in understanding the molecular mechanism of PTM in Japanese quail. © 2004, Japan Poultry Science Association. All rights reserved.

    DOI: 10.2141/jpsa.41.251

    Scopus

  35. Ontogeny of circadian clock gene expression in the pineal gland and the suprachiasmatic nucleus of chick embryo Reviewed

    N. Okabayashi, S. Yasuo, M. Watanabe, T. Namikawa, S. Ebihara, T. Yoshimura

    Brain Research   Vol. 990   page: 231-234   2003.1

     More details

    Language:English   Publishing type:Rapid communication, short report, research note, etc. (scientific journal)  

  36. ウズラの排卵・放卵周期の制御機構 Invited

    吉村崇

    日本時間生物学会会誌   Vol. 8   page: 38-41   2002.1

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  37. QTL解析 Invited

    海老原史樹文, 鈴木亨, 吉村崇, 石川明

    分子精神医学   Vol. 2   page: 78-80   2002.1

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  38. 光とサーカディアンリズム Invited

    吉村崇, 海老原史樹文

    医学のあゆみ   Vol. 190   page: 269-272   1999.1

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  39. 野生キャスタネウスマウス集団から分離した無周期突然変異マウスに関する研究

    鈴木 亨, 石川 明, 並河 鷹夫, 吉村 崇, 関根 智宏, 海老原 史樹文

    日本時間生物学会会誌: Journal of Chronobiology   Vol. 4 ( 2 ) page: 82 - 82   1998.10

     More details

    Language:Japanese  

    CiNii Books

  40. 時計遺伝子 Invited

    海老原史樹文, 吉村崇

    ファルマシア   Vol. 34   page: 563-567   1998.1

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  41. メラトニンの基礎 Invited

    海老原史樹文, 吉村崇

    神経精神薬理   Vol. 19   page: 177-184   1997.1

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

  42. In vivo Microdialysis Studies of Pineal and Ocular Melatonin Rhythms in Birds Reviewed

    Shizufumi Ebihara, Akihito Adachi, Minoru Hasegawa, Takuya Nogi, Takashi Yoshimura, Kanjun Hirunagi

    NeuroSignals   Vol. 6 ( 4-6 ) page: 233 - 240   1997

     More details

    Language:English   Publishing type:Rapid communication, short report, research note, etc. (scientific journal)  

    Pineal and retinal melatonin has an important role in the control of avian circadian rhythms. In order to study the mechanisms of circadian rhythms of melatonin synthesis in the pineal and in the eye, in vivo microdialysis was applied to these organs. In both pigeons and Japanese quails, pineal and ocular melatonin levels were high during the dark and low during the day under light-dark (LD) cycles. These rhythms persisted under constant dim light (LLdim) conditions indicating the circadian nature of pineal and ocular melatonin release. Light has two effects on melatonin synthesis. One is acute inhibition of melatonin synthesis and the other is entrainment of circadian melatonin rhythms. We have examined photoreceptors mediating these effects in the pigeon. The results have indicated that the eyes are not involved in light-induced suppression and photic entrainment of pineal melatonin release, and pineal photoreceptors themselves are likely to mediate these effects. Concerning ocular melatonin, retinal photoreceptors seem to mediate light-induced suppression and photic entrainment and no evidence supporting mediation of extraretinal photoreceptors was obtained. Because dopamine is implicated in retinal melatonin synthesis, we measured dopamine and melatonin release simultaneously from the eye of pigeon. In contrast to melatonin rhythms, dopamine increased during the day and decreased during the dark. This antiphase relationship between melatonin and dopamine persisted in LLdim, suggesting an interaction between these two rhythms. The results of an intraocular injection of dopamine or melatonin in the phase of melatonin and dopamine rhythms indicated that the interaction is required for maintaining the antiphase relationship between the two rhythms. © 1997 S. Karger AG, Basel.

    DOI: 10.1159/000109133

    Scopus

    PubMed

  43. Vitamin B<sub>12</sub> affects non-photic entrainment of circadian locomotor activity rhythms in mice. Reviewed

    Ebihara S, Mano N, Kurono N, Komuro G, Yoshimura T

    Brain Research   Vol. 727   page: 31-39   1996.1

     More details

    Language:English   Publishing type:Rapid communication, short report, research note, etc. (scientific journal)  

  44. Spectral sensitivity of photoreceptors mediating phase-shifts of circadian rhythms in retinally degenerate CBA/J (rd/rd) and normal CBA/N ( + / + ) mice Reviewed

    T. Yoshimura, S. Ebihara

    Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology   Vol. 178 ( 6 ) page: 797 - 802   1996

     More details

    Language:English   Publishing type:Rapid communication, short report, research note, etc. (scientific journal)   Publisher:Springer Verlag  

    Light-dark cycles are the most important time cue for the circadian system to entrain the endogenous circadian clock to the environmental 24 h cycle. Although photic entrainment of circadian rhythms is mediated by the eye in mammals, photoreceptors implicated in circadian photoreception remain unknown. In our previous study, retinally degenerate CBA/J (rd/rd) mice were found to have lower circadian photosensitivity for phase-shifting the locomotor activity rhythms than normal CBA/N( +/+ ) mice. In the present study, the spectral sensitivity for phase-shifting the rhythms was examined in order to characterize the photopigments involved in circadian photoreception of these mice. The spectral sensitivity of CBA/J-rd/rd mice clearly fitted to the Dartnall nomogram for a retinal1-based pigment with a maximum at 480 nm, while the best fitted nomogram had a maximum at 500 nm in CBA/N- +/+ mice. These results suggest that circadian photopigments involved in CBA/J-rd/rd and CBA/N- +/+ mice may be different.

    DOI: 10.1007/BF00225828

    Scopus

    PubMed

▼display all

Presentations 173

  1. Photoperiodism and seasonal reproduction in vertebrates Invited International conference

    Yoshimura T

    InSC Workshop on Mechanisms Underlying Daily and Seasonal Biological Processes  2024.9.14  Indian Society for Chronobiology

     More details

    Event date: 2024.9

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Mizoram   Country:India  

  2. Tissue remodeling, a key for the circannual clock? Invited International conference

    Yoshimura T

    Sapporo Symposium on Biological Rhythm  2024.8.10  Aschoff and Honma Memorial Foundation

     More details

    Event date: 2024.8

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Hokkaido University   Country:Japan  

  3. 月や季節のリズムの分子機構の解明にむけて Invited

    吉村崇

    生化学若い研究者の会  2024.6.4  生化学若い研究者の会

     More details

    Event date: 2024.6

    Language:Japanese   Presentation type:Oral presentation (keynote)  

    Venue:名古屋大学   Country:Japan  

  4. Medaka as a model to understand the seasonal timer and winter depression Invited International conference

    Yoshimura T

    NBRP Medaka International Workshop 2024 “Medaka as a new model for studies of biological phenomena in fluctuating environments” 

     More details

    Event date: 2024.4

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Okazaki   Country:Japan  

  5. 自然条件下の魚類と哺乳類からみえてきた脊椎動物の季節適応機構 Invited

    吉村崇

    日本比較生理生化学会第45回大阪大会 

     More details

    Event date: 2023.12

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:大阪  

  6. ユニークな動物から明らかになった驚きの季節適応戦略 Invited

     More details

    Event date: 2023.12

    Language:Japanese   Presentation type:Oral presentation (keynote)  

  7. Understanding the mystery of biological clocks: Learning from unique animals to contribute for food production and human health Invited International conference

    Yoshimura T

    JAACT2023 

     More details

    Event date: 2023.11

    Language:English   Presentation type:Oral presentation (keynote)  

    Venue:Nagoya  

  8. Molecular basis of the circannual clock Invited

    Yoshimura T

    The 61st Annual Meetings of the Biophysical Society of Japan 

     More details

    Event date: 2023.11

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Nagoya  

  9. 脊椎動物の概年時計の分子機構 Invited

    吉村崇

    2023年度生理学研究所研究会「極限環境適応」 

     More details

    Event date: 2023.11

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:岡崎  

  10. 脊椎動物の概年リズムの分子基盤 Invited

    吉村崇

    日本睡眠学会第45回定期学術集会第30回日本時間生物学会学術大会合同大会 

     More details

    Event date: 2023.9

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:横浜  

  11. 月のリズムと季節のリズムの分子基盤 Invited

    吉村崇

    下垂体研究会第37回学術大会 

     More details

    Event date: 2023.8

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:宮崎   Country:Japan  

  12. Photoperiod and seasonal reproduction Invited International conference

    Yoshimura T

    InSC School in Chronobiology 

     More details

    Event date: 2023.5

    Language:English   Presentation type:Public lecture, seminar, tutorial, course, or other speech  

    Venue:Shillong   Country:India  

  13. Seasonal transcriptome atlas of 80 neural and peripheral tissues of non-human primate Macaca mulatta Invited International conference

    Yoshimura T

    14th International Workshop on Resistance to Thyroid Hormones & Thyroid Hormone Actions (14th IWRTH) 

     More details

    Event date: 2023.4

    Language:English   Presentation type:Oral presentation (keynote)  

    Venue:Monterey, CA   Country:United States  

  14. Understanding underlying mechanisms of infradian rhythms Invited International conference

    Yoshimura T

    The 10th Congress of Asian Sleep Research Society and Asian Forum of Chronobiology 

     More details

    Event date: 2023.3

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Istanbul   Country:Turkey  

  15. 季節繁殖の分子機構~鍵分子同定までの道のりとその後の展開 Invited

    吉村崇

    第29回日本時間生物学会学術大会  2022.12.3 

     More details

    Event date: 2022.12

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:宇都宮大学   Country:Japan  

  16. クサフグが大潮に一斉集団産卵する仕組み Invited

    吉村崇

    極限環境研究会  生理学研究所

     More details

    Event date: 2022.11

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:生理学研究所   Country:Japan  

  17. Towards understanding molecular mechanisms of infradian rhythms Invited International conference

    Yoshimura T

    19th International Conference on Retinal Proteins 

     More details

    Event date: 2022.11

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Sapporo   Country:Japan  

  18. Towards understanding the mystery of biological clocks: an interdisciplinary approach Invited International conference

    Yoshimura T

    iCeMS Retreat  2022.9.14  WPI-iCeMS

     More details

    Event date: 2022.9

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Kyoto University   Country:Japan  

  19. 動物に学び、異分野融合研究で食と健康の未来に貢献する Invited

    吉村崇

    2021年度第4回BVA定例会・勉強会  2022.3.24 

     More details

    Event date: 2022.3

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:オンライン   Country:Japan  

  20. アカゲザル全身組織の遺伝子発現地図から明らかにする動物の季節適応戦略 Invited

    吉村崇

    第50回ホミニゼーション研究会「人類進化と遺伝子」  2022.3.23 

     More details

    Event date: 2022.3

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:京都大学霊長類研究所   Country:Japan  

  21. Molecular basis of vertebrate infradian rhythms Invited International conference

    Yoshimura T

    EMBO | EMBL Symposium: Biological oscillators: design, mechanism, function  2022.3.7 

     More details

    Event date: 2022.3

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Heidelberg   Country:Germany  

  22. Understanding infradian rhythms by multi-omics approach Invited International conference

    Yoshimura T

    2nd International RMBPD Colloquium  2022.2.25 

     More details

    Event date: 2022.2

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Delhi   Country:India  

  23. 脊椎動物の季節適応戦略 Invited

    吉村崇

    第28回日本時間生物学会学術大会  2021.11.21 

     More details

    Event date: 2021.11

    Language:Japanese  

    Venue:沖縄   Country:Japan  

  24. 季節や月のリズムと動物の環境適応戦略 Invited

    吉村崇

    2021年度生理学研究所研究会「極限環境適応」  2021.11.12 

     More details

    Event date: 2021.11

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:生理学研究所   Country:Japan  

  25. 脊椎動物の季節適応機構の解明 Invited

    吉村崇

    木原財団学術賞記念講演   2021.11.5  木原財団

     More details

    Event date: 2021.11

    Language:Japanese   Presentation type:Oral presentation (keynote)  

    Venue:オンライン   Country:Japan  

  26. Molecular basis of vertebrate seasonal adaptation Invited International conference

    Yoshimura T

    The 27th Japan Medaka and Zebrafish Meeting  2021.9.17 

     More details

    Event date: 2021.9

    Language:English   Presentation type:Oral presentation (keynote)  

    Venue:online   Country:Japan  

  27. メダカ、ウズラ、マウス、アカゲザルに学ぶ動物の季節適応の仕組み Invited

    吉村崇

    第35回日本下垂体研究会学術集会  2021.8.21 

     More details

    Event date: 2021.8

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:福岡   Country:Japan  

  28. Towards understanding molecular mechanisms of infradian rhythms Invited International conference

    Yoshimura T

    The 18th Sapporo Symposium on Biological Rhythm  2021.8.14 

     More details

    Event date: 2021.8

    Language:English   Presentation type:Oral presentation (keynote)  

    Venue:Sapporo   Country:Japan  

  29. Seasonal regulation of depression-like behavior International conference

    Yoshimura T

    5th Asian Forum on Chronobiology   2021.7.18 

     More details

    Event date: 2021.7

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Kaifeng (online)   Country:China  

  30. 冬季のうつ様行動の分子機構理解に向けて Invited

    吉村崇

    第43回日本生物学的精神医学会・日本神経精神薬理学会合同年会  2021.7.14 

     More details

    Event date: 2021.7

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:オンライン   Country:Japan  

  31. 脊椎動物の季節適応機構:鳥類、魚類、霊長類をモデルとした比較生物学的アプローチ Invited

    吉村崇

    第68回日本実験動物学会総会   2021.5.19 

     More details

    Event date: 2021.5

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:オンライン   Country:Japan  

  32. 比較生物学から迫る脊椎動物の季節適応機構 Invited

    吉村崇

    第68回日本生態学会 

     More details

    Event date: 2021.3

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:オンライン  

  33. Seasonal clock: Towards the understanding of human seasonal clocks Invited International conference

    Yoshimura T

    The 12th Sleep Respiration Forum online from Barcelona 

     More details

    Event date: 2020.11

    Language:English   Presentation type:Oral presentation (keynote)  

    Venue:Barcelona   Country:Spain  

  34. 冬季のうつ様行動の分子基盤の解明に向けて:春告げホルモンTSHの発見のその後 Invited

    吉村崇

    第63回日本甲状腺学会学術集会 

     More details

    Event date: 2020.11

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:オンライン   Country:Japan  

  35. 脊椎動物の季節適応機構 Invited

    吉村崇

    第93回日本生化学会大会 

     More details

    Event date: 2020.9

    Language:Japanese  

    Venue:オンライン   Country:Japan  

  36. 脊椎動物の行動の季節変化の分子基盤の解明に向けて Invited

    吉村崇

    日本動物学会 

     More details

    Event date: 2019.9

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:大阪   Country:Japan  

  37. Molecular basis of seasonal changes in behavior Invited International conference

    Yoshimura T

    XVI Congress of the European Biological Rhythms Society 

     More details

    Event date: 2019.8

    Language:English   Presentation type:Oral presentation (keynote)  

    Venue:Lyon   Country:France  

  38. Molecular basis of seasonal changes in behavior in medaka Invited International conference

    Yoshimura T

    The 10th International Congress of Comparative Physiology and Biochemistry (ICCPB2019), 

     More details

    Event date: 2019.8

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Ottawa   Country:Canada  

  39. Molecular mechanisms of seasonally regulated reproduction and depression-like behavior. Invited International conference

    Yoshimura T

    KVA-JSPS seminar 

     More details

    Event date: 2019.6

    Language:English  

    Venue:Karolinska Institutet   Country:Sweden  

  40. Understanding molecular basis of seasonal changes in behavior Invited International conference

    Yoshimura T

    European Congress for Endocrinology 

     More details

    Event date: 2019.5

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Lyon   Country:France  

  41. Molecular basis of seasonal changes in behavior Invited International conference

    Yoshimura T

    V World Congress of Chronobiology 

     More details

    Event date: 2019.4

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Suzhou   Country:China  

  42. Effects of temperature on seasonal adaptation Invited International conference

    Yoshimura T

    Effects of temperature on seasonal adaptation. To9th Federation of the Asian and Oceanian Physiological Societies (FAOPS) Congress, 

     More details

    Event date: 2019.3

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Kobe   Country:Japan  

  43. Molecular basis of seasonal changes in behavior International conference

    Yoshimura T

    International Symposium on Biological Rhythms 

     More details

    Event date: 2019.3

    Language:English   Presentation type:Oral presentation (keynote)  

    Venue:Meerut   Country:India  

  44. 13th International Workshop on Resistance to Thyroid Hormones Invited International conference

    Yoshimura T

    Molecular basis of vertebrate seasonal adaptation: Towards understanding the human seasonal rhythms 

     More details

    Event date: 2018.9

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Doorn   Country:Netherlands  

  45. Seasonal adaptation mechanism in Medaka Invited International conference

    Yoshimura T

    International Congress of Neuroendocrinology 2018 

     More details

    Event date: 2018.7

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Toronto   Country:Canada  

  46. Seasonal adaptation mechanism in medaka fish Invited International conference

    Yoshimura T

    Asian Forum on Chronobiology 

     More details

    Event date: 2018.7

    Language:English   Presentation type:Oral presentation (keynote)  

    Venue:Sapporo   Country:Japan  

  47. Seasonal changes in color perception and behavior in medaka Invited International conference

    Yoshimura T

    8th Intercongress of the Asia and Oceania Society for Comparative Endocrinology, 

     More details

    Event date: 2018.7

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Sydney   Country:Australia  

  48. Seasonal adaptation mechanism in Medaka Invited International conference

    Yoshimura T

    Society for Research on Biological Rhythms 

     More details

    Event date: 2018.5

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Florida   Country:United States  

  49. Medaka as a model to understand the underlying mechanism of vertebrate seasonal adaptation Invited International conference

    Yoshimura T

    4th Strategic Meeting for Medaka Research 

     More details

    Event date: 2018.4

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Heidelberg   Country:Germany  

  50. Molecular basis of vertebrate seasonal adaptation: Towards the understanding of human seasonal rhythms Invited International conference

    Yoshimura T

    12th Annual Salk / Foundation Ipsen / Science Symposium on Biological Complexity- the biology of TIME circadian, lunar and seasonal rhythms. 

     More details

    Event date: 2018.1

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Salk Institute   Country:United States  

  51. Towards understanding the mechanism of human seasonal rhythms: an interdisciplinary approach Invited International conference

    Yoshimura T

    The 20th Annual Meeting of the Korean Society for Brain and Neural Science “Challenge the Brain, Change the Future”  

     More details

    Event date: 2017.8

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Seoul   Country:Korea, Republic of  

  52. Molecular basis of vertebrate seasonal adaptation Invited International conference

    Yoshimura T

    European Society for Evolutionary Biology EBES XVI Congress 

     More details

    Event date: 2017.8

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Groningen   Country:Netherlands  

  53. Understanding the molecular basis of vertebrate seasonal adaptation Invited International coauthorship International conference

    Yoshimura T

    18th International Congress of Comparative Endocrinology 

     More details

    Event date: 2017.6

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Lake Louise   Country:Canada  

  54. Mechanism of seasonal adaptation and its application Invited International conference

    Yoshimura T

    International Symposium on Biological Timing and Health Issues in the 21st Centur 

     More details

    Event date: 2017.2

    Language:English   Presentation type:Oral presentation (keynote)  

    Venue:Delhi   Country:India  

  55. Understanding the mechanism of seasonal time measurement using interdisciplinary approach Invited International conference

    Yoshimura T

    The 29th Conference of the International Society for Chronobiology 

     More details

    Event date: 2016.10

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Suzhou   Country:China  

  56. Sensing light within the deep brain Invited International conference

    Yoshimura T

    International Symposium on Avian Endocrinology (ISAE2016)  

     More details

    Event date: 2016.10

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Niagara   Country:Canada  

  57. Towards understanding the mechanism of seasonal time measurement Invited International conference

    Leopoldina Symposium on Seasonal Rhythms  

     More details

    Event date: 2016.8

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Leuven   Country:Belgium  

  58. Universality and diversity in the photoperiodic signal transduction in vertebrates Invited International conference

    Yoshimura T

    28th Conference of European Comparative Endocrinologists 

     More details

    Event date: 2016.8

    Language:English   Presentation type:Oral presentation (keynote)  

    Venue:Leuven   Country:Belgium  

  59. Towards understanding the mechanism of seasonal time measurement Invited International conference

    Yoshimura T

    8th Congress of Asia and Oceania Society for Comparative Endocrinology “From Comparative to Translational Research”  

     More details

    Event date: 2016.6

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:Korea, Republic of  

  60. Thyroid hormone and seasonal regulation of reproduction Invited International conference

    Yoshimura T

    IBSA Foundation Symposium “the thyroid … in the periphery!”  

     More details

    Event date: 2016.4

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Naples   Country:Italy  

  61. Towards understanding the mechanism of seasonal reproduction in vertebrates International conference

    Yoshimura T

    Avian Model Systems 9: A New Integrative Platform 

     More details

    Event date: 2016.3

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Taipei   Country:Taiwan, Province of China  

  62. Regulatory mechanisms of seasonal reproduction in vertebrates Invited International conference

    8th Federation of the Asian and Oceanian Physiological Society (FAOPS) Congress, 

     More details

    Event date: 2015.11

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Bangkok   Country:Thailand  

  63. Novel roles for TSH and TH identified by discovery-driven approach Invited International conference

    Yoshimura T

    15th International Thyroid Congress 

     More details

    Event date: 2015.10

    Language:English   Presentation type:Oral presentation (keynote)  

    Venue:Orlando   Country:United States  

  64. Understanding the mechanism of vertebrate photoperiodism by comparative approach Invited International conference

    Yoshimura T

    The 9th International Congress of Comparative Physiology and Biochemistry (ICCPB2015) 

     More details

    Event date: 2015.8

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:Poland  

  65. Towards understanding the mechanism of seasonal time measurement International conference

    Yoshimura T

    XIV European Biological Rhythms Society (EBRS) and IV World Chronobiology Congress (WCC) 

     More details

    Event date: 2015.8

    Language:English   Presentation type:Oral presentation (keynote)  

    Venue:Manchester   Country:United Kingdom  

  66. Mechanism of seasonal time measurement in vertebrates Invited International conference

    Yoshimura T

    Chronobiology Gordon Research Conference 

     More details

    Event date: 2015.6

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:Spain  

  67. Evolution and origin of seasonal sensor in vertebrates Invited International conference

    Yoshimura T

    16th International Congress of Photobiology 

     More details

    Event date: 2014.9

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Cordoba   Country:Argentina  

  68. Evolution and origin of vertebrate seasonal sensor Invited International conference

    Yoshimura T

    Society for Research on Biological Rhythms (SRBR2014) 

     More details

    Event date: 2014.6

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:United States  

  69. Evolution and origin of seasonal sensor in vertebrates Invited International conference

    Yoshimura T

    7th Intercongress Symposium of the Asia and Oceania Society for Comparative Endocrinology (AOSCE), 

     More details

    Event date: 2014.3

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:Taiwan, Province of China  

  70. The origin and evolution of deep brain photoreceptor and seasonal time measurement Invited International conference

    Yoshimura T

    Gordon Research Conference on Pineal Cell Biology  

     More details

    Event date: 2014.1

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:United States  

  71. Mechanism of seasonal reproduction in vertebrates: A comparative biology approach Invited International conference

    UK Clock Club 

     More details

    Event date: 2013.11

    Language:English   Presentation type:Oral presentation (keynote)  

    Venue:Manchester   Country:United Kingdom  

  72. Molecular switches: genetic response cascades to photoperiod Invited International conference

    Yoshimura T

    Seasons of Life: Biological rhythms underlying healthy living. 

     More details

    Event date: 2013.11

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Glasgow   Country:United Kingdom  

  73. Photoperiodic time measurement in vertebrates Invited International conference

    Yoshimura T

    The 6th Asia and Oceania Conference on Photobiology. 

     More details

    Event date: 2013.11

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Sydney   Country:Australia  

  74. Thyrotropin and deiodinases in hypothalamic regulation of seasonal reproduction International conference

    Yoshimura T

    2012 Annual Meeting of the American Thyroid Association 

     More details

    Event date: 2012.9

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:Canada  

  75. Thyroid hormone and seasonal adaptation International conference

    Yoshimura T

    10th International Workshop on Resistance to Thyroid Hormone and Thyroid Hormone Action 

     More details

    Event date: 2012.9

    Language:English   Presentation type:Oral presentation (keynote)  

    Country:Canada  

  76. 鳥類の季節繁殖の制御機構

    吉村崇

    第105回日本繁殖生物学会 

     More details

    Event date: 2012.9

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:筑波大学   Country:Japan  

  77. 脊椎動物が季節を感知する仕組み

    吉村崇

    第24回高遠・分子細胞生物学シンポジウム「生命の制御系の進化を探る」 

     More details

    Event date: 2012.8

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:高遠さくらホテル   Country:Japan  

  78. 脊椎動物の季節適応機構:比較生物学のすすめ

    吉村崇

    日本栄養・食糧学会中部支部大会 

     More details

    Event date: 2012.7

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:名古屋大学   Country:Japan  

  79. Neuroendocrine mechanism of seasonal reproduction in vertebrates International conference

    Yoshimura T

    ISAE2012 

     More details

    Event date: 2012.6

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  80. Signal transduction pathway regulating seasonality in vertebrates International conference

    SRBR2012 

     More details

    Event date: 2012.5

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:United States  

  81. Mechanism of seasonal time measurement in vertebrates International conference

    Leopoldina Symposium, The Circadian System: from Chronobiology to Chronomedicine 

     More details

    Event date: 2012.3

    Language:English   Presentation type:Oral presentation (keynote)  

    Country:Germany  

  82. Regulation of seasonal reproduction in vertebrates International conference

    Yoshimura T

    The 7th AOSCE Congress 

     More details

    Event date: 2012.3

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:Malaysia  

  83. 動物が春を感じる仕組みをさぐる:春ホルモンの糖鎖は重要か?

    吉村崇

    第9回糖鎖科学コンソーシアムシンポジウム 

     More details

    Event date: 2011.11

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:名古屋大学   Country:Japan  

  84. How animal knows the daylength International conference

    Yoshimura T

    Worldsleep2011 

     More details

    Event date: 2011.10

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  85. 脊椎動物の季節適応機構:甲状腺刺激ホルモン、甲状腺ホルモンの織りなす巧みな生存戦略

    吉村崇

    第45回日本小児内分泌学会ランチョンセミナー 

     More details

    Event date: 2011.10

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:大宮   Country:Japan  

  86. 脊椎動物の季節繁殖を制御する神経とホルモン

    吉村崇

    日本動物学会第82回大会 

     More details

    Event date: 2011.9

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:旭川   Country:Japan  

  87. Mechanisms regulating seasonal reproduction in vertebrates International conference

    Yoshimura T

    ICCPB2011 

     More details

    Event date: 2011.6

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  88. 脊椎動物の季節測時機構

    吉村崇

    日本分子生物学会第11回春季シンポジウム 

     More details

    Event date: 2011.5

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:金沢   Country:Japan  

  89. 比較生物学から明らかになった動物が春を感じる仕組み

    吉村崇

    第11回日本比較三学会合同シンポジウム「比較生物学の近未来―最前線研究からの展望」 

     More details

    Event date: 2010.11

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:静岡   Country:Japan  

  90. Non-mammalian models in thyroid research: Japanese quail International conference

    14th International Thyroid Congress 

     More details

    Event date: 2010.9

    Language:English   Presentation type:Oral presentation (invited, special)  

  91. Functional genomics analaysis of photoperiodic response International conference

    International Ornithological Congress 

     More details

    Event date: 2010.8

    Language:English   Presentation type:Oral presentation (invited, special)  

  92. Moleucular mechanism of seasonal reproduction in birds and mammals International conference

    The 3rd Special Biomodulation Symposium 

     More details

    Event date: 2010.5

    Language:English   Presentation type:Oral presentation (invited, special)  

  93. 季節繁殖に及ぼす光環境と遺伝要因の影響

    吉村崇

    第57回日本実験動物学会総会 

     More details

    Event date: 2010.5

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  94. Moleucular and endocrine mechanism of seasonal reproduction in birds and mammals International conference

    Society for Endocrinology BES 2010 (受賞基調講演) 

     More details

    Event date: 2010.3

    Language:English   Presentation type:Oral presentation (invited, special)  

  95. Photoperiodic transduction in the mediobasal hypothalamus International conference

    Gordon Research Conferences Pineal Cell Biology 

     More details

    Event date: 2010.2

    Language:English   Presentation type:Oral presentation (invited, special)  

  96. 機能ゲノミクスから明らかになった甲状腺刺激ホルモンの新機構―動物が季節を感じる仕組みの解明

    吉村崇

    第28回小児内分泌・代謝研究会信濃町フォーラム 

     More details

    Event date: 2010.1

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  97. Functional genomics approaches in comparative endocrinology International conference

    Sixth Intercongress Symposium of the Asia and Oceania Society for Comparative Endocrinology Plenary Lecture 

     More details

    Event date: 2010.1

    Language:English   Presentation type:Oral presentation (invited, special)  

  98. The springtime hormone: pars tuberalis thyrotropin

     More details

    Event date: 2009.11

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  99. 脊椎動物の光周性の制御機構

    吉村崇

    第16回日本時間生物学会学術大会 

     More details

    Event date: 2009.10

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  100. 鳥類および哺乳類の季節測時機構

    吉村崇

    第34回日本比較内分泌学会大会・日本比較生理生化学会第31回大会合同大会 CompBiol2009 

     More details

    Event date: 2009.10

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  101. Molecular mechanism of vertebrate seasonal time measurement

    第82回日本生化学会大会 

     More details

    Event date: 2009.10

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  102. 脊椎動物の季節性測時機構

    Yoshimura T

    第32回日本神経科学大会 

     More details

    Event date: 2009.9

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  103. Molecular mechanisms of seasonal reproduction in birds and mammals International conference

    XI Congress of the European Biological Society 

     More details

    Event date: 2009.8

    Language:English   Presentation type:Oral presentation (invited, special)  

  104. 脊椎動物における光と季節適応

    吉村崇

    第15回日本光生物学協会年会 

     More details

    Event date: 2009.8

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  105. 脊椎動物の季節繁殖の分子機構

    吉村崇

    第27回内分泌代謝学サマーセミナー 

     More details

    Event date: 2009.7

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  106. Molecular and endocrine mechanisms of vertebrate seasonal reproduction International conference

    International Congress of Comparative Endocrinology 

     More details

    Event date: 2009.6

    Language:English   Presentation type:Oral presentation (invited, special)  

  107. 脳に春を告げる甲状腺刺激ホルモン

    吉村崇

    日本内分泌学会学術総会 特別講演 

     More details

    Event date: 2009.4

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  108. 発想のひらめき、研究の推進、そしてそれを支えるもの

    吉村崇

    日本畜産学会若手企画シンポジウム「アニマルサイエンス研究のさらなる発展を目指して」教育講演 

     More details

    Event date: 2009.3

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  109. 鳥類、哺乳類の季節繁殖の分子基盤の解明

    吉村崇

    日本畜産学会賞受賞講演 

     More details

    Event date: 2009.3

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  110. Molecular mechanisms of vertebrate photoperiodic response International conference

    Symposium on Functional Biology: Comparative Aspects 

     More details

    Event date: 2009.3

    Language:English   Presentation type:Oral presentation (invited, special)  

  111. 脊椎動物が季節を読み取るしくみをさぐる

    吉村崇

    第101回関西実験動物研究会 

     More details

    Event date: 2009.3

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  112. Molecular and endocrine mechanisms of vertebrate photoperiodic response International conference

    Society for Integrative and Comparative Biology 2009 Annual Meeting 

     More details

    Event date: 2009.1

    Language:English   Presentation type:Oral presentation (invited, special)  

  113. Molecular mechanism of seasonal time measurement in vertebrates

    BMB2008 

     More details

    Event date: 2008.12

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  114. 日長情報の中継地、下垂体隆起葉

    吉村崇

    鳥類内分泌研究会 

     More details

    Event date: 2008.11

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  115. 脊椎動物の季節性測時機構

    吉村崇

    第15回日本時間生物学会 

     More details

    Event date: 2008.11

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  116. 季節性測時機構のファンクショナルゲノミクス

    吉村崇

    日本遺伝学会第80回大会 

     More details

    Event date: 2008.9

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  117. Functional genomics analysis of photoperiodic time measurement International conference

    9th International Symposium on Avian Endocrinology 

     More details

    Event date: 2008.7

    Language:English   Presentation type:Oral presentation (invited, special)  

  118. Functional genomics analysis of photoperiodic time measurement. International conference

    20th anniversary meeting of the Society for Research on Biological Rhythms 

     More details

    Event date: 2008.5

    Language:English   Presentation type:Oral presentation (invited, special)  

  119. 動物が季節を感知する仕組みを探る

    吉村崇

    第16回農芸化学Frontiersシンポジウム 

     More details

    Event date: 2008.3

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  120. 脊椎動物の光周性の機能ゲノム学的解析

    吉村崇

     More details

    Event date: 2007.12

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  121. A systems biology analysis of vertebrate photoperiodism International conference

    2nd World Congress of Chronobiology 

     More details

    Event date: 2007.11

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  122. Functional genomics analysis of vertebrate photoperiodic time measurement.

    International symposium " Comprehensive understanding of diverse biological timing mechanism" 

     More details

    Event date: 2007.11

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  123. 脊椎動物の季節繁殖のファンクショナルジェノミクス

    吉村崇

    特定領域研究「性分化機構の解明」領域会議 

     More details

    Event date: 2007.10

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  124. Molecular mechanism of photoperiodic time measurement in birds International conference

    IBRO sattelite meeting "From molecular clocks to human health" 

     More details

    Event date: 2007.7

    Language:English   Presentation type:Oral presentation (invited, special)  

  125. 脊椎動物の光周性の制御機構:春を告げる甲状腺ホルモン

    吉村崇

    名古屋大学環境医学研究所セミナー 

     More details

    Event date: 2007.6

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  126. 脊椎動物の季節性測時機構

    吉村崇

    特定領域研究「性分化機構の解明」冬のワークショップ 

     More details

    Event date: 2007.2

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  127. 脊椎動物の光周性の分子機構

    吉村崇

    第13回日本時間生物学会 

     More details

    Event date: 2006.11

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  128. 動物たちが季節を感知する仕組みを探る

    吉村崇

    名古屋大学高等研究院セミナー 

     More details

    Event date: 2006.9

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  129. Molecular mechanisms regulating seasonal reproduction in birds and mammals International conference

    12th AAAP Animal Science Congress 

     More details

    Event date: 2006.9

    Language:English   Presentation type:Oral presentation (invited, special)  

  130. Photoperiodic regulation of seasonal reproduction in birds. International conference

    24th International Ornithological Congress 

     More details

    Event date: 2006.8

    Language:English   Presentation type:Oral presentation (invited, special)  

  131. Overview of avian circadian system International conference

    24th International Ornithological Congress 

     More details

    Event date: 2006.8

    Language:English   Presentation type:Oral presentation (invited, special)  

  132. 脊椎動物の光周性の制御機構

    吉村崇

    日本時間生物学会 

     More details

    Event date: 2005.11

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  133. 脊椎動物の光周性の制御機構

    吉村崇

    第28回日本神経科学学会 

     More details

    Event date: 2005.7

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  134. Molecular analysis of photoperiodic time measurement in birds and mammals International conference

    15th International congress of comparative endocrinology 

     More details

    Event date: 2005.5

    Language:English   Presentation type:Oral presentation (invited, special)  

  135. Molecular analysis of photoperiodic time measurement in birds and mammals International conference

    9th meeting of society for research on biological rhythms 

     More details

    Event date: 2004.6

    Language:English   Presentation type:Oral presentation (invited, special)  

  136. The avian circadian clock system International conference

    8th International symposium on avian endocrinology 

     More details

    Event date: 2004.6

    Language:English   Presentation type:Oral presentation (invited, special)  

  137. Molecular analysis of photoperiodic time measurement in birds. International conference

    6th International symposium on avian endocrinology 

     More details

    Event date: 2004.6

    Language:English   Presentation type:Oral presentation (invited, special)  

  138. 鳥類の光周性の分子機構

    吉村崇

    動物生命科学シンポジウム 

     More details

    Event date: 2004.3

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

    東京農工大学, 府中市

  139. 脊椎動物の光周性の制御機構

    吉村崇,安尾しのぶ,渡邊美和,飯郷雅之,渡辺剛史,蛭薙観順,海老原史樹文

    大阪大学蛋白質研究所セミナー 

     More details

    Event date: 2004.3

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    大阪大学, 吹田市

  140. Circadian clock and photoperiodism in birds International conference

    2nd International symposium on molecular clock 

     More details

    Event date: 2004.2

    Language:English   Presentation type:Oral presentation (invited, special)  

    Tokyo

  141. Circadian clock and photoperiodism in birds International conference

    1st World Congress of Chronobiology 

     More details

    Event date: 2003.9

    Language:English   Presentation type:Oral presentation (invited, special)  

    Hokkaido University, Sapporo

  142. ニワトリ松果体における概日時計の個体発生

    岡林生才,吉村崇,安尾しのぶ,並河鷹夫,海老原史樹文

    第8回日本時間生物学会 

     More details

    Event date: 2001.11

    Language:Japanese   Presentation type:Poster presentation  

    Country:Japan  

  143. ウズラ卵巣における時計遺伝子の発現

    安尾しのぶ,吉村崇,岡林生才,海老原史樹文

    第8回日本時間生物学会 

     More details

    Event date: 2001.11

    Language:Japanese   Presentation type:Poster presentation  

    Country:Japan  

  144. リズム異常動物のスクリーニング

    海老原史樹文,鈴木亨,吉村崇,石川明,並河鷹夫

    日本疾患モデル学会 

     More details

    Event date: 2001.11

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

    名古屋大学, 名古屋

  145. Expression of clock genes in Japanese quail ovary during ovulation oviposition cycle International conference

    1st International Symposium on molecular clock 

     More details

    Event date: 2001.9

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

    Awaji

  146. Molecular and physiological analysis of avian circadian system International conference

    Keystone Symposium on Molecular clocks 

     More details

    Event date: 2001.3

    Language:English   Presentation type:Poster presentation  

  147. Molecular and physiological analysis of avian circadian system International conference

    U.S.-Japan Symposium on Molecular Mechanism for Circadian Clocks 

     More details

    Event date: 2000.12

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

    Kyoto Japan

  148. マウスにおける概日リズムの遺伝解析

    鈴木亨,石川明,吉村崇,海老原史樹文

    国立遺伝学研究所研究会「動物行動の遺伝学」 

     More details

    Event date: 2000.10

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

    国立遺伝学研究所, 三島

  149. Molecular analysis of avian circadian clock International conference

    7th meeting of Society for Research on Biological Rhythms 

     More details

    Event date: 2000.5

    Language:English   Presentation type:Poster presentation  

  150. 野生キャスタネウスマウスより分離した概日リズム突然変異体に関する遺伝解析

    鈴木亨,石川明,並河鷹夫,吉村崇,海老原史樹文

    日本畜産学会 

     More details

    Event date: 2000.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  151. マウス概日リズム光感受性に関するQTL解析

    横田祐樹,吉村崇,鈴木亨,石川明,海老原史樹文

    日本畜産学会 

     More details

    Event date: 2000.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  152. 鳥類視交叉上核(SCN)の同定

    安尾しのぶ,吉村崇,鈴木喜和,横田祐樹,牧野江里,海老原史樹文

    日本畜産学会 

     More details

    Event date: 2000.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  153. ウズラ時計遺伝子(qClock, qPer2, qPer3)の遺伝子発現

    牧野江里,吉村崇,鈴木喜和,安尾しのぶ,海老原史樹文

    日本畜産学会 

     More details

    Event date: 2000.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  154. 鳥類時計遺伝子(Clock, Per2, Per3)のcDNAクローニングとマッピング

    吉村崇,鈴木智広,黒岩麻里,松田洋一,並河鷹夫,海老原史樹文

    日本畜産学会 

     More details

    Event date: 2000.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  155. 鳥類の概日時計の分子機構

    吉村崇

    アニマルゲノム・家禽ゲノム合同研究セミナー 

     More details

    Event date: 2000.3

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    京都大学, 京都

  156. ウズラ時計遺伝子のcDNAクローニングと遺伝子発現

    吉村崇,鈴木喜和,牧野江里,安尾しのぶ,海老原史樹文

    日本時間生物学会 

     More details

    Event date: 1999.11

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  157. マウス概日リズム光感受性に関するQTL解析

    横田祐樹,吉村崇,鈴木亨,石川明,海老原史樹文

    日本時間生物学会 

     More details

    Event date: 1999.11

    Language:Japanese   Presentation type:Poster presentation  

    Country:Japan  

  158. 鳥類時計遺伝子

    吉村崇

    分子時計シンポジウム 

     More details

    Event date: 1999.11

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    仙台

  159. Molecular analysis of Period and Clock homologs in Japanese quail International conference

    The 8th Sapporo Symposium on Biological Rhythms 

     More details

    Event date: 1999.8

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  160. Mapping of QTL (Quantitative Trait Loci) for circadian photosensitivity in mice. International conference

    The 8th Sapporo Symposium on Biological Rhythm 

     More details

    Event date: 1999.8

    Language:English   Presentation type:Poster presentation  

    Country:Japan  

  161. Molecular analysis of circadian clock gene homologs in birds International conference

    U.S.-Japan Seminar on Molecular Mechanisms of Biological Rhythms. 

     More details

    Event date: 1999.7

    Language:English   Presentation type:Oral presentation (invited, special)  

    Kona, Hawaii

  162. ウズラ時計遺伝子ホモログのcDNAクローニングと遺伝子発現

    吉村崇,鈴木喜和,牧野江里,鈴木智広,松田洋一,並河鷹夫,海老原史樹文

    日本神経科学学会 

     More details

    Event date: 1999.7

    Language:Japanese   Presentation type:Poster presentation  

    Country:Japan  

  163. Molecular cloning and characterization of quail clock gene International conference

    Gordon Research Conference on Chronobiology 

     More details

    Event date: 1999.6

    Language:English   Presentation type:Poster presentation  

    Barga Italy

  164. Molecular analysis of Period and Clock homologs in Japanese quail International conference

    8th Sapporo Symposium on Biological Rhythm 

     More details

    Event date: 1998.8

    Language:English   Presentation type:Oral presentation (invited, special)  

    Sapporo

  165. Mapping quantitative trait loci (QTL) for circadian period in CS mice that have abnormal circadian rhythms International conference

    6th meeting of Society for Research on Biological Rhythms 

     More details

    Event date: 1998.6

    Language:English   Presentation type:Poster presentation  

  166. Genetic analysis of mouse circadian mutants. International conference

    Japan/US Conference on Molecular Chronobiology 

     More details

    Event date: 1997.12

    Language:English   Presentation type:Oral presentation (invited, special)  

    San Francisco U.S.A.

  167. Genetic mapping of the gene encoding rat serotonin N-acetyltransferase to rat and mouse chromosomes International conference

    7th Sapporo Symposium on Biological Rhythm 

     More details

    Event date: 1997.9

    Language:English   Presentation type:Poster presentation  

    Sapporo

  168. Regulation of ocular melatonin and dopamine rhythms in the pigeon. International conference

    Asia Pacific Pineal Meeting 

     More details

    Event date: 1997.3

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

    Hamamatsu Japan

  169. Decline in circadian photosensitivity associated with retinal degeneration in CBA/J-rd/rd mice. International conference

    5th Meeting of the Society for Research on Biological Rhythms 

     More details

    Event date: 1996.5

    Language:English   Presentation type:Poster presentation  

    Jacksonville, FL

  170. Decline in circadian photosensitivity to green and ultraviolet light pulse associated with retinal degeneration in CBA/J-rd/rd mice. International conference

    Circadian light reception and regulation 

     More details

    Event date: 1996.5

    Language:English   Presentation type:Oral presentation (invited, special)  

    Lyon France

  171. 網膜突然変異マウスを用いた概日光受容物質の研究

    海老原史樹文,吉村崇

    第38回日本神経化学会グループディナーカンファレンス(生体リズムの分子機構) 

     More details

    Event date: 1995.7

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    京都国際会議場, 京都

  172. Circadian responses to light and fos induction in the SCN and retina of CBA & C57 rd/rd mice. International conference

    ARVO 

     More details

    Event date: 1995.5

    Language:English   Presentation type:Oral presentation (general)  

    Fort Lauderdale Frolida U.S.A.

  173. Analysis of the circadian photoreceptors mediating entrainment of circadian rhythms using CBA/J(rd/rd) and CBA/N(+/+) mice. International conference

    Japan/USA Workshop on Biological Timing 

     More details

    Event date: 1995.3

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

    Nara Japan

▼display all

Works 10

  1. 「魚が日照時間の変化を感じる「季節センサー」を発見」

    2103.7

  2. からだの中の時計

    吉村崇

    2021.11

     More details

    Work type:Artistic work   Location:たくさんのふしぎ  

  3. 「ニワトリ鳴く時間「体内時計」が制御」

    2013.3

  4. 生物「季節繁殖」の研究

    2012.7

  5. ニワトリ「コケコッコー」鳴き始めは最強のオス

    2012.5

  6. 動物が春を感じるしくみをさぐる

    2012.5

  7. 哺乳類が季節を感じる仕組みの解明

    2008.11

  8. 春の訪れ感じる遺伝子

    2008.3

  9. 特集生研センター

    2004

  10. 春を告げる甲状腺ホルモン

    2004

▼display all

Research Project for Joint Research, Competitive Funding, etc. 17

  1. 概日リズムに関する研究

    2021 - 2023

    共同研究 

      More details

    Authorship:Principal investigator 

  2. 1年周期のリズムを生み出す概年時計の分子基盤の解明

    2019.9 - 2021.3

    三菱財団自然科学研究助成 

    吉村崇

      More details

    Grant type:Competitive

    Grant amount:\7000000 ( Direct Cost: \7000000 )

  3. 動物行動における起潮力の影響把握

    2018

    共同研究 

      More details

    Authorship:Principal investigator 

  4. 季節性うつ病治療薬の探索研究

    2018 - 2022

    共同研究 

      More details

    Authorship:Principal investigator 

  5. 植物由来抽出物がマウス行動リズム及ぼす影響の検討

    2018

    共同研究 

      More details

    Authorship:Principal investigator 

  6. PSマウスにおける概日リズム睡眠覚醒障害の検証

    2018

    共同研究 

      More details

    Authorship:Principal investigator 

  7. SKIT Open Innovationプログラム

    2018

    委託研究 

      More details

    Authorship:Principal investigator 

  8. 概日周期調整物質の開発

    2017

    共同研究 

      More details

    Authorship:Principal investigator  Grant type:Collaborative (industry/university)

  9. Evolution of seasonal timer International coauthorship

    2015.12 - 2019.12

    Human Frontier Science Program  Research grant

    吉村崇

      More details

    Grant type:Competitive

  10. 動物が季節を感知する仕組みの全容の解明

    2008.11 - 2009.10

    豊秋奨学会研究費助成 

      More details

    Grant type:Competitive

  11. Molecuar bases of photoperiodism in vertebrates

    2008.10 - 2009.9

      More details

    Grant type:Competitive

  12. 肥満の新規脳内制御機構

    2005.4 - 2006.3

    上原記念生命科学財団 

      More details

    Grant type:Competitive

  13. 家禽の光周性と排卵・放卵周期の分子機構の解明

    2002.10 - 2007.3

    生物系特定産業技術研究支援センター「新技術・新分野創出のための基礎研究推進事業」 

      More details

    Grant type:Competitive

  14. 体内時計の個体発生に及ぼす重力と磁場の影響

    2001.4 - 2003.3

    日本宇宙フォーラム(宇宙環境利用に関する地上研究) 

      More details

    Grant type:Competitive

    委任経理金

  15. 鳥類の季節繁殖の分子機構の解明

    2000.10 - 2001.3

    成茂動物科学振興基金 

      More details

    Grant type:Competitive

    委任経理金

  16. 海外派遣助成

    2000.5 - 2000.6

    名古屋大学学術振興基金 

      More details

    Grant type:Competitive

    委任経理金

  17. 鳥類の生物時計の分子機構

    1999.3 - 2000.2

    東海学術奨励会助成金 

      More details

    Grant type:Competitive

    委任経理金

▼display all

KAKENHI (Grants-in-Aid for Scientific Research) 46

  1. 時間タンパク質学:概年タンパク質が365日をカウントする制御機構

    Grant number:24H02303  2024.4 - 2029.3

    科学研究費助成事業  学術変革領域研究(A)

    吉村 崇

      More details

    Authorship:Principal investigator 

    Grant amount:\73580000 ( Direct Cost: \56600000 、 Indirect Cost:\16980000 )

  2. インフラディアンリズムの設計原理の解明とその制御

    Grant number:24H00058  2024.4 - 2029.3

    科学研究費助成事業  基盤研究(S)

    吉村 崇

      More details

    Authorship:Principal investigator 

    Grant amount:\203970000 ( Direct Cost: \156900000 、 Indirect Cost:\47070000 )

  3. chronoproteinology

    Grant number:24H02299  2024.4 - 2029.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Transformative Research Areas (A)

      More details

    Authorship:Coinvestigator(s) 

  4. 1年の時を刻む概年時計の分子基盤の解明

    Grant number:20K20459  2020.4 - 2024.3

    科学研究費助成事業  挑戦的研究(開拓)

    吉村 崇

      More details

    Authorship:Principal investigator 

    Grant amount:\26000000 ( Direct Cost: \20000000 、 Indirect Cost:\6000000 )

    温暖化や気候変動により、生態系、生物多様性、農業などに影響が生じている。そのため、生物の環境適応機構の解明は世界的に緊急に取り組むべき重要課題と位置付けられている。生物の体内には約1年周期のリズムを刻む「概年時計」が存在し、遺伝することも知られているが、1年という長い周期のリズムを刻む分子基盤の解明は進んでいない。洗練された季節応答を示すメダカを屋外の自然条件下で飼育し、得られた2年間の時系列試料についてRNA-seq解析を行い、様々な遺伝子が年周リズムを刻むことを見出した。本研究ではこの膨大なRNA-seqデータを基盤として、概年時計の分子基盤を解明する。
    生物の体内には様々な周期のリズムを刻む内因性の計時機構(体内時計)が存在する。例えば、約1日のリズムを刻む「概日時計」や、約2時間のリズムを刻み体節の形成に関与する「分節時計」などがよく知られている。これら比較的、短時間の自由継続周期を示す体内時計の分子機構については、過去数十年の研究によって大幅に理解が進み、概日時計の分子機構の解明に対してノーベル賞が授与されている。
    一方、繁殖活動や渡り、冬眠などのように、動物の様々な営みには季節のリズムも存在する。鳥類や哺乳類、あるいは昆虫など、いくつかの動物においては、概ね1年の内因性のリズムを刻む「概年時計」が存在することが示されている。人類は有史以来、生物の示す一年周期のリズム現象に魅了されてきたが、「概年時計」の研究には膨大な時間がかかるため、ほとんど手付かずで極めて挑戦的なテーマである。我々はこの謎に取り組むべく、屋外の自然条件下で飼育したメダカから視床下部・下垂体を2週間に一度、2年間にわたって採材し、得られた2年間の時系列試料についてRNA-Seq解析を行ったところ、年周リズムを刻む遺伝子(季節変動遺伝子)を同定することに成功した。本研究ではこれらの季節変動遺伝子が約1年のリズムを刻む仕組みを明らかにすることを目的としている。バイオインフォマティクスや最先端のトランスクリプトミクス解析を駆使することで当初の計画どおり、研究が展開している。
    同定した季節変動遺伝子について、Weighted gene correlation network analysis (WGCNA)解析を行ったところ、季節変動を制御すると考えられるハブ遺伝子を同定することに成功した。また、季節変動遺伝子の上流にエンリッチしているシス配列を同定するとともに、それらのシス配列に、結合しうる転写因子の候補を抽出した。また、これら見出した遺伝子の発現分布を明らかにするために、空間的トランスクリプトーム解析を実施するとともに、一細胞RNA-seq解析を実施した。これらの解析によって季節のリズムを生み出すと考えられる転写因子の候補を抽出することができたので、季節変動する遺伝子についてプロモーター解析を進めている。以上、当初の計画どおりにおおむね順調に進展している。
    当初の計画通りに研究が進んでいるため、概年時計の分子機構の解明にむけて、計画されていた研究を推進していく。

  5. 半月周性産卵リズムの形成機構:潮汐を伝える体内時計の関わりと分子基盤の解明

    Grant number:20H03288  2020.4 - 2024.3

    科学研究費助成事業  基盤研究(B)

    安東 宏徳, 豊田 賢治, 吉村 崇, 大森 紹仁

      More details

    Authorship:Coinvestigator(s) 

    海洋生物の生殖や生態は、月齢や潮汐に同調したリズムを持つものが多い。そのリズムは、脳内にある体内時計によって作られるが、そのしくみは不明である。クサフグは、新月と満月の日の満潮前に産卵を繰り返す。これまでの研究から、脳内に概潮汐時計が存在し、概日時計と協同して半月周性産卵リズムを作ることが示唆された。本研究では、概潮汐時計の分子基盤を解明するため、潮汐と月齢に同調して発現する遺伝子群を探索すると共に、それらの潮汐サイクルとの同調および半月周性リズムとの関連を検討する。また、半月周性リズム発振機構がどのようなしくみで生殖機能を調節するのか、さらに、発生や成長の段階でいつ形成されるのかを解明する。
    本研究では、概潮汐時計の機能的分子基盤の解明を目指して、潮汐サイクルおよび月齢に同調して発現する遺伝子群を網羅的に探索すると共に、それらの遺伝子の発現抑制による半月周性の産卵行動リズムへの影響を検討する。また、概潮汐時計と概日時計から構成されると考えられるリズム発振機構による生殖神経内分泌系の周期的調節の機能形態学的基盤を解明する。さらに、より普遍的な生物リズムの研究としての展開を目指し、半月周性リズムのOntogenyを解明する。令和3年度は、次の3つの研究成果を得た。
    1)潮汐サイクルと半月周性リズムに関連する遺伝子群を探索する試料として、産卵リズムの異なる伊豆川奈と佐渡姫津において、大潮と小潮の日の夕刻にクサフグ成魚を捕獲して脳を採取した。
    2)潮汐サイクル/半月周性リズムを作る時計候補遺伝子の機能解析のため、Vivo-モルフォリノによる遺伝子発現抑制実験系を検討した。脳髄膜で作られる糖たんぱく質であるエペンジミン(EPN)を標的遺伝子として、Vivo-モルフォリノ(EPN-MO)の配列、投与量、投与方法を検討した。また、ウェスタンブロット法と免疫染色法を用いたEPNタンパク質の解析系を確立した。EPN-MOを投与した個体では、遊泳阻害が見られたが、EPNタンパク質量の変化は検出されなかった。
    3)クサフグ仔稚魚に潮汐サイクルや月齢に同調したリズムがあるのかどうかを明らかにするため、産卵期に親魚を採集して人工授精を行い、仔稚魚を育成した。DanioVisionを用いて、クサフグ仔稚魚の自発行動リズムを解析した結果、成長段階によって明暗周期に関して自発行動リズムが異なることや明暗の切り替え時に自発行動量が高くなることなど、クサフグが独自の光応答性を持つ可能性が示された。さらに、EthoVision XTを用いたクサフグ幼魚の自発行動解析系を確立した。
    前年度に新型コロナウイルス感染拡大と施設の改修工事のため実施できなかった、Vivo-モルフォリノによる遺伝子発現抑制実験系の確立とEthoVision XTを用いたクサフグの行動解析系の確立を完了することができた。しかし、EPN-MO投与による発現抑制についての定量的な検証はさらに必要である。また、半月周性の産卵行動リズムに関わると考えられるクリプトクロームとメラトニン受容体の脳内分布の解析については、従来のin situ hybridization法では検出できないことがわかったため、より高感度でmRNAを検出できるRNAscope法を用いて、両遺伝子mRNAの脳内分布の解析を行う。
    潮汐サイクル/半月周性リズムに関連する遺伝子群の網羅的探索については、採取した脳試料を用いて松果体と間脳のRNA-Seqを行い、伊豆産の魚と佐渡産の魚において半月周期で発現変動する遺伝子および両地域の間で差次的に発現している遺伝子を網羅的に探索する。得られた潮汐サイクル/半月周性リズム関連遺伝子群の中で、転写および翻訳の調節に関わると考えられる遺伝子群を選び出し、抗体を作製して発現の定量的解析系を確立すると共に、Vivo-モルフォリノによる翻訳抑制実験を実施する。仔稚魚の自発行動リズムについては、DanioVisionを用いてさまざまな明暗周期下で行動リズムを解析して、光応答性を解析すると共に、野外で稚魚を採集し、野生の稚魚の自発行動リズムを解析する。さらに、斜面を作った水槽における成熟魚の斜面への集合行動のリズムをEthoVision XTを用いて解析する。クリプトクロームとメラトニン受容体の発現細胞については、RNAscope法を用いて両遺伝子mRNAの脳内分布を明らかにする。

  6. Understanding molecular mechanisms that determine long-day and short-day breeders

    Grant number:19F19384  2019.11 - 2021.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for JSPS Fellows

      More details

    Authorship:Other 

    Grant amount:\2300000 ( Direct Cost: \2300000 )

  7. Understanding the seasonal adaptation mechanism and its application

    Grant number:19H05643  2019.6 - 2024.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (S)

      More details

    Authorship:Principal investigator 

    Grant amount:\199550000 ( Direct Cost: \153500000 、 Indirect Cost:\46050000 )

  8. 脊椎動物の季節適応機構の解明

    Grant number:19H00989  2019.4 - 2020.3

    科学研究費補助金  基盤研究(A)

    吉村 崇

      More details

    Authorship:Principal investigator 

    Grant amount:\44980000 ( Direct Cost: \34600000 、 Indirect Cost:\10380000 )

    動物は日照時間(日長)や温度を感知して、様々な生理機能や行動をダイナミックに変化させることで、環境の季節変化に巧みに適応している。本研究では洗練された季節適応能力を有し、生息地域の緯度に応じて遺伝的に異なる季節適応戦略を身に着けたメダカをモデルとして、この謎を解明する。既に高緯度のメダカは繁殖を開始する際に、低緯度のものより長い日長と高い水温を必要とすることを見出し、遺伝解析を完了している。そこで動物が日長と温度を測定し、季節の変化に巧みに適応する仕組みを解明する。また自然条件下で飼育したメダカの網羅的遺伝子発現地図を作成し、動物の季節適応戦略の分子基盤を明らかにする。
    動物は日照時間(日長)や温度を感知して、様々な生理機能や行動をダイナミックに変化させることで、環境の季節変化に巧みに適応している。カレンダーを持たない動物がこれを成し遂げる仕組みは、未だ明らかにされていない。本研究では洗練された季節適応能力を有し、生息地域の緯度に応じて遺伝的に異なる季節適応戦略を身に着けたメダカをモデルとして、この謎を解明することを目的とした。
    従来の研究で高緯度と低緯度に由来するメダカでは、日長や温度を感知する仕組みが遺伝的に異なることを見出していたため、研究1では動物が日長を測定する仕組みについて量的形質遺伝子座解析を進め、候補領域に存在する遺伝子のアミノ酸配列を比較するとともに、発現量を比較した。また研究2では温度の変化を感知して、季節の変化に適応する仕組みを理解することを目的として量的形質遺伝子座解析を行い、その解析で見出した候補遺伝子の遺伝子産物の機能を円偏光二色性スペクトル測定により検討した。
    さらに摂食、代謝、概日リズム、繁殖活動などは視床下部が司令塔となり制御されているが、それらの年周リズムを駆動する分子基盤は謎に包まれている。そこで屋外の自然条件下で飼育したメダカから視床下部および下垂体を2週間毎に、2年間にわたって採材した時系列試料を用いてRNA-Seq解析を行った。研究3ではバイオインフォマティクスを駆使して、膨大なRNA-seqデータから年周変動する遺伝子をゲノムワイドに同定し、網羅的遺伝子発現地図を明らかにした。
    令和元年度が最終年度であるため、記入しない。
    令和元年度が最終年度であるため、記入しない。

  9. Impact of CO2-driven ocean acidification on seasonal reproduction in marine fish

    Grant number:17F17107  2017.7 - 2019.3

      More details

    Authorship:Other 

    Grant amount:\2300000 ( Direct Cost: \2300000 )

  10. 脊椎動物のバーナリゼーションの分子機構の解明

    Grant number:26660249  2014.4 - 2015.3

    科学研究費助成事業  挑戦的萌芽研究

    吉村 崇

      More details

    Authorship:Principal investigator 

    Grant amount:\3900000 ( Direct Cost: \3000000 、 Indirect Cost:\900000 )

  11. 脊椎動物の季節適応機構の解明

    2014.4 - 2014.6

    科学研究費補助金  基盤研究(A)

      More details

    Authorship:Principal investigator 

  12. 脊椎動物のバーナリゼーションの分子機構の解明

    2014.4 - 2014.6

    科学研究費補助金 

      More details

    Authorship:Principal investigator 

  13. 脊椎動物の季節感知システムの設計原理の解明とその応用

    Grant number:26000013  2014 - 2018

    科学研究費助成事業  特別推進研究

    吉村 崇

      More details

    Authorship:Principal investigator 

    Grant amount:\383240000 ( Direct Cost: \294800000 、 Indirect Cost:\88440000 )

    動物は毎年繰り返し訪れる環境の季節変化に対し、より良く適応するために、光や温度などの外的変化を感知し、繁殖、渡り、ストレス応答などの生理機能や行動を制御している。このような動物の季節変化については、アリストテレスの著書「動物誌」にも詳述されていたが、その仕組みは謎に包まれていた。本研究では様々な動物の持つ洗練された能力に着目することで脊椎動物の季節適応機構の設計原理を解明することを目標とした。また季節適応を制御する革新的機能分子を創出することで、動物の生産性の向上やヒトの季節性疾患の克服を実現することを目指した。
    まず、メダカが生息地域の緯度に応じて異なる日長応答、温度応答を示すことを見出し、遺伝解析を実施した結果、日長、温度をそれぞれ規定する有力な候補遺伝子を同定することに成功した。現在、それらの候補遺伝子の機能を検討している。また、動物は繁殖期になるとストレス応答を増加させることが知られていたが、その分子基盤は謎だった。トランスクリプトーム解析を実施した結果、long non-coding RNAがストレス応答の季節変化を制御していることを明らかにした(Nat Ecol Evol, 2019)。高緯度地域では、冬季にうつ病を発症する冬季うつ病が深刻な社会問題になっている。冬季うつ病を含む様々な精神障害の患者においては概日時計に異常をきたしていることが知られているため、概日時計を調節する分子を既存薬から探索したところ、細胞レベルで体内時計の周期を調節するとともに、混餌投与によって体内時計の周期を調節する薬を発見することに成功した(EMBO Mol Med 2018)。またメダカをモデルとして冬季の社会性の低下を改善する既存薬をスクリーニングしたところ、社会性を改善する漢方薬成分を発見することに成功した。

  14. Regulation mechanism of innate vocalization

    Grant number:25892013  2013.8 - 2015.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Research Activity Start-up

    SHIMMURA Tsuyoshi, YOSHIMURA Takashi

      More details

    Authorship:Other 

    Most of animals can vocalize on their own manners without learning, which is called as innate vocalization. However, the regulation mechanism underlying the phenomenon remains unknown. We used the crowing of roosters as the model. We showed that not only anticipatory predawn crowing, but also external stimulus-induced crowing, is under the control of a circadian clock.

  15. 哺乳類の網膜外光受容機構の解明

    2011.2 - 2014.3

    科学研究費補助金  最先端・次世代研究開発支援プログラム

      More details

    Authorship:Principal investigator 

  16. 哺乳類の網膜外光受容機構の解明

    2011.2 - 2014.3

    科学研究費助成事業  最先端・次世代研究開発支援プログラム

      More details

    Grant type:Competitive

  17. Demonstration of Novel Brain Molecular Mechanisms Regulating Reproduction

    Grant number:22227002  2010.4 - 2015.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (S)

    TSUTSUI KAZUYOSHI, OGATA Tsutomu, OSUGI Tomohiro, UBUKA Takayoshi, BENTLEY George, KRIEGSFELD Lance, SOWER Stacia

      More details

    Authorship:Coinvestigator(s) 

    We have provided a new concept on the basis of the discovery of gonadotropin-inhibitory hormone (GnIH), a hypothalamic neuropeptide inhibiting pituitary gonadotropin release. Our studies have demonstrated that GnIH acts on gonadotropes in the pituitary and gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus via GnIH receptor to reduce reproduction by the decrease of gonadotropin release. We have further demonstrated that GnIH has an evolutionarily conserved role in controlling reproduction across chordates, from amphioxus to human. Following the discovery of GnIH in humans, we have shown that GnIH is a player for induction of reproductive dysfunction. We have also demonstrated that GnIH inhibits not only reproduction but also reproductive behavior. It appears that GnIH acts on the pituitary and the brain to serve physiological and behavioral functions. Thus, our studies focused on GnIH have demonstrated novel brain molecular mechanisms regulating reproduction.

  18. 配偶子幹細胞/ニッチシステムの季節性制御機構の解明

    2009.4 - 2011.3

    科学研究費補助金  新学術領域研究・21116504

    吉村崇

      More details

    Authorship:Principal investigator 

  19. 配偶子幹細胞/ニッチシステムの季節性制御機構の解明

    Grant number:21116504  2009 - 2010

    科学研究費助成事業  新学術領域研究(研究領域提案型)

    吉村 崇

      More details

    Authorship:Principal investigator 

    Grant amount:\11700000 ( Direct Cost: \9000000 、 Indirect Cost:\2700000 )

    熱帯以外の地域に生息する多くの動物は、特定の季節にのみ生殖活動を行う「季節繁殖」という戦略をとっている。なかでもウズラは洗練された季節適応能力を有しており、生殖腺もごく短い繁殖期にのみ一過的に発達させる。このため非繁殖期の精巣は外見上、未分化な状態にまで退縮する。本研究では生殖活動の季節変化に着目し、配偶子幹細胞/ニッチシステムの制御機構を解明することを目的とした。
    生物は日照時間の変化をカレンダーとして季節繁殖を制御しているが、哺乳類以外の脊椎動物は脳内に存在する脳深部光受容器によって日長の変化を感知することが知られていた。脳深部光受容器の存在は約100年前にカール・フォン・フリッシュによって指摘されていたが、その実体は不明であった。本研究ではウズラの脳深部に発現する新規な視物質「オプシン5」を同定した。オプシン5は脳内だけでなく、精巣にも発現していることから、今後精巣における機能の解明が期待される。
    また、ウズラを長日条件から短日及び低温条件に暴露した結果、精巣の退縮が認められた。その際、精巣の形態変化を詳細に解析した結果、精巣の退縮にはアポトーシスが関与していることが明らかになった。また、同時に血中のホルモン濃度を測定し、機能解析を実施した結果、季節繁殖の制御における精巣の退縮には、オタマジャクシがカエルに変態する際に尾が退縮するのと同様な仕組みが関与していることが明らかになった。

  20. Conservation of chicken wild ancestor and expansion of utilization for the research by basic genetic analysis of various lines

    Grant number:20310143  2008 - 2010

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    NAMIKAWA Takao, ONO Tamao, YOSHIMURA Takashi, MURAI Atsushi, SAITO Noboru, YAMAGATA Takahiro

      More details

    Authorship:Coinvestigator(s) 

    The genetic characterization of nine closed chicken lines that were kept in Avian Bioscience Research Center (ABRC) were analyzed with the multilocus microsatellite analysis. In six lines, more than 80% of genotyped loci showed fixed allele for all individuals in each line. One line (GSN/1) showed 100% of genetic uniformity. These genetic information should be helpful for the utilization of experimental chicken resource. In addition, our research results contributed for a functional analysis of physiology mechanism such as seasonal reproduction, immunity and development.

  21. 脊椎動物の脳内光受容機構と季節性測時機構の解明

    2007.10 - 2012.3

    科学研究費補助金  若手研究(S)

    吉村崇

      More details

    Authorship:Principal investigator 

  22. 渡りの脳内分子機構の解明

    2007.4 - 2010.3

    科学研究費補助金  萌芽研究,課題番号:19657025

    吉村 崇

      More details

    Authorship:Principal investigator 

    科研費

  23. 脊椎動物の季節性測時機構の解明

    2007.4 - 2010.3

    科学研究費補助金  特別研究員奨励費

    中尾暢宏

      More details

    Authorship:Principal investigator 

    科研費

  24. 光周性のシステム同定とシステム制御

    2007.4 - 2009.3

    科学研究費補助金  基盤研究(B)(一般),課題番号:19380169

    吉村 崇

      More details

    Authorship:Principal investigator 

    科研費

  25. 渡りの脳内分子機構の解明

    Grant number:19657025  2007

    科学研究費助成事業  萌芽研究

    吉村 崇

      More details

    Authorship:Principal investigator 

    Grant amount:\700000 ( Direct Cost: \700000 )

    鳥類の渡り行動を制御する脳内制御機構は謎に包まれていたが、最近渡り行動を制御すると考えられる脳の領域が報告された。また、近年様々な生物種においてゲノム情報が解読され、ゲノムワイドな網羅的解析が可能となった。それに伴い、個々の遺伝子の働きを一つずつ調べる従来の分子生物学から、全ての遺伝子の動きを網羅的に観察し、生命をシステムとして理解しようとするシステム生物学へとパラダイムシフトがおこった。ウズラは渡り鳥として知られているが、研究代表者らは最近ウズラにおいてニワトリのマイクロアレイが利用できることを明らかにした。そこで、本研究ではまずウズラの渡りについての性質を行動学的な観点から明らかにすることを目的とした。
    春に孵化した雌雄のウズラを屋外の飼育小屋で自然光のもとで飼育した。7月から一ケ月に数回ずつウズラの行動を小動物用動画記録システムによって記録した。7〜9月にかけて活発に産卵する様子が確認された。10月以降は産卵数が減少したものの、当初予想した夜間の活動量の増加は確認されず、zugunruhe(渡りのいらだち行動)も観察されていない。
    ウズラにおいてzugunruheの有無を議論するためには引き続き冬季にも行動を観察する必要があるが、ウズラは渡り鳥であるものの、多くの鳥のように上空を飛ぶわけではないため、夜間は渡りをしない可能性も考えられた。

  26. 光周性のシステム同定とシステム制御

    Grant number:19380169  2007

    科学研究費助成事業  基盤研究(B)

    吉村 崇

      More details

    Authorship:Principal investigator 

    Grant amount:\12610000 ( Direct Cost: \9700000 、 Indirect Cost:\2910000 )

    光周性は動植物に普遍的に観察される現象であるが、そのメカニズムは未だいかなる生物種においても解明されていない。また光周性は繁殖や開花などの時期を決定していることから、動植物の両方において生産性の制御に直結しており、そのメカニズムの解明は重要である。
    近年ニワトリのゲノム配列が報告され、鳥類においてもゲノムワイドな網羅的解析が可能になった。そこで本研究では光周性を制御する遺伝子ネットワークの全容をシステム生物学的なアプローチにより解明することを目的とした。
    まず短日条件下で飼育したウズラを長日条件に移した際に波状に誘導を受ける13個の遺伝子群を同定し、機能解析を行った結果、光周性を制御する遺伝子カスケードを解明することに成功した(投稿中)。
    また、短日条件、長日条件にそれぞれ2週間暴露したウズラの視床下部において発現量の異なる遺伝子を183個同定した。まず、この中から様々なホルモンやホルモン受容体をコードする遺伝子群について発現部位を同定した。また、従来の研究において光周性の制御には脳の形態変化(可塑性)が重要であることを明らかにしていたが、183個の遺伝子のうち脳の可塑性に関与する遺伝子についても脳内における発現部位を同定した(投稿中)。

  27. 光周性を制御する脳の形態変化の制御機構の解明

    2006.4 - 2008.3

    科学研究費補助金  特別研究員奨励費

    山村崇

      More details

    Authorship:Principal investigator 

    科研費

  28. 光周性を制御する脳の形態変化の制御機構の解明

    2006.4 - 2008.3

    科学研究費助成事業  特別研究員奨励費

    山村崇

      More details

    Grant type:Competitive

    科研費

  29. 脊椎動物における光周性の分子機構解明

    2005.4 - 2010.3

    科学研究費補助金  基盤研究(S), 課題番号:17108003

    海老原史樹文

      More details

    Authorship:Coinvestigator(s) 

    科研費

  30. 渡りやさえずりを制御する脳の可塑性の分子機構

    2005.4 - 2006.3

    科学研究費補助金  特定領域研究(公募), 課題番号:17021019

    吉村崇

      More details

    Authorship:Principal investigator 

    科研費

  31. Molecular Mechanisms of Vertebrate Photoperiodism

    Grant number:17108003  2005 - 2009

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (S)

    EBIHARA Shizufumi, MAEDA Keiichirou, YOSHIMURA Takashi, IIGO Masayuki, NAKAO Nobuhiro, HW Korf, YASUO Shinobu

      More details

    Authorship:Coinvestigator(s) 

    The photoperiodic control of physiological phenomena (known as photoperiodism), such as flowering in plants and reproductive activity in animals is observed in a wide variety of species. However, the molecular mechanism of photoperiodism was not well understood in any organism studies. In the present study, we investigated a process from photic inputs to GnRH release in photoperiodism, focusing on the regulation and function of Dio2 gene using fish, birds and mammals.

  32. 渡りやさえずりを制御する脳の可塑性の分子機構

    Grant number:17021019  2005

    科学研究費助成事業  特定領域研究

    吉村 崇

      More details

    Authorship:Principal investigator 

    Grant amount:\2200000 ( Direct Cost: \2200000 )

    生物の行動や生理機能の季節変化を制御するメカニズムは長年の謎であった。我々は最近ウズラを使って季節繁殖の制御に重要なキー遺伝子を同定することに成功しているが(Yoshimura et al.,2003)、渡りやさえずりなどの季節性を制御する脳内分子機構の全容の解明には至っていない。そこで本研究では、日長の変化によって視床下部において発現量の変化する遺伝子をディファレンシャル解析で明らかにすることを目的とした。その結果、日長によって発現量の変化する遺伝子を複数単離することに成功した。これらの遺伝子の機能を検討するためには脳内で部位及び時期特異的な発現の制御が不可欠である。しかし鳥類は遺伝子導入技術が発展途上のため、レンチウイルスを用いて機能解析を行う実験系の確立を試みた。その結果、lacZ遺伝子を導入したレンチウイルスをウズラの成体の脳に投与したところ、ウズラ脳において発現が確認され、レンチウイルスの系がウズラにも適用できることが明らかになった。既にディファレンシャル解析で明らかにした遺伝子のコンストラクトも作成しており、今後引き続き、機能解析を実施していく予定である。また、ウズラの視床下部において日長により発現が変化する3型脱ヨウ素酵素遺伝子が文鳥の歌の制御に関与するHVCという神経核で発現に差がみられることも明らかにしている。

  33. 鳥類の季節性測時機構の解明

    2004.4 - 2006.3

    科学研究費補助金  若手研究(B),課題番号:16780203

    吉村崇

      More details

    Authorship:Principal investigator 

  34. 気分障害モデルマウスの遺伝要因の解明

    2004.4 - 2005.3

    科学研究費補助金  特定領域研究 課題番号:16012224

    海老原史樹文

      More details

    Authorship:Coinvestigator(s) 

    科研費

  35. 気分障害モデルマウスの遺伝要因の解明

    Grant number:16012224  2004

    科学研究費助成事業  特定領域研究

    海老原 史樹文, 吉村 崇

      More details

    Authorship:Coinvestigator(s) 

    CSマウスは概日リズムや睡眠に異常を示す突然変異マウスとして知られているが、強制水泳試験や尾懸垂テストにおいても際立った異常行動を示すことを見出した。これらのテストは、抗うつ薬の評価法として古くから利用されており、試験時間内の無動時間をパラメーターとして用いるが、CSマウスでは何れの試験においても静止行動を全く示さず、いわゆる「行動的絶望状態」に陥ることがない。本研究ではこれらの結果をもとに遺伝学的アプローチにより異常行動を支配する遺伝子を特定することを試み、以下の成果を得た。
    1.表現系の把握:CS(n=35)とC57BL/6J(n=40)及びそのF1(n=45)、F2(n=330)について強制水泳、尾懸垂テスト、概日リズムの全てにおいて測定を完了した。
    2.マーカー遺伝子のタイピングと遺伝解析:各染色体最低3本のマーカー遺伝子を用いてselective genotypingを行い、高いスコアーが得られた染色体についてさらに詳細なマッピングを行った。その結果、尾懸垂テスト及び強制水泳テストに共通して、ある染色体に強いロッド値(それぞれ9.5,5.4)を持つQTLを見出した。
    3.候補遺伝子の検索:C57BL/6Jをバックグラウンドとしてマーカードライブでコンジェニックマウスを育成し、QTL領域を含むマウス数種類を作成した。これらのコンジェニックマウスは形質を保持しており、導入した領域に原因遺伝子が存在することが示された。

  36. Molecular analysis of circadian mutant mice using GFP reporter system

    2002.4 - 2005.3

    Grant-in-Aid for Scientific Research 

      More details

    Authorship:Coinvestigator(s) 

  37. Molecular analysis of circadian mutant mice using GFP reporter system

    2002.4 - 2005.3

    Grants-in-Aid for Scientific Research 

      More details

    Authorship:Collaborating Investigator(s) (not designated on Grant-in-Aid)  Grant type:Competitive

  38. 鳥類の排卵放卵周期を制御する「排卵時計」は卵巣に存在するか

    2002.4 - 2004.3

    科学研究費補助金  萌芽研究, 課題番号:14656113

    吉村崇

      More details

    Authorship:Principal investigator 

    科研費

  39. モデルマウスを用いた睡眠・覚醒リズム障害の遺伝要因の解析と疾患メカニズムの解明

    2001.4 - 2003.3

    科学研究費補助金  特定領域研究(C)(2)(公募)

    海老原史樹文

      More details

    Authorship:Coinvestigator(s) 

    科研費

  40. モデルマウスを用いた睡眠・覚醒リズム障害の遺伝要因の解析と疾患メカニズムの解明

    Grant number:13204035  2001

    科学研究費助成事業  特定領域研究(C)

    海老原 史樹文, 吉村 崇

      More details

    Authorship:Coinvestigator(s) 

    我々は従来から概日リズムに異常を持つ突然変異マウスのスクリーニングを進めているが、これまでに、周期が24時間より長くリズムsplittingを起こすCSマウス(野生型は周期が24時間より短い)、野生キャスタネウスマウス集団から分離した無周期マウス、明暗周期下で明期に活動する昼行性マウス(野生型は夜行性)、さらに、既存系統の交配過程で偶然発見した8時間周期を示すマウスなどを見いだしてきた。これらのマウスのうち、CSマウスと無周期マウスについてQTL解析により原因遺伝子を複数マッピングした。本研究では、これらのマウスを用いて、睡眠・リズム障害の発症に関する原因遺伝子を明らかにするとともに、病態を分子レベルで解明する。
    1.2001年度の研究の当初計画
    (1)CS及び無周期マウスの脳波・リズム異常の原因遺伝子を同定する。
    (2)CS及び無周期マウスのSCN単一細胞におけるリズム特性を明らかにする。
    (3)上記以外のリズム異常マウスについてリズム特性の把握とQTL解析を進める。
    2.2001年度の成果
    CS、無周期マウスのリズム異常及び概日光感受性異常の原因遺伝子をQTL解析によりマッピングした。その結果、複数の遺伝子がリズム異常に関与していることが明らかとなった。このうち、CSマウスのリズム異常の候補遺伝子に関してノックアウトマウスを検討したが、リズム異常は認められなかった。現在、複数の遺伝子のノックアウトマウスについて検討している。mPer1-GFPトランスジェニックマウスをリズム異常マウスと交配し、生きた脳切片上で視交叉上核の一つ一つの時計細胞の振動をモニターできるシステムを構築した。現在、CSマウスの視交差上核細胞のリズムを検討している。

  41. 鳥類時計遺伝子のクローニングと概日時計及び光周性測時機構の解析

    2000.4 - 2003.3

    科学研究費補助金  基盤研究(B)(2)(一般)

    海老原史樹文

      More details

    Authorship:Coinvestigator(s) 

    科研費

  42. 鳥類の概日時計及び季節繁殖の分子機構の解明

    2000.4 - 2002.3

    科学研究費補助金  奨励研究(A), 課題番号:12760201

    吉村崇

      More details

    Authorship:Principal investigator 

    科研費

  43. 鳥類における時計遺伝子の同定

    1998.4 - 2000.3

    科学研究費補助金  奨励研究(A), 課題番号:10760170

    吉村崇

      More details

    Authorship:Principal investigator 

  44. Genetic and Physiological Studies of Circadian Mutant Mice

    Grant number:10460130  1998 - 1999

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    EBIHARA Shizufumi, YOSHIMURA Takashi, HIRUNAGI Kankanjyun, NAMIKAWA Takao

      More details

    Authorship:Coinvestigator(s) 

    We have tried to find circadian mutation in mice based on the forward genetic approach. As a result, several mice showing abnormal circadian rhythmicity were found. In this study, we have tried to identify the gene which is responsible for the abnormal rhythmicity and also characterize the circadian rhythm of these mice from a physiolocia standpoint. (1) CS mice : Using QTL analysis we have mapped the QTL affecting circadian period on chromosomes. Based on the mapping information, candidate genes were searched and one potential candidate gene which is expressed in the suprachiasmatic nucleus was found. At present, the experiment is in progress to determine if the gene is responsible for the abnormality. (2) Arrythmic mice : We have found arrythmic mutation is castaneus wild mouse population. Also here, we have mapped the genes responsible the abnormal rhythmicity by QTL genetic analysis. In these arrythmic mice, the expression of several clock genes in the suprachiasmatic nucleus is not very different from normal mice. Therefore it is speculated that the gene might affect the output pathway from the circadian clock. In fact, there are no obvious histological differences in the suprachiasmatic nucleus of these mice. (3) CBA/J mice which have lower circadian photosensitivity. The genes affecting circadian photosensitivity are mapped on chromosomes. Now, we are examining ORF of the candidate gene. Other studies involve genetic analysis of circadian period using SMXA, we have found another circadian mutant mouse which shows disorganized circadian rhythmicity in DD. For future study, the breeding is now in progress.

  45. マウスの概日リズムの光同調に関する視細胞,視物質

    1995.4 - 1996.9

    科学研究費補助金  特別研究員奨励費

    吉村崇

      More details

    Authorship:Principal investigator 

  46. マウスの概日リズムの光同調に関する視細胞,視物質

    1995.4 - 1996.9

    科学研究費助成事業  特別研究員奨励費

    吉村崇

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Direct Cost: \1800000 )

▼display all

Industrial property rights 2

  1. 甲状腺ホルモン受容体β選択的な甲状腺ホルモンアナログとして有⽤な化合物

    吉村崇、Cathleen M. Crudden、南保正和、⼤川妙⼦、佐藤綾⼈、Zachary T. Ariki、Muhammad Yar、Jacky C.-H. Yim

     More details

    Applicant:東海国⽴⼤学機構

    Application no:PCT/JP2023/04629  Date applied:2023.12

  2. 甲状腺ホルモン受容体β選択的な甲状腺ホルモンアナログとして有⽤な化合物

    吉村崇、Cathleen M. Crudden、南保正和、⼤川妙⼦、佐藤綾⼈、Zachary T. Ariki、Muhammad Yar、Jacky C.-H. Yim

     More details

    Applicant:東海国⽴⼤学機構

    Application no:2022-208167  Date applied:2022.12

 

Teaching Experience (On-campus) 12

  1. 動物生理学1

    2023

  2. Animal Physiology 1

    2020

  3. Animal Physiology 2

    2020

  4. Advanced Animal Physiology 1

    2020

  5. 細胞工学

    2012

  6. 生命農学本論III

    2012

  7. 応用遺伝生理学輪講I

    2012

  8. 応用遺伝生理学演習I

    2012

  9. 応用遺伝生理学特論I

    2012

  10. 応用遺伝生理学基礎講義

    2012

  11. 動物生理学I

    2012

  12. First Year Seminar A

    2012

▼display all

Teaching Experience (Off-campus) 2

  1. 先端科学考究

    2020.10 The Graduate University for Advanced Studies)

     More details

    Level:Postgraduate  Country:Japan

  2. 動物生産科学フロンティア講義

    2020.2 Tohoku University)

     More details

    Level:Undergraduate (specialized)  Country:Japan

 

Social Contribution 15

  1. 瑞陵高校コスモサイエンスコース校外学習

    Role(s):Lecturer

    瑞陵高校  2023.1

  2. 四日市高校SSH

    Role(s):Advisor

    2022.7 - 2022.8

  3. 生き物に学び、食と健康の未来を開拓する

    Role(s):Lecturer

    瑞陵高校コスモサイエンスコース校外学習  2022.1

  4. 名古屋大学レクチャー解説講演

    Role(s):Lecturer

    名古屋大学レクチャー  2022.1

  5. 「世界を救う!時差ボケや冬季うつ病に効く分子の研究:既存薬再開発でSDGsを考える」

    Role(s):Lecturer

    サイエンスアゴラ  2021.11

  6. 生き物に学び、食と健康の未来を開拓する

    Role(s):Lecturer

    瑞陵高校  コスモサイエンスコース校外学習  2021.1

  7. Editorial board

    Role(s):Editer

    Neuroendocrinology  2021.1

  8. 動物に学び、食と健康の向上に貢献する

    Role(s):Lecturer

    瀬戸市  生涯学習講座  2020.10

  9. 楽しい生物学-ウズラ、ニワトリ、メダカの研究

    Role(s):Lecturer

    中部大学  市民公開講座 第7回睡眠・認知症予防シンポジウム   2020.5

  10. Editorial board

    Role(s):Editer

    Endocrinology  2020.1

  11. 動物が春を感じる仕組み:甲状腺ホルモンの意外な機能

    Role(s):Lecturer

    中日健康フェア共催セミナー “健康づくりに活かそう!甲状腺ホルモンの働きと病気のはなし”  2019.9

  12. 動物が季節を感じる仕組みを解き明かす

    Role(s):Lecturer

    中日文化センター “世界を変える分子をめざして”  2019.9

  13. 動物が季節の変化を感じ、適応するしくみをさぐる

    Role(s):Lecturer

    自然科学研究機構  第27回自然科学研究機構シンポジウム―生物の環境適応戦略:しなやかに生きる地球上の生き物たち  2019.3

  14. Editorial board

    Role(s):Editer

    Journal of Pineal Research  2019.1

  15. Editorial board

    Role(s):Editer

    Journal of Biological Rhythms  2014.1

▼display all

Media Coverage 14

  1. 1年のリズムを刻む概年遺伝子を発見 Newspaper, magazine

    中日新聞  2023.12

  2. クサフグが大潮に一斉集団産卵する仕組みを解明 Newspaper, magazine

    日経産業新聞  2022.11

  3. クサフグが大潮に一斉集団産卵する仕組みを解明 Newspaper, magazine

    中日新聞、産経新聞、中部経済新聞、四国新聞  2022.10

  4. クサフグが大潮に一斉集団産卵する仕組みを解明 Internet

    日本経済新聞電子版、EurekAlert!、PHYS.ORG、Yahoo ニュース  2022.10

  5. 「冬季うつ」治療薬候補発見 Newspaper, magazine

    毎日新聞、日本経済新聞  2020.5

  6. 冬季うつ病 薬候補 メダカ実験で発見 Newspaper, magazine

    中日新聞  2020.4

  7. 長鎖ノンコーディングRNA メダカストレスに関与 Newspaper, magazine

    科学新聞  2019.4

  8. メダカの行動、RNAが関与 Newspaper, magazine

    2019.4

  9. 「時差ボケ」軽減に光 既存薬に調節効果名古屋大グループが発見 TV or radio program

    NHKおはよう日本  2018.5

  10. メダカの色覚が季節で変化 TV or radio program

    NHKおはよう東海  2017.10

  11. メダカ色覚夏に強く Newspaper, magazine

    日本経済新聞  2017.9

  12. メダカの色覚が季節によってダイナミックに変化することを発見 Newspaper, magazine

    毎日新聞、読売新聞、日刊工業新聞  2017.9

  13. メダカの色覚が季節によってダイナミックに変化することを発見 Newspaper, magazine

    朝日新聞、中日新聞  2017.9

  14. どこまでわかった鳴き声研究? TV or radio program

    NHKおはよう日本  2016.4

▼display all

Academic Activities 3

  1. サントリー生命科学財団

    2021

     More details

    Type:Scientific advice/Review 

  2. 基礎生物学研究所運営委員

    Role(s):Review, evaluation

    基礎生物学研究所  2019.4

  3. 日本学術会議連携会員

    Role(s):Planning/Implementing academic research

    2017