Updated on 2024/03/22

写真a

 
NARITA, Akihiro
 
Organization
Graduate School of Science Associate professor
Graduate School
Graduate School of Science
Undergraduate School
School of Science
Title
Associate professor
Contact information
メールアドレス

Degree 1

  1. Ph.D. ( 2001.3   The University of Tokyo ) 

Research Interests 1

  1. Structure determination of cytoskeletal protein complexes by electron microscopy

Research Areas 3

  1. Others / Others  / Biophysics

  2. Others / Others  / Structural Biochemistry

  3. Others / Others  / Nano Materials/Nano Bioscience

Research History 1

  1. Nagoya University   Graduate School of Science Division of Biological Science Supramolecular Biology   Associate professor

    2013.4

Education 2

  1. The University of Tokyo   Graduate School, Division of Natural Science   Physics

    1998.4 - 2001.3

      More details

    Country: Japan

  2. The University of Tokyo   Faculty of Science

    - 1996.3

      More details

    Country: Japan

Professional Memberships 2

  1. The Japanese Society of Microscopy

    2015.5

  2. The biophysical society of Japan

Committee Memberships 12

  1. 日本生物物理学会   年会実行委員  

    2022.5   

      More details

    Committee type:Academic society

  2. 日本生物物理学会   分野別専門委員  

    2021.10   

      More details

    Committee type:Academic society

  3. 生体運動研究合同班会議   代表  

    2020.5 - 2021.1   

      More details

    Committee type:Other

  4. 日本顕微鏡学会   和文誌「顕微鏡」編集委員  

    2019.1   

      More details

    Committee type:Academic society

  5. Executive committee of the 75th annual meeting of the Japanese Society of Microscopy   Vice chair person in biology field  

    2018.5 - 2019.5   

  6. 日本顕微鏡学会関西支部   幹事  

    2015.5 - 2019.5   

      More details

    Committee type:Academic society

  7. 日本顕微鏡学会理事会   理事  

    2015.5 - 2017.5   

  8. 日本顕微鏡学会第71回学術講演会実行委員会   プログラム委員  

    2014.10 - 2015.5   

  9. 顕微鏡学会第57回シンポジウム実行委員会   プログラム委員  

    2012.11 - 2013.11   

  10. Executive committee for the 50th annual meeting of the biophysical society of Japan   A member of the executive committee responsible for program  

    2011.9 - 2012.9   

  11. Executive comittee for the 66th annual meeting of the Japanese Society of microscopy   A member of the committee who responsible for the symposium for Asian young scientists  

    2009.5 - 2010.5   

  12. 生物物理若手の会   会長  

    1998.8 - 1999.8   

▼display all

Awards 4

  1. 文部科学大臣表彰若手科学賞

    2008.4   文部科学省  

     More details

    Country:Japan

  2. 風戸研究奨励賞

    2008.2   風戸研究奨励会  

     More details

    Country:Japan

  3. 論文賞 

    2019.5   日本顕微鏡学会  

  4. 論文賞 

    2018.5   日本顕微鏡学会  

     More details

    Award type:Honored in official journal of a scientific society, scientific journal 

 

Papers 73

  1. Cryo-EM structure of the Agrobacterium tumefaciens T4SS-associated T-pilus reveals stoichiometric protein-phospholipid assembly Reviewed International coauthorship

    Stefan Kreida, Akihiro Narita, Matthew D Johnson, Elitza I Tocheva, Anath Das, Debnath Ghosal, Grant J Jensen

    Structure     2023.2

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: https://doi.org/10.1016/j.str.2023.02.005

  2. Structures and mechanisms of actin ATP hydrolysis Reviewed

    Yusuke Kanematsu, Akihiro Narita, Toshiro Oda, Ryotaro Koike, Motonori Ota, Yu Takano, Kei Moritsugu, Ikuko Fujiwara, Kotaro Tanaka, Hideyuki Komatsu, Takayuki Nagae, Nobuhisa Watanabe, Mitsusada Iwasa, Yuichiro Maéda, Shuichi Takeda

    Proceedings of the National Academy of Sciences   Vol. 119 ( 43 ) page: e2122641119   2022.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: https://doi.org/10.1073/pnas.2122641119

  3. ADF/cofilin regulation from a structural viewpoint Invited Reviewed

    Narita Akihiro

    JOURNAL OF MUSCLE RESEARCH AND CELL MOTILITY   Vol. 41 ( 1 ) page: 141 - 151   2020.3

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1007/s10974-019-09546-6

    Web of Science

  4. Helical rotation of the diaphanous-related formin mDia1 generates actin filaments resistant to cofilin Reviewed

    Mizuno Hiroaki, Tanaka Kotaro, Yamashiro Sawako, Narita Akihiro, Watanabe Naoki

    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA   Vol. 115 ( 22 ) page: E5000-E5007   2018.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1073/pnas.1803415115

    Web of Science

  5. Structural basis for cofilin binding and actin filament disassembly Reviewed

    Tanaka Kotaro, Takeda Shuichi, Mitsuoka Kaoru, Oda Toshiro, Kimura-Sakiyama Chieko, Maeda Yuichiro, Narita Akihiro

    NATURE COMMUNICATIONS   Vol. 9   2018.5

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/s41467-018-04290-w

    Web of Science

  6. Direct observation of the actin filament by tip-scan atomic force microscopy. Reviewed

    Microscopy (Oxford, England)   Vol. 65 ( 4 ) page: 370-7   2016.8

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1093/jmicro/dfw017

    PubMed

  7. Direct determination of actin polarity in the cell Reviewed International coauthorship

    Narita, A. Mueller, J. Urban, E. Vinzenz, M. Small, J. V. Maeda, Y.

    Journal of molecular biology   Vol. 419 ( 5 ) page: 359-68   2012.6

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    Actin filaments are polar structures that exhibit a fast growing plus end and a slow growing minus end. According to their organization in cells, in parallel or antiparallel arrays, they can serve, respectively, in protrusions or in contractions. The determination of actin filament polarity in subcellular compartments is therefore required to establish their local function. Myosin binding has previously been the sole method of polarity determination. Here, we report the first direct determination of actin filament polarity in the cell without myosin binding. Negatively stained cytoskeletons of lamellipodia were analyzed by adapting electron tomography and a single particle analysis for filamentous complexes. The results of the stained cytoskeletons confirmed that all actin filament ends facing the cell membrane were the barbed ends. In general, this approach should be applicable to the analysis of actin polarity in tomograms of the actin cytoskeleton.

  8. Actin branching in the initiation and maintenance of lamellipodia Reviewed International coauthorship

    Vinzenz, M. Nemethova, M. Schur, F. Mueller, J. Narita, A. Urban, E. Winkler, C. Schmeiser, C. Koestler, S. A. Rottner, K. Resch, G. P. Maeda, Y. Small, J. V.

    Journal of cell science   Vol. 125 ( 11 ) page: 2775-85   2012.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Using correlated live-cell imaging and electron tomography we found that actin branch junctions in protruding and treadmilling lamellipodia are not concentrated at the front as previously supposed, but link actin filament subsets in which there is a continuum of distances from a junction to the filament plus ends, for up to at least 1 mum. When branch sites were observed closely spaced on the same filament their separation was commonly a multiple of the actin helical repeat of 36 nm. Image averaging of branch junctions in the tomograms yielded a model for the in vivo branch at 2.9 nm resolution, which was comparable with that derived for the in vitro actin-Arp2/3 complex. Lamellipodium initiation was monitored in an intracellular wound-healing model and was found to involve branching from the sides of actin filaments oriented parallel to the plasmalemma. Many filament plus ends, presumably capped, terminated behind the lamellipodium tip and localized on the dorsal and ventral surfaces of the actin network. These findings reveal how branching events initiate and maintain a network of actin filaments of variable length, and provide the first structural model of the branch junction in vivo. A possible role of filament capping in generating the lamellipodium leaflet is discussed and a mathematical model of protrusion is also presented.

  9. Minimum requirements for the actin-like treadmilling motor system Invited Reviewed

    Akihiro Narita

    Bioarchitecture   Vol. 1 ( 5 ) page: 205-208   2011.9

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    Actin is one of the most abundant proteins in eukaryote cells, which forms a double stranded filament. The actin filament is not only a main component of the cytoskeleton, but also acts as a motor protein which moves toward one specific end, the barbed end, driven by polymerization at the barbed end and depolymerization at the other end, the pointed end, without any associated proteins. This motor activity is referred to as "treadmilling" and it represents the simplest motor system known, consisting of only one 42 kDa protein, actin. Here we report the minimum requirements of the actin-like motor system elucidated by computer simulations: (1) Nucleotide binding and ATPase activity in the filament; (2) Polarity in the rates of polymerization and depolymerization between the two ends; and (3) The dependence of the subunit-subunit interactions on the bound nucleotide. These requirements are simple and this knowledge should facilitate the development of artificial molecular motor systems in the future.

  10. Structural basis for the slow dynamics of the actin filament pointed end. Reviewed

    Narita, A., Oda, T. & Maeda, Y.

    The EMBO Journal   Vol. 30   page: 1230-7   2011.3

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    The actin filament has clear polarity where one end, the pointed end, has a much slower polymerization and depolymerization rate than the other end, the barbed end. This intrinsic difference of the ends significantly affects all actin dynamics in the cell, which has central roles in a wide spectrum of cellular functions. The detailed mechanism underlying this difference has remained elusive, because high-resolution structures of the filament ends have not been available. Here, we present the structure of the actin filament pointed end obtained using a single particle analysis of cryo-electron micrographs. We determined that the terminal pointed end subunit is tilted towards the penultimate subunit, allowing specific and extra loop-to-loop inter-strand contacts between the two end subunits, which is not possible in other parts of the filament. These specific contacts prevent the end subunit from dissociating. For elongation, the loop-to-loop contacts also inhibit the incorporation of another actin monomer at the pointed end. These observations are likely to account for the less dynamic pointed end.

    DOI: doi:10.1038/emboj.2011.48

  11. Human Spire Interacts with the Barbed End of the Actin Filament Reviewed

    Ito, T., Narita, A., Hirayama, T., Taki, M., Iyoshi, S., Yamamoto, Y., Maeda, Y. & Oda, T.

    Journal of Molecular Biology   Vol. 408   page: 26-39   2011.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Spire is an actin nucleator that initiates actin polymerization at a specific place in the cell. Similar to the Arp2/3 complex, spire was initially considered to bind to the pointed end of the actin filament when it generates a new actin filament. Subsequently, spire was reported to be associated with the barbed end (B-end); thus, there is still no consensus regarding the end with which spire interacts. Here, we report direct evidence that spire binds to the B-end of the actin filament, under conditions where spire accelerates actin polymerization. Using electron microscopy, we visualized the location of spire bound to the filament by gold nanoparticle labeling of the histidine-tagged spire, and the polarity of the actin filament was determined by image analysis. In addition, our results suggest that multiple spires, linked through one gold nanoparticle, enhance the acceleration of actin polymerization. The B-end binding of spire provides the basis for understanding its functional mechanism in the cell.

    DOI: doi:10.1016/j.jmb.2010.12.045

  12. Electron Microscopic Visualization of the Filament Binding Mode of Actin-Binding Proteins Reviewed

    Ito, T, Hirayama, T., Taki, M., Iyoshi, S., Dai, S., Takeda, S., Sakiyama, C. K., Oda, T., Yamamoto, Y., Maeda, Y. & Narita, A.

    Journal of Molecular Biology   Vol. 408   page: 18-25   2011

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    A large number of actin-binding proteins (ABPs) regulate various kinds of cellular events in which the superstructure of the actin cytoskeleton is dynamically changed. Thus, to understand the actin dynamics in the cell, the mechanisms of actin regulation by ABPs must be elucidated. Moreover, it is particularly important to identify the side, barbed-end or pointed-end ABP binding sites on the actin filament. However, a simple, reliable method to determine the ABP binding sites on the actin filament is missing. Here, a novel electron microscopic method for determining the ABP binding sites is presented. This approach uses a gold nanoparticle that recognizes a histidine tag on an ABP and an image analysis procedure that can determine the polarity of the actin filament. This method will facilitate future study of ABPs.

    DOI: 10.1016/j.jmb.2011.01.054

  13. The nature of the globular- to fibrous-actin transition. Reviewed

    Oda T, Iwasa M, Aihara T, Maéda Y, Narita A.

    Nature   Vol. 457   page: 441-5   2009.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Actin plays crucial parts in cell motility through a dynamic process driven by polymerization and depolymerization, that is, the globular (G) to fibrous (F) actin transition. Although our knowledge about the actin-based cellular functions and the molecules that regulate the G- to F-actin transition is growing, the structural aspects of the transition remain enigmatic. We created a model of F-actin using X-ray fibre diffraction intensities obtained from well oriented sols of rabbit skeletal muscle F-actin to 3.3 A in the radial direction and 5.6 A along the equator. Here we show that the G- to F-actin conformational transition is a simple relative rotation of the two major domains by about 20 degrees. As a result of the domain rotation, the actin molecule in the filament is flat. The flat form is essential for the formation of stable, helical F-actin. Our F-actin structure model provides the basis for understanding actin polymerization as well as its molecular interactions with actin-binding proteins.

  14. Molecular structure of the ParM polymer and the mechanism leading to its nucleotide-driven dynamic instability. Reviewed

    Popp D, Narita A, Oda T, Fujisawa T, Matsuo H, Nitanai Y, Iwasa M, Maeda K, Onishi H, Maéda Y.

    EMBO J.   Vol. 27 ( 3 ) page: 570-9   2008.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    ParM is a prokaryotic actin homologue, which ensures even plasmid segregation before bacterial cell division. In vivo, ParM forms a labile filament bundle that is reminiscent of the more complex spindle formed by microtubules partitioning chromosomes in eukaryotic cells. However, little is known about the underlying structural mechanism of DNA segregation by ParM filaments and the accompanying dynamic instability. Our biochemical, TIRF microscopy and high-pressure SAX observations indicate that polymerization and disintegration of ParM filaments is driven by GTP rather than ATP and that ParM acts as a GTP-driven molecular switch similar to a G protein. Image analysis of electron micrographs reveals that the ParM filament is a left-handed helix, opposed to the right-handed actin polymer. Nevertheless, the intersubunit contacts are similar to those of actin. Our atomic model of the ParM-GMPPNP filament, which also fits well to X-ray fibre diffraction patterns from oriented gels, can explain why after nucleotide release, large conformational changes of the protomer lead to a breakage of intra- and interstrand interactions, and thus to the observed disintegration of the ParM filament after DNA segregation.

  15. Three-dimensional structure of cytoplasmic dynein bound to microtubules. Reviewed

    Mizuno N, Narita A, Kon T, Sutoh K, Kikkawa M.

    Proc Natl Acad Sci U S A.   Vol. 104 ( 52 ) page: 20832-7   2007.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Cytoplasmic dynein is a large, microtubule-dependent molecular motor (1.2 MDa). Although the structure of dynein by itself has been characterized, its conformation in complex with microtubules is still unknown. Here, we used cryoelectron microscopy (cryo-EM) to visualize the interaction between dynein and microtubules. Most dynein molecules in the nucleotide-free state are bound to the microtubule in a defined conformation and orientation. A 3D image reconstruction revealed that dynein's head domain, formed by a ring-like arrangement of AAA+ domains, is located approximately 280 A away from the center of the microtubule. The order of the AAA+ domains in the ring was determined by using recombinant markers. Furthermore, a 3D helical image reconstruction of microtubules with a dynein's microtubule binding domain [dynein stalk (DS)] revealed that the stalk extends perpendicular to the microtubule. By combining the 3D maps of the dynein-microtubule and DS-microtubule complexes, we present a model for how dynein in the nucleotide-free state binds to microtubules and discuss models for dynein's power stroke.

  16. Molecular determination by electron microscopy of the dynein-microtubule complex structure. Reviewed

    Narita A, Mizuno N, Kikkawa M, Maéda Y.

    J. Mol. Biol.   Vol. 372 ( 5 ) page: 1320-36   2007.10

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    Dynein is a minus-end-directed microtubule (MT) motor that is responsible for the wide range of MT-based motility in eukaryotic cells. Detailed mechanism of the dynein chemomechanical conversion is still unknown, partly because the structure of dynein is not studied at high resolution. To address this problem and reconstruct the dynein-MT complex at higher resolution, we have developed new procedures based on single particle analysis. To accurately determine the orientation of the dynein-MT complex, we introduced a "dynein track model" to restrict the possible dynein positions on the images. We tested our procedures by reconstructing structures from simulated dynein-MT complex images. Starting from the simulated noisy images generated using three different models of the dynein-MT complex, we have successfully recovered the original three-dimensional (3-D) structure. We also showed that our procedure is robust against fluctuation of the dynein molecules and can determine the structure even when the dynein position fluctuates to a certain extent. Convergence of the final 3-D structure can be tested with a "two-dimensional (2-D) agreement value," which we introduced to see whether the final structure is a result of overfit from fluctuating dynein or not. When the procedures did not work well due to the fluctuation, we could recognize the failure by this 2-D agreement value. Finally, the actual structure of the dynein-MT complex was determined from actual cryoelectron micrographs of Dictyostelium cytoplasmic dynein-MT complex. This method has revealed the detailed 3-D structures of the dynein-MT complex and will shed light on the motor mechanism of the dynein molecule.

  17. Molecular determination by electron microscopy of the actin filament end structure. Reviewed

    Narita A, Maéda Y.

    J. Mol. Biol.   Vol. 365 ( 2 ) page: 480-501   2007.1

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    In eukaryotic cells, actin filaments play various crucial roles by altering their spatial and temporal distributions in the cell. The distribution of actin filaments is regulated by the binding of end-binding proteins, including capping protein (CapZ in muscle), the Arp2/3 complex, gelsolin, formin and tropomodulin, to the end of the actin filament. In order to determine the nature of these regulations, structural elucidations of actin filament-end-binding protein complexes are crucially important. Here, we have developed new procedures on the basis of single-particle analysis to determine the structure of the end of actin filaments from electron micrographs. In these procedures, the polarity of the actin filament image, as well as the azimuth orientation and the axial position of each actin protomer within a short stretch near the filament end, were determined accurately. This improved both the stability and accuracy of the structural determination dramatically. We tested our procedures by reconstructing structures from simulated filament images, which were obtained from 24 model structures for the actin-CapZ complex. These model structures were generated by random docking of the atomic structure of CapZ to the barbed end of an atomic model of the actin filament. Of the 24 model structures, 23 were recovered correctly by the present procedures. We found that our analysis was robust against local aberrations of the helical twist near the end of the actin filament. Finally, the procedures were applied successfully to determine the structure of the actin-CapZ complex from real cryo-electron micrographs of the complex. This is the first method for elucidating the detailed 3D structures at the end of the actin filament.

  18. Structural basis of actin filament capping at the barbed-end: a cryo-electron microscopy study. Reviewed

    Narita A, Takeda S, Yamashita A, Maéda Y.

    EMBO J.   Vol. 25 ( 23 ) page: 5626-33   2006.11

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    The intracellular distribution and migration of many protein complexes and organelles is regulated by the dynamics of the actin filament. Many actin filament end-binding proteins play crucial roles in actin dynamics, since polymerization and depolymerization of actin protomers occur only at the filament ends. We present here an EM structure of the complex of the actin filament and hetero-dimeric capping protein (CP) bound to the barbed-end at 23 A resolution, by applying a newly developed methods of image analysis to cryo-electron micrographs. This structure was fitted by the crystal structure of CP and the proposed actin filament structure, allowing us to construct a model that depicts two major binding regions between CP and the barbed-end. This binding scheme accounted for the results of newly performed and previously published mutation experiments, and led us to propose a two-step binding model. This is the first determination of an actin filament end structure.

  19. Ca(2+)-induced switching of troponin and tropomyosin on actin filaments as revealed by electron cryo-microscopy. Reviewed

    Narita A, Yasunaga T, Ishikawa T, Mayanagi K, Wakabayashi T.

    J. Mol. Biol.   Vol. 308 ( 2 ) page: 241-261   2001.4

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    Muscle contraction is regulated by the intracellular Ca(2+ )concentration. In vertebrate striated muscle, troponin and tropomyosin on actin filaments comprise a Ca(2+)-sensitive switch that controls contraction. Ca(2+ )binds to troponin and triggers a series of changes in actin-containing filaments that lead to cyclic interactions with myosin that generate contraction. However, the precise location of troponin relative to actin and tropomyosin and how its structure changes with Ca(2+ )have been not determined. To understand the regulatory mechanism, we visualized the location of troponin by determining the three-dimensional structure of thin filaments from electron cryo-micrographs without imposing helical symmetry to approximately 35 A resolution. With Ca(2+), the globular domain of troponin was gourd-shaped and was located over the inner domain of actin. Without Ca(2+), the main body of troponin was shifted by approximately 30 A towards the outer domain and bifurcated, with a horizontal branch (troponin arm) covering the N and C-terminal regions of actin. The C-terminal one-third of tropomyosin shifted towards the outer domain of actin by approximately 35 A supporting the steric blocking model, however it is surprising that the N-terminal half of tropomyosin shifted less than approximately 12 A. Therefore tropomyosin shifted differentially without Ca(2+). With Ca(2+), tropomyosin was located entirely over the inner domain thereby allowing greater access of myosin for force generation. The interpretation of three-dimensional maps was facilitated by determining the three-dimensional positions of fluorophores labelled on specific sites of troponin or tropomyosin by applying probabilistic distance geometry to data from fluorescence resonance energy transfer measurements.

  20. Mechanical Stress Decreases the Amplitude of Twisting and Bending Fluctuations of Actin Filaments

    Okura, K; Matsumoto, T; Narita, A; Tatsumi, H

    JOURNAL OF MOLECULAR BIOLOGY   Vol. 435 ( 22 ) page: 168295   2023.11

     More details

  21. Mutagenic analysis of actin reveals the mechanism of His161 flipping that triggers ATP hydrolysis

    Iwasa, M; Takeda, S; Narita, A; Maéda, Y; Oda, T

    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY   Vol. 11   page: 1105460   2023.3

     More details

  22. ATP-dependent polymerization dynamics of bacterial actin proteins involved in Spiroplasma swimming Reviewed

    Daichi Takahashi, Ikuko Fujiwara, Yuya Sasajima, Akihiro Narita, Katsumi Imada and Makoto Miyata

    Open Biology     2022.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: https://doi.org/10.1098/rsob.220083

  23. ATP-dependent polymerization dynamics of bacterial actin proteins involved in <i>Spiroplasma</i> swimming

    Takahashi, D; Fujiwara, I; Sasajima, Y; Narita, A; Imada, K; Miyata, M

    OPEN BIOLOGY   Vol. 12 ( 10 ) page: 220083   2022.10

     More details

  24. Structure and dynamics of Odinarchaeota tubulin and the implications for eukaryotic microtubule evolution Reviewed International coauthorship

    Caner Akıl, Samson Ali, Linh T Tran, Jérémie Gaillard, Wenfei Li, Kenichi Hayashida, Mika Hirose, Takayuki Kato, Atsunori Oshima, Kosuke Fujishima, Laurent Blanchoin, Akihiro Narita, Robert C Robinson

    Science Advances   Vol. 8 ( 12 ) page: eabm2225   2022.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1126/sciadv.abm2225

    Web of Science

    PubMed

  25. Structural analysis of filamentous complexes by cryo-electron microscopy Invited Reviewed

    Akihiro Narita

    Translational and Regulatory Sciences   Vol. 4 ( 3 ) page: 68 - 75   2022

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: https://doi.org/10.33611/trs.2022-008

  26. A cryo-TSEM with temperature cycling capability allows deep sublimation of ice to uncover fine structures in thick cells. Reviewed

    Usukura J, Narita A, Matsumoto T, Usukura E, Sunaoshi T, Watanabe S, Tamba Y, Nagakubo Y, Mizuo T, Azuma J et al

    Scientific reports   Vol. 11   page: 21406   2021.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  27. Structure of a Minimal α-Carboxysome-Derived Shell and Its Utility in Enzyme Stabilization

    Tan, YQ; Ali, S; Xue, B; Teo, WZ; Ling, LH; Go, MK; Lv, H; Robinson, RC; Narita, A; Yew, WS

    BIOMACROMOLECULES   Vol. 22 ( 10 ) page: 4095 - 4109   2021.10

     More details

  28. Structure of a Minimal alpha-Carboxysome-Derived Shell and Its Utility in Enzyme Stabilization. Reviewed International coauthorship

    Tan YQ, Ali S, Xue B, Teo WZ, Ling LH, Go MK, Lv H, Robinson RC, Narita A, Yew WS

    Biomacromolecules   Vol. 22 ( 10 ) page: 4095 - 4109   2021.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  29. Structural insights into the regulation of actin capping protein by twinfilin C-terminal tail Reviewed

    Shuichi Takeda, Ryotaro Koike, IkukoFujiwara, AkihiroNarita, Makoto Miyata, MotonoriOta, Yuichiro Maéda

    Journal of Molecular Biology   Vol. 433 ( 9 )   2021.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: https://doi.org/10.1016/j.jmb.2021.166891

  30. Crystal structure of human V-1 in the apo form Reviewed

    Takeda, S; Koike, R; Nagae, T; Fujiwara, I; Narita, A; Maéda, Y; Ota, M

    ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS   Vol. 77 ( Pt 1 ) page: 13 - 21   2021.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1107/S2053230X20016829

    Web of Science

    PubMed

  31. Improved unroofing protocols for cryo-electron microscopy, atomic force microscopy and freeze-etching electron microscopy and the associated mechanisms Reviewed

    Morone, N; Usukura, E; Narita, A; Usukura, J

    MICROSCOPY   Vol. 69 ( 6 ) page: 350 - 359   2020.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1093/jmicro/dfaa028

    Web of Science

    PubMed

  32. Principal component analysis of data from NMR titration experiment of uniformly <SUP>15</SUP>N labeled amyloid beta (1-42) peptide with osmolytes and phenolic compounds Reviewed

    Iwaya, N; Goda, N; Matsuzaki, M; Narita, A; Shigemitsu, Y; Tenno, T; Abe, Y; Hoshi, M; Hiroaki, H

    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS   Vol. 690   page: 108446   2020.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.abb.2020.108446

    Web of Science

    PubMed

  33. アクチンの機能を構造から理解する Invited Reviewed

    成田哲博

    生体の科学   Vol. 71 ( 4 ) page: 304 - 309   2020.8

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:Japanese   Publishing type:Research paper (scientific journal)  

  34. D-Loop Mutation G42A/G46A Decreases Actin Dynamics Reviewed

    Matsuzaki, M; Fujiwara, I; Kashima, S; Matsumoto, T; Oda, T; Hayashi, M; Maeda, K; Takiguchi, K; Maéda, Y; Narita, A

    BIOMOLECULES   Vol. 10 ( 5 )   2020.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.3390/biom10050736

    Web of Science

    PubMed

  35. Rsph4a is essential for the triplet radial spoke head assembly of the mouse motile cilia Reviewed

    Yoke, H; Ueno, H; Narita, A; Sakai, T; Horiuchi, K; Shingyoji, C; Hamada, H; Shinohara, K

    PLOS GENETICS   Vol. 16 ( 3 ) page: e1008664   2020.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1371/journal.pgen.1008664

    Web of Science

    PubMed

  36. Novel inter-domain Ca 2+-binding site in the gelsolin superfamily protein fragmin Reviewed

    Shuichi Takeda, Ikuko Fujiwara, Yasunobu Sugimoto, Toshiro Oda, Akihiro Narita, Yuichiro Maéda

    Journal of muscle research and cell motility   Vol. 41   page: 153 - 162   2019.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: https://doi.org/10.1007/s10974-019-09571-5

  37. Dynamic Properties of Human α-Synuclein Related to Propensity to Amyloid Fibril Formation Reviewed

    Fujiwara, S; Kono, F; Matsuo, T; Sugimoto, Y; Matsumoto, T; Narita, A; Shibata, K

    JOURNAL OF MOLECULAR BIOLOGY   Vol. 431 ( 17 ) page: 3229 - 3245   2019.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.jmb.2019.05.047

    Web of Science

    PubMed

  38. Structural Polymorphism of Actin Reviewed

    Oda, T; Takeda, S; Narita, A; Maéda, Y

    JOURNAL OF MOLECULAR BIOLOGY   Vol. 431 ( 17 ) page: 3217 - 3228   2019.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.jmb.2019.05.048

    Web of Science

    PubMed

  39. The structure of a 15-stranded actin-like filament from Clostridium botulinum Reviewed International coauthorship

    NATURE COMMUNICATIONS   Vol. 10 ( 1 ) page: 2856   2019.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/s41467-019-10779-9

    Web of Science

    PubMed

  40. コフィリンによるアクチン線維切断とその制御 Invited Reviewed

    成田哲博 田中康太郎

    生化学   Vol. 91 ( 1 ) page: 109 - 113   2019

     More details

    Authorship:Lead author, Corresponding author   Language:Japanese   Publishing type:Research paper (scientific journal)  

    DOI: doi:10.14952/SEIKAGAKU.2019.910109

  41. Polymerization and depolymerization of actin with nucleotide states at filament ends Reviewed

    Ikuko Fujiwara, Shuichi Takeda, Toshiro Oda, Hajime Honda, Akihiro Narita, Yuichiro Maéda

    Biophysical reviews   Vol. 10 ( 6 ) page: 1513 - 1519   2018.11

     More details

    Language:English  

  42. The trans isomer of Tau peptide is prone to aggregate, and the WW domain of Pin1 drastically decreases its aggregation Reviewed

    Ikura Teikichi, Tochio Naoya, Kawasaki Ryosuke, Matsuzaki Mizuki, Narita Akihiro, Kikumoto Mahito, Utsunomiya-Tate Naoko, Tate Shin-ichi, Ito Nobutoshi

    FEBS LETTERS   Vol. 592 ( 18 ) page: 3082-3091   2018.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1002/1873-3468.13218

    Web of Science

  43. クライオ電子顕微鏡法によるアクチン線維の構造解析 Invited Reviewed

    成田哲博

    実験医学   Vol. 5月号   2018.5

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:Japanese  

  44. Advances in Structural Biology and the Application to Biological Filament Systems Reviewed International coauthorship

    Popp David, Koh Fujiet, Scipion Clement P. M., Ghoshdastider Umesh, Narita Akihiro, Holmes Kenneth C., Robinson Robert C.

    BIOESSAYS   Vol. 40 ( 4 )   2018.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1002/bies.201700213

    Web of Science

  45. F-Form Actin Crystal Structures: Mechanisms of Actin Assembly and F-Actin ATP-Hydrolysis

    Takeda Shuichi, Narita Akihiro, Oda Toshiro, Tanaka Kotaro, Koike Ryotaro, Ota Motonori, Fujiwara Ikuko, Watanabe Nobuhisa, Maeda Yuichiro

    BIOPHYSICAL JOURNAL   Vol. 114 ( 3 ) page: 381A-381A   2018.2

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    Web of Science

  46. Keeping the focus on biophysics and actin filaments in Nagoya: A report of the 2016 "now in actin" symposium Invited Reviewed

    Fujiwara Ikuko, Narita Akihiro

    CYTOSKELETON   Vol. 74 ( 12 ) page: 450-464   2017.12

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1002/cm.21384

    Web of Science

  47. A Cryosectioning Technique for the Observation of Intracellular Structures and Immunocytochemistry of Tissues in Atomic Force Microscopy (AFM). Reviewed

    Usukura E, Narita A, Yagi A, Sakai N, Uekusa Y, Imaoka Y, Ito S, Usukura J

    Scientific reports   Vol. 7 ( 1 ) page: 6462   2017.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/s41598-017-06942-1

    PubMed

  48. Development of a new type of low-voltage cryo-electron microscope enabling simultaneous imaging of STEM and SEM in biological samples. Invited Reviewed

    Usukura J., Narita A., Matsumoto T., Usukura E., Sunaoshi T., Tamba Y., Azuma J., Nagakubo Y., Mizuo T., Osumi M., Nimura K., Tamochi R., Ose Y.

    Scientific Instrument News   Vol. 2018 Vol10   page: .   2017

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Web of Science

  49. A new approach for the direct visualization of the membrane cytoskeleton in cryo-electron microscopy: a comparative study with freeze-etching electron microscopy. Reviewed

    Makihara M, Watanabe T, Usukura E, Kaibuchi K, Narita A, Tanaka N, Usukura J

    Microscopy (Oxford, England)   Vol. 65 ( 6 ) page: 488-498   2016.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1093/jmicro/dfw037

    PubMed

  50. Structural complexity of filaments formed from the actin and tubulin folds. Reviewed International coauthorship

    Jiang S, Ghoshdastider U, Narita A, Popp D, Robinson RC

    Communicative & integrative biology   Vol. 9 ( 6 ) page: e1242538   2016.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1080/19420889.2016.1242538

    PubMed

  51. An Unroofing Method to Observe the Cytoskeleton Directly at Molecular Resolution Using Atomic Force Microscopy. Reviewed

    Usukura E, Narita A, Yagi A, Ito S, Usukura J

    Scientific reports   Vol. 6   page: 27472   2016.6

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/srep27472

    PubMed

  52. Nuclear magnetic resonance evidence for the dimer formation of beta amyloid peptide 1-42 in 1,1,1,3,3,3-hexafluoro-2-propanol. Reviewed

    Shigemitsu Y, Iwaya N, Goda N, Matsuzaki M, Tenno T, Narita A, Hoshi M, Hiroaki H

    Analytical biochemistry   Vol. 498   page: 59-67   2016.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.ab.2015.12.021

    PubMed

  53. Novel actin filaments from Bacillus thuringiensis form nanotubules for plasmid DNA segregation. Reviewed International coauthorship

    Jiang S, Narita A, Popp D, Ghoshdastider U, Lee LJ, Srinivasan R, Balasubramanian MK, Oda T, Koh F, Larsson M, Robinson RC

    Proceedings of the National Academy of Sciences of the United States of America   Vol. 113 ( 9 ) page: E1200-5   2016.3

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1073/pnas.1600129113

    PubMed

  54. Electron Tomography and Simulation of Baculovirus Actin Comet Tails Support a Tethered Filament Model of Pathogen Propulsion Reviewed

    Mueller, J, Pfanzelter, J, Winkler, C, Narita, A, Clainche, CL, Nemethova, M, Carlier, M, Maeda, Y, Welch, MD, Ohkawa, T, Schmeiser, C, Resch, GP, Small, JV

    PLOS Biology     2014

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: doi/10.1371/journal.pbio.1001765

  55. Dynactin 3D Structure: Implications for Assembly and Dynein Binding Reviewed

    Hiroshi Imai, Akihiro Narita, Yuichiro Maéda, Trina A. Schroer

    Journal of Molecular Biology   Vol. 426 ( 19 ) page: 3262-3271   2014

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  56. Structural analysis for actin filaments in the cell by electron tomography Invited Reviewed

    Akihiro Narita

    Microscopy   Vol. 148 ( 2 ) page: 78-83   2013.8

     More details

    Authorship:Lead author   Language:Japanese  

    Although electron tomography has been rapidly developed, it is still difficult to analyze fine structures such as protein complexes in the cell. It is mainly because of two reasons: 1. Poor signal to noise ratio in the cell because of cytosol. 2. Missing wedge or missing pyramid caused by limited tilt angles of the sample deform the reconstructed three-dimensional map. We have developed structural analysis methods for filamentous complexes, especially for actin filaments in the cell. John Victor Small's group, our co-researchers, has enhanced the signal to noise ratio by staining the cell negatively. We have developed an image analysis system for analyzing electron tomograms of the negatively stained cells, which enabled us to determine polarity of the actin filaments without any labeling. We review these methods in this article.

  57. Role of the Actin Ala-108–Pro-112 Loop in Actin Polymerization and ATPase Activities Reviewed

    Journal of Biological Chemistry   Vol. 287 ( 52 ) page: 43270 - 43276   2012.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  58. Microtubule-like Properties of the Bacterial Actin Homolog ParM-R1 Reviewed International coauthorship

    Popp, D. Narita, A. Lee, L. J. Larsson, M. Robinson, R. C.

    J Biol Chem   Vol. 287 ( 44 ) page: 37078-88   2012.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    In preparation for mammalian cell division, microtubules repeatedly probe the cytoplasm to capture chromosomes and assemble the mitotic spindle. Critical features of this microtubule system are the formation of radial arrays centered at the centrosomes and dynamic instability, leading to persistent cycles of polymerization and depolymerization. Here, we show that actin homolog, ParM-R1 that drives segregation of the R1 multidrug resistance plasmid from Escherichia coli, can also self-organize in vitro into asters, which resemble astral microtubules. ParM-R1 asters grow from centrosome-like structures consisting of interconnected nodes related by a pseudo 8-fold symmetry. In addition, we show that ParM-R1 is able to perform persistent microtubule-like oscillations of assembly and disassembly. In vitro, a whole population of ParM-R1 filaments is synchronized between phases of growth and shrinkage, leading to prolonged synchronous oscillations even at physiological ParM-R1 concentrations. These results imply that the selection pressure to reliably segregate DNA during cell division has led to common mechanisms within diverse segregation machineries.

  59. Novel actin-like filament structure from Clostridium tetani Reviewed International coauthorship

    Popp, D. Narita, A. Lee, L. J. Ghoshdastider, U. Xue, B. Srinivasan, R. Balasubramanian, M. K. Tanaka, T. Robinson, R. C.

    J Biol Chem   Vol. 287 ( 25 ) page: 21121-9   2012.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Eukaryotic F-actin is constructed from two protofilaments that gently wind around each other to form a helical polymer. Several bacterial actin-like proteins (Alps) are also known to form F-actin-like helical arrangements from two protofilaments, yet with varied helical geometries. Here, we report a unique filament architecture of Alp12 from Clostridium tetani that is constructed from four protofilaments. Through fitting of an Alp12 monomer homology model into the electron microscopy data, the filament was determined to be constructed from two antiparallel strands, each composed of two parallel protofilaments. These four protofilaments form an open helical cylinder separated by a wide cleft. The molecular interactions within single protofilaments are similar to F-actin, yet interactions between protofilaments differ from those in F-actin. The filament structure and assembly and disassembly kinetics suggest Alp12 to be a dynamically unstable force-generating motor involved in segregating the pE88 plasmid, which encodes the lethal tetanus toxin, and thus a potential target for drug design. Alp12 can be repeatedly cycled between states of polymerization and dissociation, making it a novel candidate for incorporation into fuel-propelled nanobiopolymer machines.

  60. Merits of the double-stranded form of the actin filament revealed by structures of the filament ends. Invited Reviewed

    Akihiro Narita

    Communicative and Integrative Biology   Vol. 4 ( 69 ) page: 692-695   2011.11

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    Actin forms a double-stranded filament, and the majority of actin filaments in the cell undergo the dynamic process of polymerization and depolymerization at both ends. Actin dynamics plays numerous important roles in eukaryotic cells. In order to understand actin dynamics, structural elucidation of the actin filament ends is particularly important because polymerization and depolymerization occurs only at the ends. We have developed original image analysis procedures to determine the structures of the actin filament ends from cryo-electron micrographs, and two structures have been determined. The structures revealed that the actin filament takes advantage of its double-stranded form to regulate its dynamics at both ends by a surprisingly simple mechanism.

  61. Two distinct mechanisms for actin capping protein regulation--steric and allosteric inhibition Reviewed

    Takeda, S., Minakata, S., Koike, R., Kawahata, I., Narita, A., Kitazawa, M., Ota, M., Yamakuni, T., Maeda, Y. & Nitanai, Y.

    PLoS Biology   Vol. 8   page: e1000416   2010.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The actin capping protein (CP) tightly binds to the barbed end of actin filaments, thus playing a key role in actin-based lamellipodial dynamics. V-1 and CARMIL proteins directly bind to CP and inhibit the filament capping activity of CP. V-1 completely inhibits CP from interacting with the barbed end, whereas CARMIL proteins act on the barbed end-bound CP and facilitate its dissociation from the filament (called uncapping activity). Previous studies have revealed the striking functional differences between the two regulators. However, the molecular mechanisms describing how these proteins inhibit CP remains poorly understood. Here we present the crystal structures of CP complexed with V-1 and with peptides derived from the CP-binding motif of CARMIL proteins (CARMIL, CD2AP, and CKIP-1). V-1 directly interacts with the primary actin binding surface of CP, the C-terminal region of the alpha-subunit. Unexpectedly, the structures clearly revealed the conformational flexibility of CP, which can be attributed to a twisting movement between the two domains. CARMIL peptides in an extended conformation interact simultaneously with the two CP domains. In contrast to V-1, the peptides do not directly compete with the barbed end for the binding surface on CP. Biochemical assays revealed that the peptides suppress the interaction between CP and V-1, despite the two inhibitors not competing for the same binding site on CP. Furthermore, a computational analysis using the elastic network model indicates that the interaction of the peptides alters the intrinsic fluctuations of CP. Our results demonstrate that V-1 completely sequesters CP from the barbed end by simple steric hindrance. By contrast, CARMIL proteins allosterically inhibit CP, which appears to be a prerequisite for the uncapping activity. Our data suggest that CARMIL proteins down-regulate CP by affecting its conformational dynamics. This conceptually new mechanism of CP inhibition provides a structural basis for the regulation of the barbed end elongation in cells.

  62. Filament structure, organization, and dynamics in MreB sheets. Reviewed

    Popp, D., Narita, A., Maeda, K., Fujisawa, T., Ghoshdastider, U., Iwasa, M., Maeda, Y. & Robinson, R. C.

    The Journal of Biological Chemistry   Vol. 285   page: 15858-65   2010.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    In vivo fluorescence microscopy studies of bacterial cells have shown that the bacterial shape-determining protein and actin homolog, MreB, forms cable-like structures that spiral around the periphery of the cell. The molecular structure of these cables has yet to be established. Here we show by electron microscopy that Thermatoga maritime MreB forms complex, several mum long multilayered sheets consisting of diagonally interwoven filaments in the presence of either ATP or GTP. This architecture, in agreement with recent rheological measurements on MreB cables, may have superior mechanical properties and could be an important feature for maintaining bacterial cell shape. MreB polymers within the sheets appear to be single-stranded helical filaments rather than the linear protofilaments found in the MreB crystal structure. Sheet assembly occurs over a wide range of pH, ionic strength, and temperature. Polymerization kinetics are consistent with a cooperative assembly mechanism requiring only two steps: monomer activation followed by elongation. Steady-state TIRF microscopy studies of MreB suggest filament treadmilling while high pressure small angle x-ray scattering measurements indicate that the stability of MreB polymers is similar to that of F-actin filaments. In the presence of ADP or GDP, long, thin cables formed in which MreB was arranged in parallel as linear protofilaments. This suggests that the bacterial cell may exploit various nucleotides to generate different filament structures within cables for specific MreB-based functions.

  63. Suprastructures and dynamic properties of mycobacterium tuberculosis FtsZ. Reviewed

    Popp, D., Iwasa, M., Erickson, H. P., Narita, A., Maeda, Y. & Robinson, R. C.

    The Journal of Biological Chemistry   Vol. 285   page: 11281-9   2010.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Tuberculosis causes the most death in humans by any bacterium. Drug targeting of bacterial cytoskeletal proteins requires detailed knowledge of the various filamentous suprastructures and dynamic properties. Here, we have investigated by high resolution electron microscopy the assembly of cell division protein and microtubule homolog FtsZ from Mycobacterium tuberculosis (MtbFtsZ) in vitro in the presence of various monovalent salts, crowding agents and polycations. Supramolecular structures, including two-dimensional rings, three-dimensional toroids, and multistranded helices formed in the presence of molecular crowding, were similar to those observed by fluorescence microscopy in bacteria in vivo. Dynamic properties of MtbFtsZ filaments were visualized by light scattering and real time total internal reflection fluorescence microscopy. Interestingly, MtbFtsZ revealed a form of dynamic instability at steady state. Cation-induced condensation phenomena of bacterial cytomotive polymers have not been investigated in any detail, although it is known that many bacteria can contain high amounts of polycations, which may modulate the prokaryotic cytoskeleton. We find that above a threshold concentration of polycations which varied with the valence of the cation, ionic strength, and pH, MtbFtsZ mainly formed sheets. The general features of these cation-induced condensation phenomena could be explained in the framework of the Manning condensation theory. Chirality and packing defects limited the dimensions of sheets and toroids at steady state as predicted by theoretical models. In first approximation simple physical principles seem to govern the formation of MtbFtsZ suprastructures.

  64. Polymeric structures and dynamic properties of the bacterial actin AlfA Reviewed

    Popp, D., Narita, A., Ghoshdastider, U., Maeda, K., Maeda, Y., Oda, T., Fujisawa, T., Onishi, H., Ito, K. & Robinson, R. C.

    Journal of Molecular Biology   Vol. 397   page: 1031-41   2010.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    AlfA is a recently discovered DNA segregation protein from Bacillus subtilis that is distantly related to actin and the bacterial actin homologues ParM and MreB. Here we show that AlfA mostly forms helical 7/3 filaments, with a repeat of about 180 A, that are arranged in three-dimensional bundles. Other polymorphic structures in the form of two-dimensional rafts or paracrystalline nets were also observed. Here AlfA adopted a 16/7 helical symmetry, with a repeat of about 387 A. Thin polymers consisting of several intertwining filaments also formed. Observed helical symmetries of AlfA filaments differed from those of other members of the actin family: F-actin, ParM, or MreB. Both ATP and guanosine 5'-triphosphate are able to promote rapid AlfA filament formation with almost equal efficiencies. The helical structure is only preserved under physiological salt concentrations and at a pH between 6.4 and 7.4, the physiological range of the cytoplasm of B. subtilis. Polymerization kinetics are extremely rapid and compatible with a cooperative assembly mechanism requiring only two steps: monomer activation followed by elongation, making AlfA one of the most efficient polymerizing motors within the actin family. Phosphate release lags behind polymerization, and time-lapse total internal reflection fluorescence images of AlfA bundles are consistent with treadmilling rather than dynamic microtubule-like instability. High-pressure small angle X-ray scattering experiments reveal that the stability of AlfA filaments is intermediate between the stability of ParM and the stability of F-actin. These results emphasize that actin-like polymerizing machineries have diverged to produce a variety of filament geometries with diverse properties that are tailored for specific biological processes.

  65. Structure and filament dynamics of the pSK41 actin-like ParM protein: implications for plasmid DNA segregation Reviewed International coauthorship

      Vol. 285 ( 13 ) page: 10130 - 10140   2010.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  66. Molecular mechanism of bundle formation by the bacterial actin ParM. Reviewed

    Popp, D., Narita, A., Iwasa, M., Maeda, Y. & Robinson, R. C.

    Biochemical and Biophysical Research Communications   Vol. 391   page: 1598-603   2010.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The actin homolog ParM plays a microtubule-like role in segregating DNA prior to bacterial cell division. Fluorescence and cryo-electron microscopy have shown that ParM forms filament bundles between separating DNA plasmids in vivo. Given the lack of ParM bundling proteins it remains unknown how ParM bundles form at the molecular level. Here we show using time-lapse TIRF microscopy, under in vitro molecular crowding conditions, that ParM-bundle formation consists of two distinct phases. At the onset of polymerization bundle thickness and shape are determined in the form of nuclei of short helically disordered filaments arranged in a liquid-like lattice. These nuclei then undergo an elongation phase whereby they rapidly increase in length. At steady state, ParM bundles fuse into one single large aggregate. This behavior had been predicted by theory but has not been observed for any other cytomotive biopolymer, including F-actin. We employed electron micrographs of ParM rafts, which are 2-D analogs of 3-D bundles, to identify the main molecular interfilament contacts within these suprastructures. The interface between filaments is similar for both parallel and anti-parallel orientations and the distribution of filament polarity is random within a bundle. We suggest that the interfilament interactions are not due to the interactions of specific residues but rather to long-range, counter ion mediated, electrostatic attractive forces. A randomly oriented bundle ensures that the assembly is rigid and that DNA may be captured with equal efficiency at both ends of the bundle via the ParR binding protein.

  67. Single particle analysis for filamentous complexes Invited Reviewed

    Narita, A.

    Seibutsu Butsuri   Vol. 49 ( 6 ) page: 314-317   2009.11

     More details

    Authorship:Lead author   Language:Japanese  

  68. Protofilament formation of ParM mutants. Reviewed

    Popp D, Iwasa M, Maeda K, Narita A, Oda T, Maéda Y

    J Mol Biol.   Vol. 388 ( 2 ) page: 209-17   2009.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    ParM, an actin homolog, forms left-handed two-start helical filaments that segregate DNA in bacteria prior to cell division. Our recent atomic model obtained from electron microscopy (EM) reconstructions of negatively stained ParM filaments implied that two salt bridges (Glu35-Lys258 and Asp63-Arg262) may be key inter-filament contacts that stabilize the left-handed ParM helix. We made mutations of these amino acids and probed the inter-strand interface of our model experimentally by EM and X-ray fiber diffraction. We found that several mutations, such as ParM single mutants Asp258 and Asp262 and double mutant Asp258/Arg262, were incapable of forming straight filaments in aqueous buffers and appeared ragged and unstructured. However, in the presence of crowding agents, straight filaments or filament bundles formed, which allowed us to elucidate the structure of these mutant filaments. Centrifugation of filaments also resulted in a pellet of straightened filaments that could be oriented in glass capillaries and gave detailed X-ray diffraction patterns. Both EM and X-ray diffraction showed that filaments formed from these ParM mutants were not double-stranded helical filaments but single protofilaments, indicating that these residues are important for formation of the ParM helix. Our data also confirm a major prediction of crowding theory, namely that molecular crowding shifts the equilibrium of even severely impaired, unstructured cytoskeletal polymers toward their structured native and functional state. ParM is the first example of a helical actin homolog that can be induced to form protofilaments.

  69. FtsZ condensates: An in vitro electron microscopy study. Reviewed

    Popp D, Iwasa M, Narita A, Erickson HP, Maéda Y.

    Biopolymers   Vol. 91 ( 5 ) page: 340-50   2009.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    In vivo cell division protein FtsZ from E. coli forms rings and spirals which have only been observed by low resolution light microscopy. We show that these suprastructures are likely formed by molecular crowding which is a predominant factor in prokaryotic cells and enhances the weak lateral bonds between proto-filaments. Although FtsZ assembles into single proto-filaments in dilute aqueous buffer, with crowding agents above a critical concentration, it forms polymorphic supramolecular structures including rings and toroids (with multiple protofilaments) about 200 nm in diameter, similar in appearance to DNA toroids, and helices with pitches of several hundred nm as well as long, linear bundles. Helices resemble those observed in vivo, whereas the rings and toroids may represent a novel energy minimized state of FtsZ, at a later stage of Z-ring constriction. We shed light on the molecular arrangement of FtsZ filaments within these suprastructures using high resolution electron microscopy.

  70. Dual roles of Gln137 of actin revealed by recombinant human cardiac muscle alpha-actin mutants. Invited Reviewed

    Iwasa M, Maeda K, Narita A, Maéda Y, Oda T.

    J.Biol.Chem.   Vol. 283 ( 39 ) page: 21045-53   2008.7

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    The actin filament is quite dynamic in the cell. To determine the relationship between the structure and the dynamic properties of the actin filament, experiments using actin mutants are indispensable. We focused on Gln(137) to understand the relationships between two activities: the conformational changes relevant to the G- to F-actin transition and the activation of actin ATPase upon actin polymerization. To elucidate the function of Gln(137) in these activities, we characterized Gln(137) mutants of human cardiac muscle alpha-actin. Although all of the single mutants, Q137E, Q137K, Q137P, and Q137A, as well as the wild type were expressed by a baculovirus-based system, only Q137A and the wild type were purified to high homogeneity. The CD spectrum of Q137A was similar to that of the wild type, and Q137A showed the typical morphology of negatively stained Q137A F-actin images. However, Q137A had an extremely low critical concentration for polymerization. Furthermore, we found that Q137A polymerized 4-fold faster, cleaved the gamma-phosphate group of bound ATP 4-fold slower, and depolymerized 5-fold slower, as compared with the wild-type rates. These results suggest that Gln(137) plays dual roles in actin polymerization, in both the conformational transition of the actin molecule and the mechanism of ATP hydrolysis.

  71. アクチンフィラメント端の伸長制御機構 Invited

    成田哲博

    月刊バイオニクス   ( 3月号 ) page: 62-69   2007.3

     More details

    Authorship:Lead author   Language:Japanese  

    細胞運動や細胞分裂、細胞骨格など生命現象の根幹にかかわる機能を担うアクチン。
    その機能には、アクチンフィラメントの端でおこる重合、脱落が重要な役割を果たしているが、詳しいメカニズムは不明であった。アクチンフィラメント端とアクチンフィラメント端結合タンパク質CPの3次元構造の決定によって、謎の一端が明かされた。

  72. Concerning the dynamic instability of actin homolog ParM. Reviewed

    Popp D, Yamamoto A, Iwasa M, Narita A, Maeda K, Maéda Y.

    Biochem Biophys Res Commun.   Vol. 353 ( 1 ) page: 109-14   2007.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Using in vitro TIRF- and electron-microscopy, we reinvestigated the dynamics of native ParM, a prokaryotic DNA segregation protein and actin homolog. In contrast to a previous study, which used a cysteine ParM mutant, we find that the polymerization process of wild type ATP-ParM filaments consists of a polymerization phase and a subsequent steady state phase, which is dynamically unstable, like that of microtubules. We find that the apparent bidirectional polymerization of ParM, is not due to the intrinsic nature of this filament, but results from ParM forming randomly oriented bundles in the presence of crowding agents. Our results imply, that in the bacterium, ParM filaments spontaneously form bipolar bundles. Due to their intrinsic dynamic instability, ParM bundles can efficiently "search" the cytoplasmic lumen for DNA, bind it equally well at the bipolar ends and segregate it approximately symmetrically, by the insertion of ParM subunits at either end.

  73. Two-dimensional averaged images of the dynactin complex revealed by single particle analysis. Reviewed

    Imai H, Narita A, Schroer TA, Maéda Y.

    J. Mol. Biol.   Vol. 359 ( 4 ) page: 833-9   2006.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The dynactin complex interacts with dynein and numerous other proteins to provide for a wide range of subcellular transport functions. A detailed understanding of the structure and subunit organization of dynactin should yield new insights into its function. In the present study, we used single particle analysis to obtain a two-dimensional averaged image of dynactin isolated from chick embryo brains and visualized by negative stain electron microscopy (EM). Each individual image, consisting of the shoulder/sidearm and the rod, closely resembled the previously published quick-freeze deep-etch rotary-shadow electron micrographs. However, the averaged image revealed novel structural features that may have functional significance. The bulky shoulder complex has a triangular shape and is 13 nm wide and 8 nm high. The rod, with an overall length of 40 nm, consists of clearly defined lobes that are apparently grouped into three parts, the pointed-end complex, the middle segment, and the extra lobes at the barbed end. The pointed-end complex reveals the characteristic protrusions and clefts that were previously observed only in the isolated pointed-end complex. In the middle segment, the seven lobes are fitted to the helical symmetry of F-actin. A narrow but prominent gap separates the previously unidentified extra three lobes at the barbed end from the middle segment. The averaged image we obtained contrasts dramatically with the simple Arp1 polymer that was previously reported by single particle analysis of bovine brain dynactin. These apparent structural differences are probably due to the greater stability and integrity of the chick embryo brain dynactin preparation. We propose a new structural model for dynactin, based on our observations.

▼display all

Books 3

  1. クライオ電子顕微鏡ハンドブック

    成田哲博 田中康太郎( Role: Contributor ,  第四章第二節)

    エヌティーエス  2023.1 

     More details

    Responsible for pages:127-135   Language:Japanese Book type:Scholarly book

  2. 顕微鏡 vol57 No3 Reviewed

    成田哲博( Role: Joint editor ,  特集部分の責任編集および特集前文、編集後記執筆)

    日本顕微鏡学会  2022 

     More details

    Language:Japanese Book type:Scholarly book

  3. ライフサイエンス顕微鏡学ハンドブック

    成田哲博( Role: Contributor ,  負染色顕微鏡法の項)

    2018 

     More details

    Responsible for pages:191-194   Language:Japanese

Presentations 18

  1. パルス電子顕微鏡がもたらす生物学の革命 Invited

    成田哲博

    次世代真空エレクトロニクス研究会 第10回研究会   2023.11.20  次世代真空エレクトロニクス研究会

     More details

    Event date: 2023.11

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:ウインクあいち   Country:Japan  

  2. 構造から見たアクチンの機能 Invited

    成田哲博

    植物細胞骨格研究会2023  2023.9.15  細胞骨格研究会

     More details

    Event date: 2023.9

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:名古屋大学   Country:Japan  

  3. アクチン線維において顕在化する時空アロステリー Invited

    成田哲博

    第60回日本生物物理学会年会  2022.9.29  日本生物物理学会

     More details

    Event date: 2022.9

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  4. 細胞骨格構造解析と時空アロステリ― Invited

    成田哲博

    細胞生理学セミナー  2022.7.15  名古屋大学細胞生理学センター

     More details

    Event date: 2022.7

    Language:Japanese   Presentation type:Symposium, workshop panel (nominated)  

    Venue:オンライン  

  5. クライオ電子顕微鏡による細胞骨格構造解析 Invited

    成田哲博

    第6回TRSシンポジウム  2022.2.14  AMED

     More details

    Event date: 2022.2

    Language:Japanese   Presentation type:Symposium, workshop panel (nominated)  

    Venue:オンライン  

  6. タンパク質を⾒る⽅法 −クライオ法、負染⾊法からの情報抽出− Invited

    成田哲博

    2021年度日本顕微鏡学会ソフトマテリアル研究会講演会  2021.9.9  日本顕微鏡学会ソフトマテリアル研究会

     More details

    Event date: 2021.9

    Language:Japanese   Presentation type:Symposium, workshop panel (nominated)  

    Venue:オンライン  

  7. アクチン線維構造と運動マシナリー Invited

    成田哲博

    第43回分子生物学会年会  2020.12.3  日本分子生物学会

     More details

    Event date: 2020.12

    Language:Japanese   Presentation type:Symposium, workshop panel (nominated)  

    Venue:オンライン  

  8. 細胞運動のしくみ解明に挑戦する構造生物学 ~アクチン線維の精密解析~ Invited

    成田哲博

    未来に挑戦する構造生物科学  2020.6.5  細胞生理学研究センター

     More details

    Event date: 2020.6

    Language:Japanese   Presentation type:Symposium, workshop panel (nominated)  

    Venue:オンライン  

  9. アクチン線維とアクチンホモログ ParM 線維の共通点と相違点 Invited

    成田哲博

    第93回日本細菌学会総会  2020.2.21  日本細菌学会

     More details

    Event date: 2020.2

    Language:Japanese   Presentation type:Symposium, workshop panel (nominated)  

    Venue:ウインクあいち   Country:Japan  

  10. Observation of cells and biomolecules by tip scan atomic force microscopy, Invited International conference

    Akihiro Narita

    27th International Colloquium on Scanning Probe Microscopy (ICSPM27)  2019.12.6 

     More details

    Event date: 2019.12

    Language:English   Presentation type:Symposium, workshop panel (nominated)  

    Country:Japan  

  11. High resolution structural analysis of the actin filaments and actin related proteins Invited International conference

    Akihiro Narita

    Frontiers in Cellular, Viral and Molecular Microscopy with Cryo-specimen Preparation Technique  2019.9.16  University of Bristol、University of Cambridge and Japanese scociety of Microscopy

     More details

    Event date: 2019.9

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Bristol Univ. England   Country:United Kingdom  

  12. Observation of biomolecules by tip-scan atomic force microscopy Invited

    Akihiro Narita, Eiji Usukura, Akira Yagi, Kiyohiko Tateyama,Shogo Akizuki, Mahito Kikumoto, Tomoharu Matsumoto, Yuichiro Maeda, Shuichi Ito, Jiro Usukura

    2019.6.18 

     More details

    Event date: 2019.6

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  13. クライオ電子顕微鏡法によるアクチン線維構造解析 Invited

    成田哲博

    第124回日本解剖学会総会・全国学術集会  2019.3.18  日本解剖学会

     More details

    Event date: 2019.3

    Language:Japanese   Presentation type:Symposium, workshop panel (nominated)  

    Venue:朱鷺メッセ 新潟   Country:Japan  

  14. AFM細胞生物学の最先端、live cell imagingから免疫細胞化学まで Invited

    臼倉英治、成田哲博、臼倉治郎

    第124回日本解剖学会総会・全国学術集会  2019.3.28  日本解剖学会

     More details

    Event date: 2019.3

    Language:Japanese   Presentation type:Symposium, workshop panel (nominated)  

    Venue:朱鷺メッセ、新潟   Country:Japan  

  15. アクチン線維および関連タンパク質のクライオ電子顕微鏡法による高分解能構造解析 Invited

    成田哲博

    岐阜構造生物学・医学・論理的創薬シンポジウム  2019.3.6  岐阜大学

     More details

    Event date: 2019.3

    Language:Japanese   Presentation type:Symposium, workshop panel (nominated)  

    Venue:岐阜大学   Country:Japan  

  16. クライオ電子顕微鏡によるタンパク質線維構造解析 Invited

    成田哲博

    大阪大学ナノテクノロジー設備供用拠点微細構造解析プラットフォーム2018年度第2回地域セミナー  2019.1.15  大阪大学ナノテクノロジー設備供用拠点微細構造解析プラットフォーム

     More details

    Event date: 2019.1

    Language:Japanese   Presentation type:Symposium, workshop panel (nominated)  

    Venue:千里ライフサイエンスセンター   Country:Japan  

  17. アクチン線維構造解析と新しい電子顕微鏡法 Invited

    成田哲博

    第79回応用物理学会秋季学術講演会  2018.9.20  応用物理学会

     More details

    Event date: 2018.9

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    Venue:名古屋国際会議場   Country:Japan  

  18. Structural basis of cofilin binding and disassembling of actin filaments revealed by cryo-electron microscopy

    Akihiro Narita

    Cryo-electron microscopy, Japan-China joint symposiumu  2018.9.16 

     More details

    Event date: 2018.9

    Country:Japan  

▼display all

Works 1

  1. プレス発表“細胞が形状を変えながら移動する謎の一端を解明 - アクチンフィラメント端での伸縮制御メカニズムが明らかに –“

    2006.11

Research Project for Joint Research, Competitive Funding, etc. 4

  1. フォトカソードを使用した、クライオ電子顕微鏡法に適したパルス電子銃の開発

    2012.11 - 2013.10

    研究成果最適展開支援プログラムA-STEP 

      More details

    Grant type:Competitive

    蛋白質やウィルス、細胞を溶液ごと急速凍結して観察するクライオ電子顕微鏡法は、対象を真に生理的な条件で観察できるため、現在の生物学において必要不可欠なツールである。しかし、100 K以下の低温下で観察するため、温度ドリフトが起こりやすく、スループットと高分解能観察を制約している。一方、半導体フォトカソードを用いた電子光源は、単色性、平面性にすぐれ、励起にパルスレーザーを用いることで容易にパルス電子源を作ることができる。パルス電子源を用いれば、温度ドリフトの問題の大半は解決できる。本研究では、クライオ電子顕微鏡法に用いることができるフォトカソード電子銃を開発することを目標とする。

  2. アクチンフィラメント網動態の電子顕微鏡法による階層的理解

    2012.10 - 2016.3

    さきがけ 

      More details

    Grant type:Competitive

    側鎖から細胞にいたるアクチンフィラメント動態の全貌解明のための礎を、電子顕微鏡法を用いて構築する。そのために、①アクチン-コフィリン複合体の3.5Å分解能構造解析により、側鎖まで直接可視化、コフィリンによるフィラメント脱重合、切断機構の解明、②フィラメント端に結合した状態のフォルミン三次元構造決定による、アクチン重合開始機構の解明、の二つを通じて、アクチンフィラメント動態制御蛋白質による動態制御機構を明らかにする。さらに、その動態制御の結果細胞内でどのようにフィラメント網が形成されるかを、③細胞内アクチンフィラメント網電子トモグラフィー解析による、(ミオシンや抗体に依らない)アクチンフィラメント細胞内極性決定、およびフィラメント結合蛋白質の細胞内分布決定、によって理解する。挑戦的ではあるが、技術的な検証の多くはすでになされており、十分に実現可能である。

  3. 独自の電子顕微鏡法による、アクチンフィラメント形成開始機構、脱重合促進機構の解明

    2010.10 - 2012.3

    大幸財団学術研究助成 

      More details

    Grant type:Competitive

    クライオ電子顕微鏡法によって、アクチン-フォルミン複合体、アクチン-コフィリン複合体の三次元構造決定を行う。

  4. ATP状態アクチンフィラメントの高分解能構造決定

    2008.4 - 2009.3

    風戸研究奨励賞 

      More details

    Grant type:Competitive

    クライオ電子顕微鏡法と独自の画像解析法を用いてATP状態アクチンフィラメントの高分解能構造決定を行う

KAKENHI (Grants-in-Aid for Scientific Research) 7

  1. 疎らに結合したアクチン結合タンパク質がアクチン線維全体の機能を調節するメカニズム

    Grant number:23H02452  2023.4 - 2026.3

    科学研究費助成事業  基盤研究(B)

    上田 太郎, 成田 哲博, NGO XUANKIEN

      More details

    Authorship:Coinvestigator(s) 

    アクチン線維は、真核細胞の多様な細胞機能において中心的な役割を果たしている。こうしたアクチン線維の多機能性には、アクチン線維の構造多型性が寄与するという仮説が広く受け入れられつつあるが、構造多型性が生じうるメカニズムとして、長距離アロステリーと記憶効果という、全く異なる二つのメカニズムが想定しうる。そこで本研究ではどちらのメカニズムが主であるかを実験的に明らかにし、アクチン線維の機能分化の分子機構の本質に迫る。

  2. 概日時計の複雑多様性の単純化

    Grant number:22H04984  2022.4 - 2027.3

    日本学術振興会  科学研究費補助金  基盤S

    成田哲博

      More details

    Authorship:Coinvestigator(s)  Grant type:Competitive

  3. パルス電子顕微鏡による生体分子動態の直接観察

    Grant number:21H02440  2021.4

    日本学術振興会  科学研究費補助金  基盤B

    成田哲博

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\6500000 ( Direct Cost: \5000000 、 Indirect Cost:\1500000 )

  4. パルス電子顕微鏡のための液体試料観察法の開発

    Grant number:19K22384  2019.6 - 2021.3

    科学研究費補助金  挑戦的研究(萌芽)

    成田 哲博

      More details

    Authorship:Principal investigator 

    Grant amount:\6500000 ( Direct Cost: \5000000 、 Indirect Cost:\1500000 )

    開発中のパルス電子顕微鏡を用いると1ミリ秒以下の露光時間で一枚の電子顕微鏡写真が撮れる。パルス間隔を開けることでダメージを抑えながら長時間動態観察することもできる。本研究では、このパルス電子顕微鏡によって液中の蛋白質動態を直接観察するための液体試料観察法の開発を行う。より具体的には、1: 電子顕微鏡観察に向いた溶液条件の探索、2:従来よりコントラストの高い溶液チャンバー作成法の開発を行う。
    2019年度は、タンパク質溶液を電子顕微鏡で観察するためのホルダの開発を行った。まず、市販のホルダK-kitを用いて評価を行った。電子顕微鏡の溶液ホルダは窒化シリコンの膜の窓ではさんだ溶液を観察するのが基本コンセプトだが、K-kitは窓の厚さが両面合わせて200 nmもある。十分なコントラストが得られず、自分達でホルダを作成する方針をとった。窓厚40 nmの窒化シリコンの窓をもったグリッドをNTT advanced technologyにつくってもらい、これを貼り合わせることで溶液ホルダを作成した。貼り合わせ方を工夫することで、5割以上の成功率での作成に成功。溶液の厚さも抑えることができ、非常に高いコントラストで40 nmの金コロイドが、溶液中をブラウン運動で動き回る姿を直接観察できた。2020年度前半に溶液観察が可能な70kV以上の加速電圧を持った第二世代のパルス電子顕微鏡が立ち上がる予定であり、それまでにリポソームやアクチンバンドル、微小管などを観察する条件を、通常の電子顕微鏡の動画撮影を用いて検討する。
    溶液ホルダがほぼ完成、現在試料の封入の仕方を工夫しているところであり、おおむね予定通りの進捗である。
    2020年度前半に立ち上がる第二世代パルス電子顕微鏡を用いて、実際にタンパク質動態の観察を始める。

  5. Semiconductor electron beam source that brings fine-area dynamics observation technology to damage sensitive samples

    Grant number:19H00666  2019.4 - 2022.3

      More details

    Authorship:Coinvestigator(s) 

  6. クライオ電子顕微鏡法と少数構造生物学によるアクチン線維動態の構造的理解

    Grant number:18H02410  2018.4 - 2021.3

    科学研究費補助金  科学研究費補助金

    成田 哲博

      More details

    Authorship:Principal investigator 

    Grant amount:\17680000 ( Direct Cost: \13600000 、 Indirect Cost:\4080000 )

    本研究は、歪みの無い走査透過型電子顕微鏡像を用いて、像の数を集めるのが難しい対象の構造解析を行うことを目指している。2018年度は、アクチン-フォルミン複合体、アクチン線維端、アクチン線維上のコフィリン結合クラスタ境界の構造解析のための負染色法による条件検討を行った。通常の透過型電子顕微鏡よりも像のひずみがすくなく、構造解析が小数の像で済むことはわかっているが、アクチン-フォルミン複合体はフォルミンの形が一定でないことが確認され、走査透過型電子顕微鏡をもってしてもかなり多くの像が必要であることがわかった。アクチン線維端については良好な条件が得られつつある。コフィリン結合クラスタについては、結合クラスタのB端側境界は、コフィリン結合の影響はコフィリン結合領域に限られそうであるという感触を得ることが出来た。一方P端側境界は多く観察することができず、コフィリンによる線維切断が起きにくいといわれている低pH条件でも、結合クラスタP端側境界はほぼ切断されていることが示唆された。得られた少数の像については、コフィリンの結合が、コフィリン非結合領域まで構造変化をもたらしているらしい様子が見られたが、まだ3例しかなく、観測条件の更なる検討が必要である。また、同時に走査透過型電子顕微鏡のクライオ法への適用に挑戦している。日立ハイテクとの共同研究で、クライオホルダの開発を行っているが、温度ドリフトが大きい。当面は、ホルダの開発とともに、高速データ取込によるドリフトの影響の軽減を目指している。
    2018年度の目標は各対象の条件検討であった。これについてはさらなる検討が必要ではあるが、おおむね予定通りに進んでいる。
    アクチン線維端については、高分解能構造解析を目指す。他の対象についてはもう少し条件検討が必要であり、今後も継続する。

  7. アクチンフィラメントの構造と動態:特にカルシウム調節のメカニズムの解明

    2008.4 - 2012.3

    科学研究費補助金  基盤研究(S)

    前田雄一郎

      More details

    Authorship:Coinvestigator(s) 

▼display all

 

Teaching Experience (On-campus) 28

  1. コンピュータ実習

    2021

     詳細を見る

    pythonによるプログラミング実習

  2. 現代の生命科学

    2020

     詳細を見る

    4回担当。文系向け生命科学概論。

  3. コンピュータ実習

    2020

     詳細を見る

    pythonを使ったプログラミング実習

  4. 生物学基礎Ⅰ

    2020

     詳細を見る

    情報学部向けの生物学概論。生物におけるエネルギーについて講義。

  5. コンピュータ実習

    2019

     詳細を見る

    pythonをつかったプログラミング実習

  6. 分子生理学II

    2019

     詳細を見る

    アクチンを中心とした生理学

  7. 生物学基礎Ⅰ

    2019

     詳細を見る

    情報学部向け生物学概論。

  8. コンピュータ実習

    2018

     詳細を見る

    pythonを使ったプログラミング実習

  9. 分子生理学II

    2018

     詳細を見る

    アクチンを中心にした生理学

  10. 生物学基礎Ⅰ

    2018

     詳細を見る

    情報文化むけ生物学概論。

  11. 生物化学実験1

    2017

     詳細を見る

    pythonを用いたプログラミング実習

  12. 分子生理学II (12回中5回を担当)

    2017

     詳細を見る

    本講義では、「生物における情報・エネルギー変換機構」を分子生理学的に理解することを目的とする。生物は、外的環境を素早く感知し、適切に情報処理することで環境中を生き抜いている。ここでは、[1] 光受容分子による外部シグナル認識・処理機構、[2] MAPキナーゼによる細胞内シグナル伝達機構、[3] アクチン細胞骨格のエネルギー変換による行動制御機構、に着目する。近年、長らく謎であった分子レベルでの情報・エネルギー変換機構が解明されつつある。講義では分子の発見から分子機構の解明に至るさまざまな研究を紹介する。そこでは、生理学的方法による現象の解析、分子遺伝学的解析による原因分子の同定、生化学的解析による変換機構の解明、生物物理学的手法による計測、構造生物学的手法を用いた可視化などを紹介し、生命現象の理解に向けた様々な方法を理解することを目指す。これらについて、小テストで理解度を深めるとともに期末試験を行う。講義途中・講義後の発言・質問も歓迎する。全12回のうち、5回を担当

  13. 生物化学実験1

    2016

     詳細を見る

    pythonを用いたプログラミング実習

  14. 分子生理学II (12回中5回を担当)

    2016

     詳細を見る

    本講義では、「生物における情報・エネルギー変換機構」を分子生理学的に理解することを目的とする。生物は、外的環境を素早く感知し、適切に情報処理することで環境中を生き抜いている。ここでは、[1] 光受容分子による外部シグナル認識・処理機構、[2] MAPキナーゼによる細胞内シグナル伝達機構、[3] アクチン細胞骨格のエネルギー変換による行動制御機構、に着目する。近年、長らく謎であった分子レベルでの情報・エネルギー変換機構が解明されつつある。講義では分子の発見から分子機構の解明に至るさまざまな研究を紹介する。そこでは、生理学的方法による現象の解析、分子遺伝学的解析による原因分子の同定、生化学的解析による変換機構の解明、生物物理学的手法による計測、構造生物学的手法を用いた可視化などを紹介し、生命現象の理解に向けた様々な方法を理解することを目指す。これらについて、小テストで理解度を深めるとともに期末試験を行う。講義途中・講義後の発言・質問も歓迎する。全12回のうち、5回を担当

  15. 分子生理学II (12回中5回を担当)

    2016

     詳細を見る

    本講義では、「生物における情報・エネルギー変換機構」を分子生理学的に理解することを目的とする。生物は、外的環境を素早く感知し、適切に情報処理することで環境中を生き抜いている。ここでは、[1] 光受容分子による外部シグナル認識・処理機構、[2] MAPキナーゼによる細胞内シグナル伝達機構、[3] アクチン細胞骨格のエネルギー変換による行動制御機構、に着目する。近年、長らく謎であった分子レベルでの情報・エネルギー変換機構が解明されつつある。講義では分子の発見から分子機構の解明に至るさまざまな研究を紹介する。そこでは、生理学的方法による現象の解析、分子遺伝学的解析による原因分子の同定、生化学的解析による変換機構の解明、生物物理学的手法による計測、構造生物学的手法を用いた可視化などを紹介し、生命現象の理解に向けた様々な方法を理解することを目指す。これらについて、小テストで理解度を深めるとともに期末試験を行う。講義途中・講義後の発言・質問も歓迎する。全12回のうち、5回を担当

  16. 生物化学実験1

    2015

     詳細を見る

    pythonを用いたプログラミング実習

  17. 分子生理学II (12回中5回を担当)

    2015

     詳細を見る

    本講義では、「生物における情報・エネルギー変換機構」を分子生理学的に理解することを目的とする。生物は、外的環境を素早く感知し、適切に情報処理することで環境中を生き抜いている。ここでは、[1] 光受容分子による外部シグナル認識・処理機構、[2] MAPキナーゼによる細胞内シグナル伝達機構、[3] アクチン細胞骨格のエネルギー変換による行動制御機構、に着目する。近年、長らく謎であった分子レベルでの情報・エネルギー変換機構が解明されつつある。講義では分子の発見から分子機構の解明に至るさまざまな研究を紹介する。そこでは、生理学的方法による現象の解析、分子遺伝学的解析による原因分子の同定、生化学的解析による変換機構の解明、生物物理学的手法による計測、構造生物学的手法を用いた可視化などを紹介し、生命現象の理解に向けた様々な方法を理解することを目指す。これらについて、小テストで理解度を深めるとともに期末試験を行う。講義途中・講義後の発言・質問も歓迎する。全12回のうち、5回を担当

  18. 分子生理学II (12回中4回を担当)

    2014

     詳細を見る

    本講義では、「生物における情報・エネルギー変換機構」を分子生理学的に理解することを目的とする。生物は、外的環境を素早く感知し、適切に情報処理することで環境中を生き抜いている。ここでは、[1] 光受容分子による外部シグナル認識・処理機構、[2] MAPキナーゼによる細胞内シグナル伝達機構、[3] アクチン細胞骨格のエネルギー変換による行動制御機構、に着目する。近年、長らく謎であった分子レベルでの情報・エネルギー変換機構が解明されつつある。講義では分子の発見から分子機構の解明に至るさまざまな研究を紹介する。そこでは、生理学的方法による現象の解析、分子遺伝学的解析による原因分子の同定、生化学的解析による変換機構の解明、生物物理学的手法による計測、構造生物学的手法を用いた可視化などを紹介し、生命現象の理解に向けた様々な方法を理解することを目指す。これらについて、小テストで理解度を深めるとともに期末試験を行う。講義途中・講義後の発言・質問も歓迎する。全12回のうち、4回を担当

  19. プレセミナー

    2014

     詳細を見る

    セミナーのテーマ:ディベートを通じた学問の基礎技術の向上
    ディベートとは、ある主題に対して異なる立場に分かれ、それぞれの主張を戦わせるもので、古代ギリシャから教育目的に行われている。ディベートを通じて、資料の収集、解釈、プレゼンテーション、論理的な議論のしかた、有効な反論のしかたなど多くのことを学ぶことができる。本セミナーでは、参加者をグループに分け、遺伝子組み換え、農薬、原発、ネットゲームなど賛否が分かれる主題についてディベートを行い、楽しみながらこれらの基礎技術を学んでもらうことを目標とする。

  20. 生物化学実験1

    2014

     詳細を見る

    pythonを用いたプログラミング実習

  21. biochemistryIII (1/10)

    2014

  22. biochemistryIII (1/10)

    2013

  23. 分子生理学II (12回中4回を担当)

    2013

     詳細を見る

    本講義では、「生物における情報・エネルギー変換機構」を分子生理学的に理解することを目的とする。生物は、外的環境を素早く感知し、適切に情報処理することで環境中を生き抜いている。ここでは、[1] 光受容分子による外部シグナル認識・処理機構、[2] MAPキナーゼによる細胞内シグナル伝達機構、[3] アクチン細胞骨格のエネルギー変換による行動制御機構、に着目する。近年、長らく謎であった分子レベルでの情報・エネルギー変換機構が解明されつつある。講義では分子の発見から分子機構の解明に至るさまざまな研究を紹介する。そこでは、生理学的方法による現象の解析、分子遺伝学的解析による原因分子の同定、生化学的解析による変換機構の解明、生物物理学的手法による計測、構造生物学的手法を用いた可視化などを紹介し、生命現象の理解に向けた様々な方法を理解することを目指す。これらについて、小テストで理解度を深めるとともに期末試験を行う。講義途中・講義後の発言・質問も歓迎する。全12回のうち、4回を担当

  24. 生物化学実験1

    2013

     詳細を見る

    pythonを用いたプログラミング実習

  25. 生物化学実験1

    2012

     詳細を見る

    pythonを用いたプログラミング実習

  26. 生物化学実験1

    2011

     詳細を見る

    pythonを用いたプログラミング実習

  27. Biochemical experiments I

    2010

  28. Biochemical experiments I

    2009

▼display all

Teaching Experience (Off-campus) 3

  1. 電子顕微鏡と構造生物学

    2020.9 Osaka University)

  2. 電子顕微鏡と構造生物学

    2020.7 Kyoto University)

  3. 透過型電子顕微鏡法による構造生物学 

    2019.9 Gifu University)

 

Social Contribution 1

  1. 科学三昧in愛知

    Role(s):Demonstrator

    岡崎高校SSH  2020.12

     More details

    Audience: High school students

    Type:Seminar, workshop

Academic Activities 3

  1. External Review Committee (ERC) for Shintake Unit, OIST International contribution

    Role(s):Review, evaluation

    2020.12

     More details

    Type:Scientific advice/Review 

  2. ERATO胡桃坂プロジェクト分科会委員

    Role(s):Review, evaluation

    JST  2020.1

     More details

    Type:Scientific advice/Review 

  3. 「顕微鏡」編集委員

    Role(s):Peer review

    2019.4

     More details

    Type:Academic society, research group, etc.