Updated on 2024/10/28

写真a

 
NAYATANI, Shin
 
Organization
Graduate School of Mathematics Division of Mathematics Natural Mathematics Professor
Institute of Liberal Arts and Sciences Headquarters Part-time faculty member
Graduate School
Graduate School of Mathematics
Undergraduate School
School of Science
Title
Professor

Degree 1

  1. 理学博士 ( 1990.3   大阪大学 ) 

Research Interests 5

  1. buildings

  2. harmonic maps

  3. rigidity of discrete groups

  4. nonpositively curved spaces

  5. conformal geometry

Research Areas 1

  1. Others / Others  / Geometry

Current Research Project and SDGs 2

  1. Geometric approach to rigidity of discrete groups

  2. Riemannian metrics maximizing the first Laplacian eigenvalue on a closed surface

Research History 5

  1. 名古屋大学大学院多元数理科学研究科・教授

    2005.4

      More details

    Country:Japan

  2. 名古屋大学大学院多元数理科学研究科・助教授

    1998.10 - 2005.3

      More details

    Country:Japan

  3. 東北大学理学部・助教授

    1994.10 - 1998.9

      More details

    Country:Japan

  4. 東北大学理学部・助手

    1991.4 - 1994.9

      More details

    Country:Japan

  5. 日本学術振興会特別研究員

    1990.4 - 1991.3

      More details

    Country:Japan

Education 2

  1. Osaka University   Graduate School, Division of Science

    - 1990

      More details

    Country: Japan

  2. The University of Tokyo   Faculty of Science

    - 1985

      More details

    Country: Japan

Professional Memberships 1

  1. 日本数学会   幾何学分科会評議員

    2011.4 - 2013.3

Awards 1

  1. 日本数学会幾何学賞

    2004.9   日本数学会  

     More details

    Country:Japan

 

Papers 26

  1. Embedding and the first Laplace eigenvalue of a finite graph

    Gomyou, T; Kobayashi, T; Kondo, T; Nayatani, S

    JOURNAL OF COMBINATORIAL OPTIMIZATION   Vol. 48 ( 1 )   2024.8

  2. Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian

    Nayatani Shin, Shoda Toshihiro

    COMPTES RENDUS MATHEMATIQUE   Vol. 357 ( 1 ) page: 84 - 98   2019.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.crma.2018.11.008

    Web of Science

  3. Fixed-point property for affine actions on a Hilbert space Invited Reviewed

    Shin Nayatani

      Vol. B66   page: 115-131   2017

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    Gromov showed that for fixed, arbitrarily large C, any uniformly C-Lipschitz affine action of a random group in his graph model on a Hilbert space has a fixed point. We announce a theorem stating that more general affine actions of the same random group on a Hilbert space have a fixed point. We discuss some aspects of the proof.

  4. Almost CR structure on the twistor space of a quaternionic CR manifold Invited Reviewed

    Hiroyuki Kamada, Shin Nayatani

    Current developments in differential geomerty and its elated fields     page: 93-114   2016

     More details

    Authorship:Lead author   Language:English  

  5. *Quaternionic CR Geometry Reviewed

    Hiroyuki Kamada, Shin Nayatani

    Hokkaido Mathematical Journal   Vol. 42   page: 1-49   2013

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    Modelled on a real hypersurface in a quaternionic manifold, we introduce a quaternionic analogue of CR structure, called quaternionic CR structure. We define the strong pseudoconvexity of this structure as well as the notion of quaternionic pseudohermitian structure. Following the construction of the Tanaka-Webster connection in complex CR geometry, we construct a canonical connection associated with a quaternionic pseudohermitian structure, when the underlying quaternionic CR structure satisfies the ultra-pseudoconvexity which is stronger than the strong pseudoconvexity. Comparison to Biquard's quaternionic contact structure is also made.

▼display all

Books 1

  1. 微分幾何学の最先端----Surveys in Gemometry, special edition

    榎一郎、二木昭人、辻元、小林亮一、深谷賢治、中島啓、藤木明、後藤竜司、納谷信、藤原耕二( Role: Joint author)

    培風館  2005.12 

     More details

    Language:Japanese

    担当部分である第9章「調和写像と剛性」において、調和写像に関する基本事項を紹介した後に、Eells-Sampsonによる調和写像の存在定理とその同変版を解説した。さらに、調和写像の剛性問題への応用について論じた。最後の節では、著者らによる最近の結果を始めとして、研究の現状と展望を述べた。

Presentations 23

  1. First-eigenvalue maximization and isometric embedding Invited International conference

    Shin Nayatani

    Joint Japan/US Collaborative Workshop on Geometric Analysis  2023.8.9  Kazuo Akutagawa, Rafe Mazzeo

     More details

    Event date: 2023.8

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Stanford University   Country:United States  

  2. Metrics maximizing the first eigenvalue of the Laplacian on a closed surface and extra eigenfunction (Mini-course) Invited International conference

    Shin Nayatani

    UK-Japan Winter School "Variational problems in geometry and mathematical physics"  2019.1 

     More details

    Event date: 2019.1

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Leeds University   Country:United Kingdom  

  3. Eigenvalue maximization and space inflation Invited International conference

    Shin Nayatani

    The 4th International Conference on Surfaces, Analysis, and Numerics in Differential Geometry  2024.2.19  Masashi Yasumoto and others

     More details

    Event date: 2024.2

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  4. First-eigenvalue maximization and isometric immersion Invited International conference

    Shin Nayatani

    The 8th China-Japan Geometry Conference  2023.9.10  Rongli Huang and others

     More details

    Event date: 2023.9

    Language:English   Presentation type:Oral presentation (invited, special)  

    Venue:Guangxi Normal University   Country:China  

  5. ラプラシアン第1固有値最大化と埋め込み最適化

    納谷 信

    日本数学会2022年度年会  2022.3  日本数学会

     More details

    Event date: 2022.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

▼display all

Research Project for Joint Research, Competitive Funding, etc. 1

  1. 離散幾何学における非線形問題

    2006

KAKENHI (Grants-in-Aid for Scientific Research) 14

  1. Laplacian-eigenvalue maximization and minimal surface

    Grant number:22H01122  2022.4 - 2027.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

      More details

    Authorship:Principal investigator 

    Grant amount:\15990000 ( Direct Cost: \12300000 、 Indirect Cost:\3690000 )

  2. Laplacian-eigenvalue maximization and minimal surface

    Grant number:23K22393  2022.4 - 2027.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

      More details

    Authorship:Principal investigator 

    Grant amount:\15990000 ( Direct Cost: \12300000 、 Indirect Cost:\3690000 )

  3. 幾何学的剛性理論の深化

    Grant number:20H01802  2020.4 - 2025.3

    科学研究費助成事業  基盤研究(B)

    井関 裕靖, 近藤 剛史, 納谷 信

      More details

    Authorship:Coinvestigator(s) 

    幾何学的対象(以下、空間という)の対称性はその空間に作用する群という代数的対象を用いて記述される。空間の対称性を理解する一つの方法は、どのような群が、どのような空間に、どのように作用するかを明らかにすることである。このような研究は19世紀にまで遡る長い歴史をもつ。本研究が対象とする「群の剛性」とは、その群の適当なクラスの空間への作用がある意味で一意的であることを意味する性質である。この性質は長らく特別なクラスの群が有する非常に特異で神秘的な性質だと考えられてきた。本研究は、この「群の剛性」という現象を、群や空間の無限遠の構造に注目することによって幾何学的な視点から解き明かすことを目指している。
    本研究の当面の目標は、ランダム・ウォークが与えられた有限生成群Gが非正曲率距離空間Yに等長的に作用する場合における、Gの軌道に移植されたランダム・ ウォークの挙動を明らかにし、次のいずれかが成り立つことを示すことであった。
    (1) GのPoisson境界からYの幾何学的無限遠境界へのそれぞれへのGの作用に関して同変な境界写像が存在する。
    (2) Yの中にGの作用で不変な平坦部分空間が存在する。
    すでに、Yが局所コンパクトな場合については、この目標は達成されている。その手法を拡張することにより、局所コンパクトではないが有限なtelescopic次元をもつYに対しても上記の成果を拡張することができた。上の(1)が成立しない場合、Yに移植されたランダム・ウォークの軌道の中で移動距離の増加幅が減少していくようなものが必ず存在する。この軌道から、実際にYとその幾何学的無限遠境界の和集合の中で収束する部分列の存在を示すことが課題であった。これは当初の予想の通り、超極限を繰り返しとる、というこれまでにない新しい手法により解決することができた。収束する部分列をもたないと仮定すると、繰り返し超極限をとり仮想的な収束先を与えることを繰り返すと、収束先にあたる余分な集合がYに付加されていき、得られる空間の次元が上がってしまうことを示すことができた。一方で、Yが有限なtelescopic次元をもつ場合には、Yの超極限の次元が元々のYの次元と一致することも証明できる。問題の列が収束する部分列をもたないとすると、このことから矛盾が導かれる。このようにして得られた成果を論文"Isometric group actions with vanishing rate of escape on CAT(0) spaces"としてまとめ、発表したところ、内外から高い評価を得ることができた。
    新型コロナ感染症の感染拡大の影響で、昨年度半ばまでは研究分担者の納谷信(名古屋大学)および近藤剛史(鹿児島大学)と共同で取り組む研究がほとんど進められなかった。その部分の進捗に遅れが出ている。しかしながら、それ以外の単独で行う研究については、非常に順調に進んでおり、全体として「おおむね順調に進展している」と考えている。
    これまでに、「ランダム・ウォークが与えられた有限生成群Gが非正曲率距離空間Yに等長的に作用する場合における、Gの軌道に移植されたランダム・ ウォークの挙動を明らかにする」という当面の目標は予想通りの成果を挙げて達成されている。今後は、この成果を元に、離散群の「超剛性」という性質の幾何学的背景を明らかにすることに取り組む。
    その最初のステップとして、すでに知られている局所体上の半単純代数群の格子の超剛性をさらに一般化し、かつ、幾何学的な手法で証明することを目指す。局所体上の半単純代数群にはRiemann対称空間あるいはEuclid的ビルディングと呼ばれる非正曲率空間が付随して現れ、代数群の格子はこれらの空間に非常によい作用をもつ。そこで、代数群の格子の非正曲率距離空間への作用に関する超剛性を、Riemann対称空間あるいはEuclid的ビルディングの幾何学的な性質を用いて(代数群の研究に用いられるような代数的な手法は用いずに)示すことを目標とする。
    以下、代数群に付随するRiemann対称空間あるいはEuclid的ビルディングをX、代数群の格子をGとし、Gが非正曲率距離空間Yに等長的に作用しているとする。このとき、GのXおよびYへの作用に関する情報は、それぞれの幾何学的無限遠境界への作用からかなりの部分が復元される。また、GのPoisson境界はXの幾何学的無限遠境界に実現される。そこで、これまでの研究でその存在が保証されているGのPoisson境界からYの幾何学的無限遠境界への同変境界写像をXの幾何学的無限遠境界からYの幾何学的無限遠境界への同変境界写像に拡張し、この写像を通して、GのXおよびYへの作用をある意味で比較することにより、Gの作用の調合性を導くことができると考えている。

  4. 幾何学的剛性理論の深化

    Grant number:23K20213  2020.4 - 2025.3

    科学研究費助成事業  基盤研究(B)

    井関 裕靖, 近藤 剛史, 納谷 信

      More details

    Authorship:Coinvestigator(s) 

    離散群の非正曲率距離空間への等長的作用を、調和写像、ランダム・ウォーク等を用いた幾何学的な視点から研究する。非正曲率距離空間は大きな広がりをもった距離空間であり、離散群が非正曲率距離空間へどのような作用をするかという情報は、離散群の性質を知る上で有用である。本研究では、離散群が「思いの外、非正曲率距離空間に自由に作用できない」という現象を捉えた極めて興味深い性質である「離散群の剛性」あるいは「離散群の固定点性質」の幾何学的な背景を明らかにすること目指す。
    本研究の当面の目標は、ランダム・ウォークが与えられた有限生成群Gが非正曲率距離空間Yに等長的に作用する場合における、Gの軌道に移植されたランダム・ ウォークの挙動を明らかにし、次のいずれかが成り立つことを示すことであった。
    (1) GのPoisson境界からYの幾何学的無限遠境界へのそれぞれへのGの作用に関して同変な境界写像が存在する。
    (2) Yの中にGの作用で不変な平坦部分空間が存在する。
    すでに、Yが局所コンパクトな場合については、この目標は達成されている。その手法を拡張することにより、局所コンパクトではないが有限なtelescopic次元をもつYに対しても上記の成果を拡張することができた。上の(1)が成立しない場合、Yに移植されたランダム・ウォークの軌道の中で移動距離の増加幅が減少していくようなものが必ず存在する。この軌道から、実際にYとその幾何学的無限遠境界の和集合の中で収束する部分列の存在を示すことが課題であった。これは当初の予想の通り、超極限を繰り返しとる、というこれまでにない新しい手法により解決することができた。収束する部分列をもたないと仮定すると、繰り返し超極限をとり仮想的な収束先を与えることを繰り返すと、収束先にあたる余分な集合がYに付加されていき、得られる空間の次元が上がってしまうことを示すことができた。一方で、Yが有限なtelescopic次元をもつ場合には、Yの超極限の次元が元々のYの次元と一致することも証明できる。問題の列が収束する部分列をもたないとすると、このことから矛盾が導かれる。このようにして得られた成果を論文"Isometric group actions with vanishing rate of escape on CAT(0) spaces"としてまとめ、発表したところ、内外から高い評価を得ることができた。
    新型コロナ感染症の感染拡大の影響で、昨年度半ばまでは研究分担者の納谷信(名古屋大学)および近藤剛史(鹿児島大学)と共同で取り組む研究がほとんど進められなかった。その部分の進捗に遅れが出ている。しかしながら、それ以外の単独で行う研究については、非常に順調に進んでおり、全体として「おおむね順調に進展している」と考えている。
    これまでに、「ランダム・ウォークが与えられた有限生成群Gが非正曲率距離空間Yに等長的に作用する場合における、Gの軌道に移植されたランダム・ ウォークの挙動を明らかにする」という当面の目標は予想通りの成果を挙げて達成されている。今後は、この成果を元に、離散群の「超剛性」という性質の幾何学的背景を明らかにすることに取り組む。
    その最初のステップとして、すでに知られている局所体上の半単純代数群の格子の超剛性をさらに一般化し、かつ、幾何学的な手法で証明することを目指す。局所体上の半単純代数群にはRiemann対称空間あるいはEuclid的ビルディングと呼ばれる非正曲率空間が付随して現れ、代数群の格子はこれらの空間に非常によい作用をもつ。そこで、代数群の格子の非正曲率距離空間への作用に関する超剛性を、Riemann対称空間あるいはEuclid的ビルディングの幾何学的な性質を用いて(代数群の研究に用いられるような代数的な手法は用いずに)示すことを目標とする。
    以下、代数群に付随するRiemann対称空間あるいはEuclid的ビルディングをX、代数群の格子をGとし、Gが非正曲率距離空間Yに等長的に作用しているとする。このとき、GのXおよびYへの作用に関する情報は、それぞれの幾何学的無限遠境界への作用からかなりの部分が復元される。また、GのPoisson境界はXの幾何学的無限遠境界に実現される。そこで、これまでの研究でその存在が保証されているGのPoisson境界からYの幾何学的無限遠境界への同変境界写像をXの幾何学的無限遠境界からYの幾何学的無限遠境界への同変境界写像に拡張し、この写像を通して、GのXおよびYへの作用をある意味で比較することにより、Gの作用の調合性を導くことができると考えている。

  5. Global analysis of phase transition by using nano-minimal surface theory

    Grant number:17H06466  2017.6 - 2022.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

    Naito Hisashi

      More details

    Authorship:Coinvestigator(s) 

    A novel crystal structure represented by a carbon structure was analyzed using discrete geometry analysis.
    In order to analyze the crystal structure, which is a typical example of the carbon structure from the viewpoint of discrete geometry analysis, Define a trivalent discrete surface, define its Gaussian curvature and mean curvature, It shows the negative curvature of the structure that was conventionally called ``negative curvature carbon structure'', etc. It was shown that the structure that appears in material science can be described by the method of discrete geometry analysis. In addition, by improving the energy of the graph, we proposed a high-speed calculation method for the curved graphene structure.
    An example is shown in which there is a strong correlation between the curvature of a curved surface and its physical properties.

▼display all

 

Teaching Experience (On-campus) 2

  1. Calculus II

    2011

  2. Calculus I

    2011