2024/03/29 更新

写真a

スギヤマ ユウキ
杉山 友希
SUGIYAMA Yuki
所属
高等研究院 特任助教
大学院理学研究科 特任助教
職名
特任助教

学位 1

  1. 博士(理学) ( 2019年3月   東京大学 ) 

研究キーワード 1

  1. シロイヌナズナ、維管束、ライブセルイメージング

経歴 4

  1. 名古屋大学   高等研究院   特任助教

    2023年4月 - 現在

  2. ケンブリッジ大学   セインズベリー研究所   HFSPO Fellow

    2021年10月 - 2023年3月

  3. ケンブリッジ大学   セインズベリー研究所   日本学術振興会 海外特別研究員

    2020年4月 - 2020年10月

  4. 国立遺伝学研究所   遺伝形質研究系   日本学術振興会 特別研究員PD

    2019年4月 - 2020年3月

所属学協会 2

  1. 日本植物学会

    2014年9月 - 現在

  2. 日本植物生理学会

    2014年3月 - 現在

受賞 4

  1. Long-Term Fellowship

    2021年4月   The International Human Frontier Science Program Organization  

  2. 若手奨励賞

    2020年9月   日本植物学会  

  3. 井上研究奨励賞

    2020年2月   井上科学振興財団  

  4. 研究奨励賞

    2019年3月   東京大学大学院理学系研究科  

 

論文 6

  1. Confined-microtubule assembly shapes three-dimensional cell wall structures in xylem vessels

    Sasaki, T; Saito, K; Inoue, D; Serk, H; Sugiyama, Y; Pesquet, E; Shimamoto, Y; Oda, Y

    NATURE COMMUNICATIONS   14 巻 ( 1 ) 頁: 6987   2023年11月

     詳細を見る

    記述言語:英語   出版者・発行元:Nature Communications  

    Properly patterned deposition of cell wall polymers is prerequisite for the morphogenesis of plant cells. A cortical microtubule array guides the two-dimensional pattern of cell wall deposition. Yet, the mechanism underlying the three-dimensional patterning of cell wall deposition is poorly understood. In metaxylem vessels, cell wall arches are formed over numerous pit membranes, forming highly organized three-dimensional cell wall structures. Here, we show that the microtubule-associated proteins, MAP70-5 and MAP70-1, regulate arch development. The map70-1 map70-5 plants formed oblique arches in an abnormal orientation in pits. Microtubules fit the aperture of developing arches in wild-type cells, whereas microtubules in map70-1 map70-5 cells extended over the boundaries of pit arches. MAP70 caused the bending and bundling of microtubules. These results suggest that MAP70 confines microtubules within the pit apertures by altering the physical properties of microtubules, thereby directing the growth of pit arches in the proper orientation. This study provides clues to understanding how plants develop three-dimensional structure of cell walls.

    DOI: 10.1038/s41467-023-42487-w

    Web of Science

    Scopus

    PubMed

  2. Secondary cell wall patterning—connecting the dots, pits and helices

    Huizhen Xu, Alessandro Giannetti, Yuki Sugiyama, Wenna Zheng, René Schneider, Yoichiro Watanabe, Yoshihisa Oda, Staffan Persson

    Open Biology   12 巻 ( 5 )   2022年5月

     詳細を見る

    掲載種別:研究論文(学術雑誌)   出版者・発行元:The Royal Society  

    All plant cells are encased in primary cell walls that determine plant morphology, but also protect the cells against the environment. Certain cells also produce a secondary wall that supports mechanically demanding processes, such as maintaining plant body stature and water transport inside plants. Both these walls are primarily composed of polysaccharides that are arranged in certain patterns to support cell functions. A key requisite for patterned cell walls is the arrangement of cortical microtubules that may direct the delivery of wall polymers and/or cell wall producing enzymes to certain plasma membrane locations. Microtubules also steer the synthesis of cellulose—the load-bearing structure in cell walls—at the plasma membrane. The organization and behaviour of the microtubule array are thus of fundamental importance to cell wall patterns. These aspects are controlled by the coordinated effort of small GTPases that probably coordinate a Turing's reaction–diffusion mechanism to drive microtubule patterns. Here, we give an overview on how wall patterns form in the water-transporting xylem vessels of plants. We discuss systems that have been used to dissect mechanisms that underpin the xylem wall patterns, emphasizing the VND6 and VND7 inducible systems, and outline challenges that lay ahead in this field.

    DOI: 10.1098/rsob.210208

    その他リンク: https://royalsocietypublishing.org/doi/full-xml/10.1098/rsob.210208

  3. Cell-by-cell dissection of phloem development links a maturation gradient to cell specialization

    Roszak, P; Heo, JO; Blob, B; Toyokura, K; Sugiyama, Y; Balaguer, MAD; Lau, WWY; Hamey, F; Cirrone, J; Madej, E; Bouatta, AM; Wang, X; Guichard, M; Ursache, R; Tavares, H; Verstaen, K; Wendrich, J; Melnyk, CW; Oda, Y; Shasha, D; Ahnert, SE; Saeys, Y; De Rybel, B; Heidstra, R; Scheres, B; Grossmann, G; Mähönen, AP; Denninger, P; Göttgens, B; Sozzani, R; Birnbaum, KD; Helariutta, Y

    SCIENCE   374 巻 ( 6575 ) 頁: 1577 - +   2021年12月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Science  

    In the plant meristem, tissue-wide maturation gradients are coordinated with specialized cell networks to establish various developmental phases required for indeterminate growth. Here, we used single-cell transcriptomics to reconstruct the protophloem developmental trajectory from the birth of cell progenitors to terminal differentiation in the Arabidopsis thaliana root. PHLOEM EARLY DNA-BINDING-WITH-ONE-FINGER (PEAR) transcription factors mediate lineage bifurcation by activating guanosine triphosphatase signaling and prime a transcriptional differentiation program. This program is initially repressed by a meristem-wide gradient of PLETHORA transcription factors. Only the dissipation of PLETHORA gradient permits activation of the differentiation program that involves mutual inhibition of early versus late meristem regulators. Thus, for phloem development, broad maturation gradients interface with cell-type-specific transcriptional regulators to stage cellular differentiation.

    DOI: 10.1126/science.aba5531

    Web of Science

    Scopus

    PubMed

  4. A Rho-actin signaling pathway shapes cell wall boundaries in Arabidopsis xylem vessels 査読有り 国際誌

    Sugiyama Y., Nagashima Y., Wakazaki M., Sato M., Toyooka K., Fukuda H., Oda Y.

    Nature Communications   10 巻 ( 1 ) 頁: 468 - 468   2019年1月

     詳細を見る

    記述言語:英語   出版者・発行元:Nature Communications  

    Patterned cell wall deposition is crucial for cell shapes and functions. In Arabidopsis xylem vessels, ROP11 GTPase locally inhibits cell wall deposition through microtubule disassembly, inducing pits in cell walls. Here, we show that an additional ROP signaling pathway promotes cell wall growth at pit boundaries. Two proteins, Boundary of ROP domain1 (BDR1) and Wallin (WAL), localize to pit boundaries and regulate cell wall growth. WAL interacts with F-actin and promotes actin assembly at pit boundaries while BDR1 is a ROP effector. BDR1 interacts with WAL, suggesting that WAL could be recruited to the plasma membrane by a ROP-dependent mechanism. These results demonstrate that BDR1 and WAL mediate a ROP-actin pathway that shapes pit boundaries. The study reveals a distinct machinery in which two closely associated ROP pathways oppositely regulate cell wall deposition patterns for the establishment of tiny but highly specialized cell wall domains.

    DOI: 10.1038/s41467-019-08396-7

    Scopus

    PubMed

  5. A Novel Plasma Membrane-Anchored Protein Regulates Xylem Cell-Wall Deposition through Microtubule-Dependent Lateral Inhibition of Rho GTPase Domains 査読有り

    Sugiyama Y., Wakazaki M., Toyooka K., Fukuda H., Oda Y.

    Current Biology   27 巻 ( 16 ) 頁: 2522 - +   2017年8月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Current Biology  

    Spatial control of cell-wall deposition is essential for determining plant cell shape [1]. Rho-type GTPases, together with the cortical cytoskeleton, play central roles in regulating cell-wall patterning [2]. In metaxylem vessel cells, which are the major components of xylem tissues, active ROP11 Rho GTPases form oval plasma membrane domains that locally disrupt cortical microtubules, thereby directing the formation of oval pits in secondary cell walls [3–5]. However, the regulatory mechanism that determines the planar shape of active Rho of Plants (ROP) domains is still unknown. Here we show that IQD13 associates with cortical microtubules and the plasma membrane to laterally restrict the localization of ROP GTPase domains, thereby directing the formation of oval secondary cell-wall pits. Loss and overexpression of IQD13 led to the formation of abnormally round and narrow secondary cell-wall pits, respectively. Ectopically expressed IQD13 increased the presence of parallel cortical microtubules by promoting microtubule rescue. A reconstructive approach revealed that IQD13 confines the area of active ROP domains within the lattice of the cortical microtubules, causing narrow ROP domains to form. This activity required the interaction of IQD13 with the plasma membrane. These findings suggest that IQD13 positively regulates microtubule dynamics as well as their linkage to the plasma membrane, which synergistically confines the area of active ROP domains, leading to the formation of oval secondary cell-wall pits. This finding sheds light on the role of microtubule-plasma membrane linkage as a lateral fence that determines the planar shape of Rho GTPase domains.

    DOI: 10.1016/j.cub.2017.06.059

    Web of Science

    Scopus

    PubMed

  6. Novel coiled-coil proteins regulate exocyst association with cortical microtubules in xylem cells via the conserved oligomeric golgi-complex 2 protein. 査読有り

    Oda Y, Iida Y, Nagashima Y, Sugiyama Y, Fukuda H

    Plant & cell physiology   56 巻 ( 2 ) 頁: 277 - 286   2015年2月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    DOI: 10.1093/pcp/pcu197

    Web of Science

    PubMed

▼全件表示

講演・口頭発表等 3

  1. S03-3 Exploring autolytic mechanisms of sieve elements with an improved phloem induction system 招待有り

    杉山友希、小田祥久

    日本植物生理学会第65回年会  2024年3月17日 

     詳細を見る

    記述言語:英語   会議種別:シンポジウム・ワークショップ パネル(指名)  

  2. P8 篩要素分化系におけるオルガネラ分解の解析

    杉山友希, 小田祥久

    植物細胞骨格研究会2023  2023年9月 

     詳細を見る

    会議種別:ポスター発表  

  3. PO-649 Revealing autolytic mechanisms of sieve elements by an improved induction system

    Yuki Sugiyama, Ilya Belevich, Satoshi Fujita, Kaori Furuta, Bernhard Blob, Eija Jokitaro, Sebastian Schornack, Yoshihisa Oda, Ykä Herariutta

    The 33rd International Conference on Arabidopsis Research  2023年6月 

     詳細を見る

    記述言語:英語   会議種別:ポスター発表  

科研費 3

  1. 新規分化誘導系によって実現する篩要素のセルバイオロジー

    研究課題/研究課題番号:23K19366  2024年4月 - 2026年3月

    科学研究費助成事業   若手研究

  2. 新規分化誘導系による篩要素の選択的自己分解機構の解明

    研究課題/研究課題番号:23K19366  2023年8月 - 2025年3月

    科学研究費助成事業  研究活動スタート支援

    杉山 友希

      詳細を見る

    担当区分:研究代表者 

    配分額:2860000円 ( 直接経費:2200000円 、 間接経費:660000円 )

    篩管の構成単位である篩要素は、光合成産物等の輸送に適した構造と成るために細胞質やオルガネラ、細胞壁の一部までを失う。しかし、この劇的な変化の分子機構はほとんど明らかになっていない。その主な原因は、篩要素は細胞サイズが小さくかつ組織の深くに位置するために、明瞭なライブイメージングが困難なことにある。私は、VISUALと呼ばれる手法を独自に改良し、シロイヌナズナの胚軸に大きくて観察しやすい篩要素を形成させることに成功した。本研究では、この独自の分化誘導系の使用を本格化させ、篩要素における細胞質・オルガネラ分解の分子基盤を解明する。

  3. 細胞膜ドメインの制御:新規微小管付随タンパク質が細胞の形態形成に担う役割の解明

    研究課題/研究課題番号:18J12667  2018年4月 - 2020年3月

    日本学術振興会  科学研究費助成事業  特別研究員奨励費