Updated on 2024/04/11

写真a

 
ROKUJO Hiroki
 
Organization
Institute of Materials and Systems for Sustainability Advanced Measurement Technology Center (AMTC) Elementary Particle Measurements Section Assistant Professor
Graduate School
Graduate School of Science
Title
Assistant Professor
External link

Degree 1

  1. 博士(理学) ( 2013.3   神戸大学 ) 

Research Areas 1

  1. Natural Science / Experimental studies related to particle-, nuclear-, cosmic ray and astro-physics

Research History 3

  1. Nagoya University   Institute of Materials and Systems for Sustainability Advanced Measurement Technology Center   Assistant Professor

    2023.4

      More details

  2. Nagoya University   Institute of Materials and Systems for Sustainability Advanced Measurement Technology Center   Designated assistant professor

    2020.4 - 2023.3

      More details

  3. Nagoya University   Graduate School of Science   Researcher

    2018.4 - 2020.3

      More details

Professional Memberships 2

  1. THE PHYSICAL SOCIETY OF JAPAN

      More details

  2. THE SOCIETY OF PHOTOGRAPHY AND IMAGING OF JAPAN

      More details

Committee Memberships 3

  1. The 38th International Cosmic Ray Conference (ICRC2023)   local organizing committee  

    2022.8 - 2024.4   

      More details

    Committee type:Academic society

  2. 日本写真学会    大会実行委員  

    2022.4   

      More details

    Committee type:Academic society

  3. 20th International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2018)   local organizing committee  

    2017.11 - 2018.5   

      More details

    Committee type:Academic society

Awards 3

  1. 2022年度日本写真学会 進歩賞

    2022.6   日本写真学会   宇宙物理学、素粒子物理学また原子核乾板技術の進歩と応用

    六條宏紀

     More details

  2. 新学術領域「ニュートリノで拓く素粒子と宇宙」研究会2020 Best Poster Awards

    2020.12   Atmospheric Gamma-ray Observation on GRAINE 2018 Balloon Experiment and Comparison with HKKM Model

    Hiroki Rokujo

     More details

  3. 2019年度写真学会年次大会 編集長賞

    2019.7   日本写真学会   気球搭載エマルション望遠鏡のγ線イメージング性能

    六條宏紀

     More details

 

Papers 49

  1. First Emulsion γ-Ray Telescope Imaging of the Vela Pulsar by the GRAINE 2018 Balloon-borne Experiment Reviewed

    Satoru Takahashi, Shigeki Aoki, Atsushi Iyono, Ayaka Karasuno, Kohichi Kodama, Ryosuke Komatani, Masahiro Komatsu, Masahiro Komiyama, Kenji Kuretsubo, Toshitsugu Marushima, Syota Matsuda, Kunihiro Morishima, Misaki Morishita, Naotaka Naganawa, Mitsuhiro Nakamura, Motoya Nakamura, Takafumi Nakamura, Yuya Nakamura, Noboru Nakano, Toshiyuki Nakano, Kazuma Nakazawa, Akira Nishio, Miyuki Oda, Hiroki Rokujo, Osamu Sato, Kou Sugimura, Atsumu Suzuki, Mayu Torii, Saya Yamamoto, Masahiro Yoshimoto

    The Astrophysical Journal   Vol. 960 ( 1 ) page: 47 - 47   2024.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:American Astronomical Society  

    Abstract

    We are developing the Gamma-Ray Astro-Imager with Nuclear Emulsion project, designed for 10 MeV–100 GeV cosmic γ-ray observations with a high angular resolution (5′/0.°08 at 1–2 GeV) and a polarization-sensitive large-aperture (∼10 m<sup>2</sup>) emulsion telescope for repeated long-duration balloon flights. In 2018, a balloon-borne experiment was carried out in Australia with a 0.38 m<sup>2</sup> sensitive area and a flight duration of 17.4 hr, including 6.7 hr of Vela observations. Significant improvements compared with the 2015 balloon-borne experiment were achieved by a factor of 5, including both an increase in effective area × time and a reduction in the background contribution. We aimed to demonstrate the telescope’s overall performance based on detection and imaging of a known γ-ray source, the Vela pulsar. A robust detection of the Vela pulsar was achieved with a 68% containment radius of 0.°42, at a significance of 6σ, at energies above 80 MeV. The resulting angular profile is consistent with that of a pointlike source. We achieved the current best imaging performance of the Vela pulsar using an emulsion γ-ray telescope with the highest angular resolution of any γ-ray telescope to date.

    DOI: 10.3847/1538-4357/ad0973

    Web of Science

    Scopus

    researchmap

    Other Link: https://iopscience.iop.org/article/10.3847/1538-4357/ad0973/pdf

  2. Search for dark photons with the FASER detector at the LHC Reviewed

    Abreu, H; Anders, J; Antel, C; Ariga, A; Ariga, T; Atkinson, J; Bernlochner, FU; Boeckh, T; Boyd, J; Brenner, L; Cadouxc, F; Casper, DW; Cavanaghj, C; Chen, X; Coccaro, A; D'Onofrioj, M; Desai, A; Dmitrievsky, S; Dozen, C; Favre, Y; Fellersm, D; Feng, JL; Fenoglio, CA; Ferrere, D; Galon, I; Gibson, S; Gonzalez-Sevillac, S; Gornushkin, Y; Gwilliam, C; Hayakawa, D; Hsu, SC; Hu, Z; Iacobucci, G; Inada, T; Jakobsen, S; Joos, H; Kajomovitz, E; Kawahara, H; Keyken, A; Kling, F; Köck, D; Kose, U; Kotitsa, R; Kuehn, S; Lefebvre, H; Levinson, L; Li, K; Liu, JF; MacDonald, J; Magliocca, C; Martinelli, F; McFayden, J; Meehan, S; Milanesio, M; Moretti, T; Munker, M; Nakamura, M; Nakano, T; Neuhaus, F; Nevay, L; Ohashi, K; Otono, H; Pang, H; Paolozzi, L; Petersen, B; Prim, M; Queitsch-Maitland, M; Rokujo, H; Ruiz-Choliz, E; Sabater-Iglesias, J; Salfeld-Nebgen, J; Sato, O; Scampoli, P; Schmieden, K; Schott, M; Sfyrla, A; Shively, S; Takubo, Y; Tarannum, N; Theiner, O; Torrence, E; Trojanowski, S; Vasina, S; Vormwald, B; Wang, D; Welch, E; Zahorec, S; Zambito, S

    PHYSICS LETTERS B   Vol. 848   2024.1

     More details

    Publisher:Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics  

    The FASER experiment at the LHC is designed to search for light, weakly-interacting particles produced in proton-proton collisions at the ATLAS interaction point that travel in the far-forward direction. The first results from a search for dark photons decaying to an electron-positron pair, using a dataset corresponding to an integrated luminosity of 27.0 fb−1 collected at centre-of-mass energy s=13.6 TeV in 2022 in LHC Run 3, are presented. No events are seen in an almost background-free analysis, yielding world-leading constraints on dark photons with couplings ϵ∼2×10−5−1×10−4 and masses ∼17 MeV−70 MeV. The analysis is also used to probe the parameter space of a massive gauge boson from a U(1)B−L model, with couplings gB−L∼5×10−6−2×10−5 and masses ∼15 MeV−40 MeV excluded for the first time.

    DOI: 10.1016/j.physletb.2023.138378

    Web of Science

    Scopus

  3. Development of proton beam irradiation system for the NA65/DsTau experiment Reviewed

    Shigeki Aoki, Akitaka Ariga, Tomoko Ariga, Nikolaos Charitonidis, Sergey Dmitrievsky, Radu Dobre, Elena Firu, Yury Gornushkin, Ali Murat Guler, Daiki Hayakawa, Koichi Kodama, Masahiro Komatsu, Umut Kose, Mădălina-Mihaela Miloi, Manato Miura, Mitsuhiro Nakamura, Toshiyuki Nakano, Alina-Tania Neagu, Toranosuke Okumura, Canay Oz, Hiroki Rokujo, Osamu Sato, Svetlana Vasina, Junya Yoshida, Masahiro Yoshimoto, Emin Yuksel

    Journal of Instrumentation   Vol. 18 ( 10 ) page: P10008 - P10008   2023.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:IOP Publishing  

    Abstract

    Tau neutrino is the least studied lepton of the Standard Model (SM). The NA65/DsTau experiment targets to investigate D<sub>s</sub>, the parent particle of the ν<sub>τ</sub>, using the nuclear emulsion-based detector and to decrease the systematic uncertainty of ν<sub>τ</sub> flux prediction from over 50 % to 10 % for future beam dump experiments. In the experiment, the emulsion detectors are exposed to the CERN SPS 400 GeV proton beam. To provide optimal conditions for the reconstruction of interactions, the protons are required to be uniformly distributed over the detector's surface with an average density of 10<sup>5</sup> cm<sup>-2</sup> and the fluctuation of less than 10%. To address this issue, we developed a new proton irradiation system called the target mover. The new target mover provided irradiation with a proton density of 1.01 × 10<sup>5</sup> cm<sup>-2</sup> and the density fluctuation of 1.9 ± 0.3% in the DsTau 2021 run.

    DOI: 10.1088/1748-0221/18/10/P10008

    Web of Science

    Scopus

    researchmap

    Other Link: https://iopscience.iop.org/article/10.1088/1748-0221/18/10/P10008/pdf

  4. First Direct Observation of Collider Neutrinos with FASER at the LHC Reviewed

    Henso Abreu, John Anders, Claire Antel, Akitaka Ariga, Tomoko Ariga, Jeremy Atkinson, Florian U. Bernlochner, Tobias Blesgen, Tobias Boeckh, Jamie Boyd, Lydia Brenner, Franck Cadoux, David W. Casper, Charlotte Cavanagh, Xin Chen, Andrea Coccaro, Ansh Desai, Sergey Dmitrievsky, Monica D’Onofrio, Yannick Favre, Deion Fellers, Jonathan L. Feng, Carlo Alberto Fenoglio, Didier Ferrere, Stephen Gibson, Sergio Gonzalez-Sevilla, Yuri Gornushkin, Carl Gwilliam, Daiki Hayakawa, Shih-Chieh Hsu, Zhen Hu, Giuseppe Iacobucci, Tomohiro Inada, Sune Jakobsen, Hans Joos, Enrique Kajomovitz, Hiroaki Kawahara, Alex Keyken, Felix Kling, Daniela Köck, Umut Kose, Rafaella Kotitsa, Susanne Kuehn, Helena Lefebvre, Lorne Levinson, Ke Li, Jinfeng Liu, Jack MacDonald, Chiara Magliocca, Fulvio Martinelli, Josh McFayden, Matteo Milanesio, Dimitar Mladenov, Théo Moretti, Magdalena Munker, Mitsuhiro Nakamura, Toshiyuki Nakano, Marzio Nessi, Friedemann Neuhaus, Laurie Nevay, Hidetoshi Otono, Hao Pang, Lorenzo Paolozzi, Brian Petersen, Francesco Pietropaolo, Markus Prim, Michaela Queitsch-Maitland, Filippo Resnati, Hiroki Rokujo, Elisa Ruiz-Choliz, Jorge Sabater-Iglesias, Osamu Sato, Paola Scampoli, Kristof Schmieden, Matthias Schott, Anna Sfyrla, Savannah Shively, Yosuke Takubo, Noshin Tarannum, Ondrej Theiner, Eric Torrence, Serhan Tufanli, Svetlana Vasina, Benedikt Vormwald, Di Wang, Eli Welch, Stefano Zambito

    Physical Review Letters   Vol. 131 ( 3 ) page: 031801   2023.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:American Physical Society (APS)  

    DOI: 10.1103/PhysRevLett.131.031801

    Web of Science

    Scopus

    PubMed

    researchmap

    Other Link: http://harvest.aps.org/v2/journals/articles/10.1103/PhysRevLett.131.031801/fulltext

  5. Updated constraints on sterile neutrino mixing in the OPERA experiment using a new ν <inf>e</inf> identification method Reviewed

    Agafonova N., Alexandrov A., Anokhina A., Aoki S., Ariga A., Ariga T., Bertolin A., Bozza C., Brugnera R., Buontempo S., Chernyavskiy M., Chukanov A., Consiglio L., D’Ambrosio N., De Lellis G., De Serio M., del Amo Sanchez P., Di Crescenzo A., Di Ferdinando D., Di Marco N., Dmitrievsky S., Dracos M., Duchesneau D., Dusini S., Dzhatdoev T., Ebert J., Ereditato A., Fini R.A., Fukuda T., Galati G., Garfagnini A., Gentile V., Goldberg J., Gorbunov S., Gornushkin Y., Grella G., Guler A.M., Gustavino C., Hagner C., Hara T., Hayakawa T., Hollnagel A., Ishiguro K., Iuliano A., Jakovčć K., Jollet C., Kamiscioglu C., Kamiscioglu M., Kim S.H., Kitagawa N., Kliček B., Kodama K., Komatsu M., Kose U., Kreslo I., Laudisio F., Lauria A., Longhin A., Loverre P., Malgin A., Mandrioli G., Matsuo T., Matveev V., Mauri N., Medinaceli E., Meregaglia A., Mikado S., Miyanishi M., Mizutani F., Monacelli P., Montesi M.C., Morishima K., Muciaccia M.T., Naganawa N., Naka T., Nakamura M., Nakano T., Niwa K., Ogawa S., Okateva N., Ozaki K., Paoloni A., Paparella L., Park B.D., Pasqualini L., Pastore A., Patrizii L., Pessard H., Podgrudkov D., Polukhina N., Pozzato M., Pupilli F., Roda M., Roganova T., Rokujo H., Rosa G., Ryazhskaya O., Sato O., Schembri A., Shakiryanova I.

    Progress of Theoretical and Experimental Physics   Vol. 2023 ( 3 )   2023.3

     More details

    Language:English   Publisher:Progress of Theoretical and Experimental Physics  

    This paper describes a new νe identification method specifically designed to improve the low-energy (< 30 GeV) νe identification efficiency attained by enlarging the emulsion film scanning volume with the next-generation emulsion readout system. A relative increase of 25–70% in the νe low-energy region is expected, leading to improvements in the OPERA sensitivity to neutrino oscillations in the framework of the 3 + 1 model. The method is applied to a subset of data where the detection efficiency increase is expected to be more relevant, and one additional νe candidate is found. The analysis combined with the ντ appearance results improves the upper limit on sin 22θμe to 0.016 at 90% C.L. in the MiniBooNE allowed region Δm241 ∼ 0.3 eV2

    DOI: 10.1093/ptep/ptad012

    Scopus

  6. The Forward Physics Facility at the High-Luminosity LHC Reviewed

    Feng, JL; Kling, F; Reno, MH; Rojo, J; Soldin, D; Anchordoqui, LA; Boyd, J; Ismail, A; Harland-Lang, L; Kelly, KJ; Pandey, V; Trojanowski, S; Tsai, YD; Alameddine, JM; Araki, T; Ariga, A; Ariga, T; Asai, K; Bacchetta, A; Balazs, K; Barr, AJ; Battistin, M; Bian, JM; Bertone, C; Bai, WD; Bakhti, P; Balantekin, AB; Barman, B; Batell, B; Bauer, M; Bauer, B; Becker, M; Berlin, A; Bertuzzo, E; Bhattacharya, A; Bonvini, M; Boogert, ST; Boyarsky, A; Bramante, J; Brdar, V; Carmona, A; Casper, DW; Celiberto, FG; Cerutti, F; Chachamis, G; Chauhan, G; Citron, M; Copello, E; Corso, JP; Darmé, L; D'Agnolo, RT; Darvishi, N; Das, A; De Lellis, G; De Roeck, A; de Vries, J; Dembinski, HP; Demidov, S; DeNiverville, P; Denton, PB; Deppisch, FF; Dev, PSB; Di Crescenzo, A; Dienes, KR; Diwan, MV; Dreiner, HK; Du, Y; Dutta, B; Duwentäster, P; Elie, L; Ellis, SAR; Enberg, R; Farzan, Y; Fieg, M; Foguel, AL; Foldenauer, P; Foroughi-Abari, S; Fortin, JF; Friedland, A; Fuchs, E; Fucilla, M; Gallmeister, K; Garcia, A; Canal, CAG; Garzelli, MV; Gauld, R; Ghosh, S; Ghoshal, A; Gibson, S; Giuli, F; Gonçalves, VP; Gorbunov, D; Goswami, S; Grau, S; Günther, JY; Guzzi, M; Haas, A; Hakulinen, T; Harris, SP; Harz, J; Herrera, JCH; Hill, CS; Hirsch, M; Hobbs, TJ; Höche, S; Hryczuk, A; Huang, F; Inada, T; Infantino, A; Ismail, A; Jacobsson, R; Jana, S; Jeong, YS; Jho, Y; Kalashnikov, D; Kärkkäinen, TJ; Keppel, C; Kim, J; Klasen, M; Klein, SR; Ko, P; Köhler, D; Komatsu, M; Kovarík, K; Kulkarni, S; Kumar, J; Kumar, K; Kuo, JL; Krauss, F; Kusina, A; Laletin, M; Le Roux, C; Lee, SJ; Lee, HS; Lefebvre, H; Li, JM; Li, SL; Li, YC; Liu, W; Liu, Z; Lonjon, M; Lyu, KF; Maciula, R; Abraham, RM; Masouminia, MR; McFayden, J; Mikulenko, O; Mohammed, MMA; Mohan, KA; Morfín, JG; Mosel, U; Mosny, M; Muzakka, KF; Nadolsky, P; Nakano, T; Nangia, S; Cornago, AN; Nevay, LJ; Ninin, P; Nocera, ER; Nomura, T; Nunes, R; Okada, N; Olness, F; Osborne, J; Otono, H; Ovchynnikov, M; Papa, A; Pei, JL; Peon, G; Perez, G; Pickering, L; Plätzer, S; Plestid, R; Poddar, TK; Quílez, P; Rai, M; Rajaee, M; Raut, D; Reimitz, P; Resnati, F; Rhode, W; Richardson, P; Ritz, A; Rokujo, H; Roszkowski, L; Ruhe, T; Ruiz, R; Sabate-Gilarte, M; Sandrock, A; Sarcevic, I; Sarkar, S; Sato, O; Scherb, C; Schienbein, I; Schulz, H; Schwaller, P; Sciutto, SJ; Sengupta, D; Shchutska, L; Shimomura, T; Silvetti, F; Sinha, K; Sjöstrand, T; Sobczyk, JT; Song, HY; Soriano, JF; Soreq, Y; Stasto, A; Stuart, D; Su, SF; Su, W; Szczurek, A; Tabrizi, Z; Takubo, Y; Taoso, M; Thomas, B; Thonet, P; Tuckler, D; Vera, AS; Vincke, H; Vishnudath, KN; Wang, ZS; Winkler, MW; Wu, WJ; Xie, KP; Xu, XJ; You, T; Yu, JY; Yu, JH; Zapp, K; Zhang, YC; Zhang, Y; Zhou, GH; Funchal, RZ

    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS   Vol. 50 ( 3 )   2023.1

     More details

    Language:English   Publisher:Journal of Physics G: Nuclear and Particle Physics  

    High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential.

    DOI: 10.1088/1361-6471/ac865e

    Web of Science

    Scopus

  7. Measurements of protons and charged pions emitted from ν<sub>μ</sub> charged-current interactions on iron at a mean neutrino energy of 1.49 GeV using a nuclear emulsion detector Reviewed

    Oshima, H; Matsuo, T; Ali, A; Aoki, S; Berns, L; Fukuda, T; Hanaoka, Y; Hayato, Y; Hiramoto, A; Ichikawa, AK; Inamoto, H; Kasumi, A; Kawahara, H; Kikawa, T; Komatani, R; Komatsu, M; Kuretsubo, K; Marushima, T; Matsumoto, H; Mikado, S; Minamino, A; Mizuno, K; Morimoto, Y; Morishima, K; Naganawa, N; Naiki, M; Nakamura, M; Nakamura, Y; Nakano, T; Nakaya, T; Nishio, A; Odagawa, T; Ogawa, S; Rokujo, H; Sato, O; Shibuya, H; Sugimura, K; Suzui, L; Suzuki, Y; Takagi, H; Takahashi, S; Takao, T; Tanihara, Y; Watanabe, M; Yamada, K; Yasutome, K; Yokoyama, M; Yoshimoto, M; Collaboration, NCN

    PHYSICAL REVIEW D   Vol. 106 ( 3 )   2022.8

     More details

    Language:English   Publisher:Physical Review D  

    This study conducted an analysis of muons, protons, and charged pions emitted from νμ charged-current interactions on iron using a nuclear emulsion detector. The emulsion detector with a 65 kg iron target was exposed to a neutrino beam corresponding to 4.0×1019 protons on target with a mean neutrino energy of 1.49 GeV. The measurements were performed at a momentum threshold of 200 (50) MeV/c for protons (pions), which are the lowest momentum thresholds attempted up to now. The measured quantities are the multiplicities, emission angles, and momenta of the muons, protons, and charged pions. In addition to these inclusive measurements, exclusive measurements such as the muon-proton emission-angle correlations of specific channels and the opening angle between the protons of CC0π2p events were performed. The data were compared to Monte Carlo predictions and some significant differences were observed. The results of the study demonstrate the capability of detailed measurements of neutrino-nucleus interactions using a nuclear emulsion detector to improve neutrino interaction models.

    DOI: 10.1103/PhysRevD.106.032016

    Web of Science

    Scopus

  8. The tracking detector of the FASER experiment Reviewed

    Abreu H., Antel C., Ariga A., Ariga T., Bernlochner F., Boeckh T., Boyd J., Brenner L., Cadoux F., Casper D.W., Cavanagh C., Chen X., Coccaro A., Crespo-Lopez O., Dmitrievsky S., D'Onofrio M., Dozen C., Ezzat A., Favre Y., Fellers D., Feng J.L., Ferrere D., Gibson S., Gonzalez-Sevilla S., Gornushkin Y., Gwilliam C., Hsu S.C., Hu Z., Iacobucci G., Inada T., Jakobsen S., Kajomovitz E., Kling F., Kose U., Kuehn S., Lefebvre H., Levinson L., Li K., Liu J., Magliocca C., McFayden J., Milanesio M., Meehan S., Mladenov D., Moretti T., Munker M., Nakamura M., Nakano T., Nessi M., Neuhaus F., Nevay L., Otono H., Pandini C., Pang H., Paolozzi L., Petersen B., Pietropaolo F., Prim M., Queitsch-Maitland M., Resnati F., Rizzi C., Rokujo H., Ruiz-Choliz E., Salfeld-Nebgen J., Sato O., Scampoli P., Schmieden K., Schott M., Sfyrla A., Shively S., Spencer J., Takubo Y., Tarannum N., Theiner O., Torrence E., Tufanli S., Vasina S., Vormwald B., Wang D.

    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment   Vol. 1034   2022.7

     More details

    Language:English   Publisher:Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment  

    FASER is a new experiment designed to search for new light weakly-interacting long-lived particles (LLPs) and study high-energy neutrino interactions in the very forward region of the LHC collisions at CERN. The experimental apparatus is situated 480 m downstream of the ATLAS interaction-point aligned with the beam collision axis. The FASER detector includes four identical tracker stations constructed from silicon microstrip detectors. Three of the tracker stations form a tracking spectrometer, and enable FASER to detect the decay products of LLPs decaying inside the apparatus, whereas the fourth station is used for the neutrino analysis. The spectrometer has been installed in the LHC complex since March 2021, while the fourth station is not yet installed. FASER will start physics data taking when the LHC resumes operation in early 2022. This paper describes the design, construction and testing of the tracking spectrometer, including the associated components such as the mechanics, readout electronics, power supplies and cooling system.

    DOI: 10.1016/j.nima.2022.166825

    Scopus

  9. The SHiP experiment at the proposed CERN SPS Beam Dump Facility Reviewed

    Ahdida, C; Akmete, A; Albanese, R; Alt, J; Alexandrov, A; Anokhina, A; Aoki, S; Arduini, G; Atkin, E; Azorskiy, N; Back, JJ; Bagulya, A; Dos Santos, FB; Baranov, A; Bardou, F; Barker, GJ; Battistin, M; Bauche, J; Bay, A; Bayliss, V; Berdnikov, AY; Berdnikov, YA; Betancourt, C; Bezshyiko, I; Bezshyyko, O; Bick, D; Bieschke, S; Blanco, A; Boehm, J; Bogomilov, M; Boiarska, I; Bondarenko, K; Bonivento, WM; Borburgh, J; Boyarsky, A; Brenner, R; Breton, D; Brignoli, A; Büscher, V; Buonaura, A; Buontempo, S; Cadeddu, S; Calviani, M; Campanelli, M; Casolino, M; Charitonidis, N; Chau, P; Chauveau, J; Chepurnov, A; Chernyavskiy, M; Choi, KY; Chumakov, A; Climescu, M; Conaboy, A; Congedo, L; Cornelis, K; Cristinziani, M; Crupano, A; Dallavalle, GM; Datwyler, A; D'Ambrosio, N; D'Appollonio, G; de Asmundis, R; Saraiva, JD; De Lellis, G; de Magistris, M; De Roeck, A; De Serio, M; De Simone, D; Dedenko, L; Dergachev, P; Di Crescenzo, A; Di Giulio, L; Dib, C; Dijkstra, H; Dmitrenko, V; Dougherty, LA; Dolmatov, A; Donskov, S; Drohan, V; Dubreuil, A; Durhan, O; Ehlert, M; Elikkaya, E; Enik, T; Etenko, A; Fedin, O; Fedotovs, F; Ferrillo, M; Ferro-Luzzi, M; Filippov, K; Fini, RA; Fischer, H; Fonte, P; Franco, C; Fraser, M; Fresa, R; Froeschl, R; Fukuda, T; Galati, G; Gall, J; Gatignon, L; Gavrilov, G; Gentile, V; Goddard, B; Golinka-Bezshyyko, L; Golovatiuk, A; Golovtsov, V; Golubkov, D; Golutvin, A; Gorbounov, P; Gorbunov, D; Gorbunov, S; Gorkavenko, V; Gorshenkov, M; Grachev, V; Grandchamp, AL; Graverini, E; Grenard, JL; Grenier, D; Grichine, V; Gruzinskii, N; Guler, AM; Guz, Y; Haefeli, GJ; Hagner, C; Hakobyan, H; Harris, IW; van Herwijnen, E; Hessler, C; Hollnagel, A; Hosseini, B; Hushchyn, M; Iaselli, G; Iuliano, A; Jacobsson, R; Jokovic, D; Jonker, M; Kadenko, I; Kain, V; Kaiser, B; Kamiscioglu, C; Karpenkov, D; Kershaw, K; Khabibullin, M; Khalikov, E; Khaustov, G; Khoriauli, G; Khotyantsev, A; Kim, YG; Kim, V; Kitagawa, N; Ko, JW; Kodama, K; Kolesnikov, A; Kolev, DI; Kolosov, V; Komatsu, M; Kono, A; Konovalova, N; Kormannshaus, S; Korol, I; Korol'ko, I; Korzenev, A; Platia, EK; Kovalenko, S; Krasilnikova, I; Kudenko, Y; Kurbatov, E; Kurbatov, P; Kurochka, V; Kuznetsova, E; Lacker, HM; Lamont, M; Lantwin, O; Lauria, A; Lee, KS; Lee, KY; Leonardo, N; Lévy, JM; Loschiavo, VP; Lopes, L; Sola, EL; Lyons, F; Lyubovitskij, V; Maalmi, J; Magnan, AM; Maleev, V; Malinin, A; Manabe, Y; Managadze, AK; Manfredi, M; Marsh, S; Marshall, AM; Mefodev, A; Mermod, P; Miano, A; Mikado, S; Mikhaylov, Y; Mikulenko, A; Milstead, DA; Mineev, O; Montesi, MC; Morishima, K; Movchan, S; Muttoni, Y; Naganawa, N; Nakamura, M; Nakano, T; Nasybulin, S; Ninin, P; Nishio, A; Obinyakov, B; Ogawa, S; Okateva, N; Osborne, J; Ovchynnikov, M; Owtscharenko, N; Owen, PH; Pacholek, P; Park, BD; Pastore, A; Patel, M; Pereyma, D; Perillo-Marcone, A; Petkov, GL; Petridis, K; Petrov, A; Podgrudkov, D; Poliakov, V; Polukhina, N; Prieto, JP; Prokudin, M; Prota, A; Quercia, A; Rademakers, A; Rakai, A; Ratnikov, F; Rawlings, T; Redi, F; Reghunath, A; Ricciardi, S; Rinaldesi, M; Rodin, V; Rodin, V; Robbe, P; Cavalcante, ABR; Roganova, T; Rokujo, H; Rosa, G; Ruchayskiy, O; Ruf, T; Samoylenko, V; Samsonov, V; Galan, FS; Diaz, PS; Ull, AS; Sato, O; Savchenko, ES; Schliwinski, JS; Schmidt-Parzefall, W; Schumann, M; Serra, N; Sgobba, S; Shadura, O; Shakin, A; Shaposhnikov, M; Shatalov, P; Shchedrina, T; Shchutska, L; Shevchenko, V; Shibuya, H; Shihora, L; Shirobokov, S; Shustov, A; Silverstein, SB; Simone, S; Simoniello, R; Skorokhvatov, M; Smirnov, S; Soares, G; Sohn, JY; Sokolenko, A; Solodko, E; Starkov, N; Stoel, L; Stramaglia, ME; Sukhonos, D; Suzuki, Y; Takahashi, S; Tastet, JL; Teterin, P; Naing, ST; Timiryasov, I; Tioukov, V; Tommasini, D; Torii, M; Treille, D; Tsenov, R; Ulin, S; Ursov, E; Ustyuzhanin, A; Uteshev, Z; Uvarov, L; Vankova-Kirilova, G; Vannucci, F; Venkova, P; Venturi, V; Vidulin, I; Vilchinski, S; Vincke, H; Vincke, H; Visone, C; Vlasik, K; Volkov, A; Voronkov, R; van Waasen, S; Wanke, R; Wertelaers, P; Williams, O; Woo, JK; Wurm, M; Xella, S; Yilmaz, D; Yilmazer, AU; Yoon, CS; Zaytsev, Y; Zelenov, A; Zimmerman, J

    EUROPEAN PHYSICAL JOURNAL C   Vol. 82 ( 5 )   2022.5

     More details

    Language:English   Publisher:European Physical Journal C  

    The Search for Hidden Particles (SHiP) Collaboration has proposed a general-purpose experimental facility operating in beam-dump mode at the CERN SPS accelerator to search for light, feebly interacting particles. In the baseline configuration, the SHiP experiment incorporates two complementary detectors. The upstream detector is designed for recoil signatures of light dark matter (LDM) scattering and for neutrino physics, in particular with tau neutrinos. It consists of a spectrometer magnet housing a layered detector system with high-density LDM/neutrino target plates, emulsion-film technology and electronic high-precision tracking. The total detector target mass amounts to about eight tonnes. The downstream detector system aims at measuring visible decays of feebly interacting particles to both fully reconstructed final states and to partially reconstructed final states with neutrinos, in a nearly background-free environment. The detector consists of a 50m long decay volume under vacuum followed by a spectrometer and particle identification system with a rectangular acceptance of 5 m in width and 10 m in height. Using the high-intensity beam of 400GeV protons, the experiment aims at profiting from the 4 × 10 19 protons per year that are currently unexploited at the SPS, over a period of 5–10 years. This allows probing dark photons, dark scalars and pseudo-scalars, and heavy neutral leptons with GeV-scale masses in the direct searches at sensitivities that largely exceed those of existing and projected experiments. The sensitivity to light dark matter through scattering reaches well below the dark matter relic density limits in the range from a few MeV/c2 up to 100 MeV-scale masses, and it will be possible to study tau neutrino interactions with unprecedented statistics. This paper describes the SHiP experiment baseline setup and the detector systems, together with performance results from prototypes in test beams, as it was prepared for the 2020 Update of the European Strategy for Particle Physics. The expected detector performance from simulation is summarised at the end.

    DOI: 10.1140/epjc/s10052-022-10346-5

    Web of Science

    Scopus

  10. Observation of sub-GeV atmospheric gamma rays on GRAINE 2018 balloon experiment and comparison with HKKM calculation

    Rokujo H., Aoki S., Iyono A., Karasuno A., Kodama K., Komatani R., Komatsu M., Komiyama M., Kuretsubo K., Marushima T., Matsuda S., Morishima K., Morishita M., Naganawa N., Nakamura M., Nakamura M., Nakamura T., Nakamura Y., Nakano N., Nakano T., Nishio A., Oda M., Sato O., Sugimura K., Suzuki A., Takahashi S., Torii M., Yamamoto S., Yoshimoto M.

    Proceedings of Science   Vol. 395   2022.3

     More details

    Publisher:Proceedings of Science  

    We report a precise measurement of the sub-GeV atmospheric gamma-ray spectrum at balloon altitude on GRAINE 2018 experiment, and comparisons with the predictions calculated by the latest HKKM, which is widely known as a model for atmospheric neutrino flux calculation. Understanding the interactions between cosmic rays and atmospheric nuclei is important for accurate atmospheric neutrino flux calculations. Observation data of sub-GeV atmospheric gamma rays at balloon altitudes are useful for verifying such hadronic interaction models and pion productions in the low energy region. In April 2018, we conducted a balloon experiment (GRAINE 2018) in Australia with the aim of detecting and imaging the celestial gamma-ray sources with the nuclear emulsion telescope. Following flight data analysis, we derived an atmospheric gamma-ray spectrum in 0.1-1 GeV region at altitudes of ∼36 km (residual depth ∼ 4 g/cm2). The flux around the 1 GeV region is in good agreement with the HKKM prediction and smoothly connects to the multi-GeV observations of past balloon experiments. On the other hand, the flux around 0.1 GeV shows a discrepancy with the prediction. In this presentation, the balloon experiment, flight data analysis, and observation results are described.

    Scopus

  11. Track reconstruction and matching between emulsion and silicon pixel detectors for the SHiP-charm experiment

    Ahdida, C; Akmete, A; Albanese, R; Alt, J; Alexandrov, A; Anokhina, A; Aoki, S; Arduini, G; Atkin, E; Azorskiy, N; Back, JJ; Bagulya, A; Dos Santos, FB; Baranov, A; Bardou, F; Barker, GJ; Battistin, M; Bauche, J; Bay, A; Bayliss, V; Bencivenni, G; Berdnikov, AY; Berdnikov, YA; Bertani, M; Betancourt, C; Bezshyiko, I; Bezshyyko, O; Bick, D; Bieschke, S; Blanco, A; Boehm, J; Bogomilov, M; Boiarska, I; Bondarenko, K; Bonivento, WM; Borburgh, J; Boyarsky, A; Brenner, R; Breton, D; Brignoli, A; Buscher, V; Buonaura, A; Buontempo, S; Cadeddu, S; Calcaterra, A; Calviani, M; Campanelli, M; Casolino, M; Charitonidis, N; Chau, P; Chauveau, J; Chepurnov, A; Chernyavskiy, M; Choi, KY; Chumakov, A; Ciambrone, P; Cicero, V; Climescu, M; Conaboy, A; Congedo, L; Cornelis, K; Cristinziani, M; Crupano, A; Dallavalle, GM; Datwyler, A; D'Ambrosio, N; D'Appollonio, G; de Asmundis, R; Saraiva, JD; De Lellis, G; de Magistris, M; De Roeck, A; De Serio, M; De Simone, D; Dedenko, L; Dergachev, P; Di Crescenzo, A; Di Giulio, L; Di Marco, N; Dib, C; Dijkstra, H; Dmitrenko, V; Dougherty, LA; Dolmatov, A; Domenici, D; Donskov, S; Drohan, V; Dubreuil, A; Durhan, O; Ehlert, M; Elikkaya, E; Enik, T; Etenko, A; Fabbri, F; Fedin, O; Fedotovs, F; Felici, G; Ferrillo, M; Ferro-Luzzi, M; Filippov, K; Fini, RA; Fischer, H; Fonte, P; Franco, C; Fraser, M; Fresa, R; Froeschl, R; Fukuda, T; Galati, G; Gall, J; Gatignon, L; Gavrilov, G; Gentile, V; Goddard, B; Golinka-Bezshyyko, L; Golovatiuk, A; Golovtsov, V; Golubkov, D; Golutvin, A; Gorbounov, P; Gorbunov, D; Gorbunov, S; Gorkavenko, V; Gorshenkov, M; Grachev, V; Grandchamp, AL; Graverini, E; Grenard, JL; Grenier, D; Grichine, V; Gruzinskii, N; Guler, AM; Guz, Y; Haefeli, GJ; Hagner, C; Hakobyan, H; Harris, IW; van Herwijnen, E; Hessler, C; Hollnagel, A; Hosseini, B; Hushchyn, M; Iaselli, G; Iuliano, A; Jacobsson, R; Jokovic, D; Jonker, M; Kadenko, I; Kain, V; Kaiser, B; Kamiscioglu, C; Karpenkov, D; Kershaw, K; Khabibullin, M; Khalikov, E; Khaustov, G; Khoriauli, G; Khotyantsev, A; Kim, YG; Kim, V; Kitagawa, N; Ko, JW; Kodama, K; Kolesnikov, A; Kolev, DI; Kolosov, V; Komatsu, M; Kono, A; Konovalova, N; Kormannshaus, S; Korol, I; Korol'koo, I; Korzenev, A; Kostyukhin, V; Platia, EK; Kovalenko, S; Krasilnikova, I; Kudenko, Y; Kurbatov, E; Kurbatov, P; Kurochka, V; Kuznetsova, E; Lacker, HM; Lamont, M; Lanfranchi, G; Lantwin, O; Lauria, A; Lee, KS; Lee, KY; Leonardo, N; Lévy, JM; Loschiavo, VP; Lopes, L; Sola, EL; Lyons, F; Lyubovitskij, V; Maalmi, J; Magnan, AM; Maleev, V; Malinin, A; Manabe, Y; Managadze, AK; Manfredi, M; Marsh, S; Marshall, AM; Mefodev, A; Mermod, P; Miano, A; Mikado, S; Mikhaylov, Y; Mikulenko, A; Milstead, DA; Mineev, O; Montanari, A; Montesi, MC; Morishima, K; Movchan, S; Muttoni, Y; Naganawa, N; Nakamura, M; Nakano, T; Nasybulin, S; Ninin, P; Nishio, A; Obinyakov, B; Ogawa, S; Okateva, N; Osborne, J; Ovchynnikov, M; Owtscharenko, N; Owen, PH; Pacholek, P; Paoloni, A; Park, BD; Pastore, A; Patel, M; Pereyma, D; Perillo-Marcone, A; Petkov, GL; Petridis, K; Petrov, A; Podgrudkov, D; Poliakov, V; Polukhina, N; Prieto, JP; Prokudin, M; Prota, A; Quercia, A; Rademakers, A; Rakai, A; Ratnikov, F; Rawlings, T; Redi, F; Reghunath, A; Ricciardi, S; Rinaldesi, M; Rodin, V; Rodin, V; Robbe, P; Cavalcante, ABR; Roganova, T; Rokujo, H; Rosa, G; Rovelli, T; Ruchayskiy, O; Ruf, T; Samoylenko, V; Samsonov, V; Galan, FS; Diaz, PS; Ull, AS; Saputi, A; Sato, O; Savchenko, ES; Schliwinski, JS; Schmidt-Parzefall, W; Schumann, M; Serra, N; Sgobba, S; Shadura, O; Shakin, A; Shaposhnikov, M; Shatalov, P; Shchedrina, T; Shchutska, L; Shevchenko, V; Shibuya, H; Shihora, L; Shirobokov, S; Shustov, A; Silverstein, SB; Simone, S; Simoniello, R; Skorokhvatov, M; Smirnov, S; Soares, G; Sohn, JY; Sokolenko, A; Solodko, E; Starkov, N; Stoel, L; Stramaglia, ME; Sukhonos, D; Suzuki, Y; Takahashi, S; Tastet, JL; Teterin, P; Naing, ST; Timiryasov, I; Tioukov, V; Tommasini, D; Torii, M; Tosi, N; Treille, D; Tsenov, R; Ulin, S; Ursov, E; Ustyuzhanin, A; Uteshev, Z; Uvarov, L; Vankova-Kirilova, G; Vannucci, F; Venkova, P; Venturi, V; Vidulin, I; Vilchinski, S; Vincke, H; Vincke, H; Visone, C; Vlasik, K; Volkov, A; Voronkov, R; van Waasen, S; Wanke, R; Wertelaers, P; Williams, O; Woo, JK; Wurm, M; Xella, S; Yilmaz, D; Yilmazer, AU; Yoon, CS; Zaytsev, Y; Zelenov, A; Zimmerman, J

    JOURNAL OF INSTRUMENTATION   Vol. 17 ( 3 )   2022.3

     More details

    Publisher:Journal of Instrumentation  

    In July 2018 an optimization run for the proposed charm cross section measurement for SHiP was performed at the CERN SPS. A heavy, moving target instrumented with nuclear emulsion films followed by a silicon pixel tracker was installed in front of the Goliath magnet at the H4 proton beam-line. Behind the magnet, scintillating-fibre, drift-tube and RPC detectors were placed. The purpose of this run was to validate the measurement's feasibility, to develop the required analysis tools and fine-tune the detector layout. In this paper, we present the track reconstruction in the pixel tracker and the track matching with the moving emulsion detector. The pixel detector performed as expected and it is shown that, after proper alignment, a vertex matching rate of 87% is achieved.

    DOI: 10.1088/1748-0221/17/03/P03013

    Web of Science

    Scopus

  12. The trigger and data acquisition system of the FASER experiment

    Abreu, H; Mansour, EA; Antel, C; Ariga, A; Ariga, T; Bernlochner, F; Boeckh, T; Boyd, J; Brenner, L; Cadoux, F; Casper, DW; Cavanagh, C; Chen, X; Coccaro, A; Débieux, S; Dmitrievsky, S; Dozen, C; Favre, Y; Fellers, D; Feng, JL; Ferrere, D; Gamberini, E; Galantay, EK; Gibson, S; Gonzalez-Sevilla, S; Gornushkin, Y; Gwilliam, C; Hsu, SC; Hu, Z; Iacobucci, G; Inada, T; Jakobsen, S; Johnson, E; Kajomovitz, E; Kling, F; Kose, U; Kuehn, S; Lefebvre, H; Levinson, L; Li, K; Liu, J; Magliocca, C; McFayden, J; Milanesio, M; Meehan, S; Mladenov, D; Moretti, T; Munker, M; Nakamura, M; Nakano, T; Nessi, M; Neuhaus, F; Nevay, L; Otono, H; Pandini, C; Pang, H; Paolozzi, L; Petersen, B; Pietropaolo, F; Prim, M; Queitsch-Maitland, M; Resnati, F; Rizzi, C; Rokujo, H; Ruiz-Cholis, E; Salfeld-Nebgen, J; Sato, O; Scampoli, P; Schmieden, K; Schott, M; Sfyrla, A; Shively, S; Sipos, R; Spencer, J; Takubo, Y; Tarannum, N; Theiner, O; Torrence, E; Tufanli, S; Vasina, S; Vormwald, B; Wang, D

    JOURNAL OF INSTRUMENTATION   Vol. 16 ( 12 )   2021.12

     More details

    Publisher:Journal of Instrumentation  

    The FASER experiment is a new small and inexpensive experiment that is placed 480 meters downstream of the ATLAS experiment at the CERN LHC. FASER is designed to capture decays of new long-lived particles, produced outside of the ATLAS detector acceptance. These rare particles can decay in the FASER detector together with about 500-1000 Hz of other particles originating from the ATLAS interaction point. A very high efficiency trigger and data acquisition system is required to ensure that the physics events of interest will be recorded. This paper describes the trigger and data acquisition system of the FASER experiment and presents performance results of the system acquired during initial commissioning.

    DOI: 10.1088/1748-0221/16/12/P12028

    Web of Science

    Scopus

  13. Performance of an emulsion telescope for gamma-ray observations in the GRAINE2018 balloon-borne experiment Reviewed

    Yuya Nakamura, Shigeki Aoki, Atsushi Iyono, Ayaka Karasuno, Kohichi Kodama, Ryosuke Komatani, Masahiro Komatsu, Masahiro Komiyama, Kenji Kuretsubo, Toshitsugu Marushima, Syota Matsuda, Kunihiro Morishima, Misaki Morishita, Naotaka Naganawa, Mitsuhiro Nakamura, Motoya Nakamura, Takafumi Nakamura, Noboru Nakano, Toshiyuki Nakano, Akira Nishio, Miyuki Oda, Hiroki Rokujo, Osamu Sato, Kou Sugimura, Atsumu Suzuki, Satoru Takahashi, Mayu Torii, Saya Yamamoto, Masahiro Yoshimoto

    Progress of Theoretical and Experimental Physics   Vol. 2021 ( 12 )   2021.12

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Oxford University Press (OUP)  

    Abstract

    The Gamma-Ray Astro-Imager with Nuclear Emulsion (GRAINE) project is aimed at the precise observation of astronomical gamma-ray sources in the energy range of 10 MeV–100 GeV using a balloon-borne telescope utilizing a nuclear emulsion, which can help realize precise imaging with high angular resolution (1.0○ at 100 MeV), polarization sensitivity, and large aperture area (10 m2). In 2018, the third balloon experiment was carried out as a demonstration of the detection of the brightest known astronomical gamma-ray source, the Vela pulsar, with an aperture area of 0.38 m2. In these data, some gamma rays were produced by the π0 → 2γ decay, which was caused by the hadronic interactions of cosmic rays in the detector. These could be used to calibrate the reconstructed angle, energy, and so on. In this study, we establish a method of searching for hadronic interactions and concomitant gamma rays with high statistics and purity. Our analysis indicates that the performance of our detector for gamma rays is as expected in wide incidence angle and energy ranges. We plan to commence scientific observations using the proposed system with the verified high angular resolution and largest aperture area in 2022 or later.

    DOI: 10.1093/ptep/ptab148

    Web of Science

    Scopus

    researchmap

    Other Link: https://academic.oup.com/ptep/article-pdf/2021/12/123H02/42899126/ptab148.pdf

  14. First neutrino interaction candidates at the LHC

    Abreu, H; Afik, Y; Antel, C; Arakawa, J; Ariga, A; Ariga, T; Bernlochner, F; Boeckh, T; Boyd, J; Brenner, L; Cadoux, F; Casper, DW; Cavanagh, C; Cerutti, F; Chen, X; Coccaro, A; D'Onofrio, M; Dozen, C; Favre, Y; Fellers, D; Feng, JL; Ferrere, D; Gibson, S; Gonzalez-Sevilla, S; Gwilliam, C; Hsu, SC; Hu, Z; Iacobucci, G; Inada, T; Ismail, A; Jakobsen, S; Kajomovitz, E; Kling, F; Kose, U; Kuehn, S; Lefebvre, H; Levinson, L; Li, K; Liu, JF; Magliocca, C; McFayden, J; Meehan, S; Mladenov, D; Nakamura, M; Nakano, T; Nessi, M; Neuhaus, F; Nevay, L; Otono, H; Pandini, C; Pang, H; Paolozzi, L; Petersen, B; Pietropaolo, F; Prim, M; Queitsch-Maitland, M; Resnati, F; Rokujo, H; Sabaté-Gilarte, M; Salfeld-Nebgen, J; Sato, O; Scampoli, P; Schmieden, K; Schott, M; Sfyrla, A; Shively, S; Spencer, J; Takubo, Y; Theiner, O; Torrence, E; Trojanowski, S; Tufanli, S; Vormwald, B; Wang, D; Zhang, G

    PHYSICAL REVIEW D   Vol. 104 ( 9 )   2021.11

     More details

    Publisher:Physical Review D  

    FASERν at the CERN Large Hadron Collider (LHC) is designed to directly detect collider neutrinos for the first time and study their cross sections at TeV energies, where no such measurements currently exist. In 2018, a pilot detector employing emulsion films was installed in the far-forward region of ATLAS, 480 m from the interaction point, and collected 12.2 fb-1 of proton-proton collision data at a center-of-mass energy of 13 TeV. We describe the analysis of this pilot run data and the observation of the first neutrino interaction candidates at the LHC. This milestone paves the way for high-energy neutrino measurements at current and future colliders.

    DOI: 10.1103/PhysRevD.104.L091101

    Web of Science

    Scopus

  15. OPERA tau neutrino charged current interactions

    Agafonova, N; Alexandrov, A; Anokhina, A; Aoki, S; Ariga, A; Ariga, T; Bertolin, A; Bozza, C; Brugnera, R; Buonaura, A; Buontempo, S; Chernyavskiy, M; Chukanov, A; Consiglio, L; D'Ambrosio, N; De Lellis, G; De Serio, M; Sanchez, PD; Di Crescenzo, A; Di Ferdinando, D; Di Marco, N; Dmitrievsky, S; Dracos, M; Duchesneau, D; Dusini, S; Dzhatdoev, T; Ebert, J; Ereditato, A; Fini, RA; Fornari, F; Fukuda, T; Galati, G; Garfagnini, A; Gentile, V; Goldberg, J; Gorbunov, S; Gornushkin, Y; Grella, G; Guler, AM; Gustavino, C; Hagner, C; Hara, T; Hayakawa, T; Hollnagel, A; Ishiguro, K; Iuliano, A; Jakovcic, K; Jollet, C; Kamiscioglu, C; Kamiscioglu, M; Kim, SH; Kitagawa, N; Klicek, B; Kodama, K; Komatsu, M; Kose, U; Kreslo, I; Laudisio, F; Lauria, A; Lavasa, A; Longhin, A; Loverre, P; Malgin, A; Mandrioli, G; Matsuo, T; Matveev, V; Mauri, N; Medinaceli, E; Meregaglia, A; Mikado, S; Miyanishi, M; Mizutani, F; Monacelli, P; Montesi, MC; Morishima, K; Muciaccia, MT; Naganawa, N; Naka, T; Nakamura, M; Nakano, T; Niwa, K; Ogawa, S; Okateva, N; Ozaki, K; Paoloni, A; Park, BD; Pasqualini, L; Pastore, A; Patrizii, L; Pessard, H; Podgrudkov, D; Polukhina, N; Pozzato, M; Pupilli, F; Roda, M; Roganova, T; Rokujo, H; Rosa, G; Ryazhskaya, O; Sato, O; Shakirianova, I; Schembri, A; Shchedrina, T; Shibayama, E; Shibuya, H; Shiraishi, T; Simko, T; Simone, S; Sirignano, C; Sirri, G; Sotnikov, A; Spinetti, M; Stanco, L; Starkov, N; Stellacci, SM; Stipcevic, M; Strolin, P; Takahashi, S; Tenti, M; Terranova, F; Tioukov, V; Tsanaktsidis, I; Tufanli, S; Ustyuzhanin, A; Vasina, S; García, MV; Vilain, P; Voevodina, E; Votano, L; Vuilleumier, JL; Wilquet, G; Yoon, CS

    SCIENTIFIC DATA   Vol. 8 ( 1 ) page: 218   2021.8

     More details

  16. Sensitivity of the SHiP experiment to dark photons decaying to a pair of charged particles

    Ahdida, C; Akmete, A; Albanese, R; Alexandrov, A; Anokhina, A; Aoki, S; Arduini, G; Atkin, E; Azorskiy, N; Back, JJ; Bagulya, A; Dos Santos, FB; Baranov, A; Bardou, F; Barker, GJ; Battistin, M; Bauche, J; Bay, A; Bayliss, V; Bencivenni, G; Berdnikov, AY; Berdnikov, YA; Bertani, M; Betancourt, C; Bezshyiko, I; Bezshyyko, O; Bick, D; Bieschke, S; Blanco, A; Boehm, J; Bogomilov, M; Boiarska, I; Bondarenko, K; Bonivento, WM; Borburgh, J; Boyarsky, A; Brenner, R; Breton, D; Buscher, V; Buonaura, A; Buontempo, S; Cadeddu, S; Calcaterra, A; Calviani, M; Campanelli, M; Casolino, M; Charitonidis, N; Chau, P; Chauveau, J; Chepurnov, A; Chernyavskiy, M; Choi, KY; Chumakov, A; Ciambrone, P; Cicero, V; Congedo, L; Cornelis, K; Cristinziani, M; Crupano, A; Dallavalle, GM; Datwyler, A; D'Ambrosio, N; D'Appollonio, G; de Asmundis, R; Saraiva, JD; De Lellis, G; de Magistris, M; De Roeck, A; De Serio, M; De Simone, D; Dedenko, L; Dergachev, P; Di Crescenzo, A; Di Giulio, L; Di Marco, N; Dib, C; Dijkstra, H; Dmitrenko, V; Dougherty, LA; Dolmatov, A; Domenici, D; Donskov, S; Drohan, V; Dubreuil, A; Durhan, O; Ehlert, M; Elikkaya, E; Enik, T; Etenko, A; Fabbri, F; Fedin, O; Fedotovs, F; Felici, G; Ferrillo, M; Ferro-Luzzi, M; Filippov, K; Fini, RA; Fonte, P; Franco, C; Fraser, M; Fresa, R; Froeschl, R; Fukuda, T; Galati, G; Gall, J; Gatignon, L; Gavrilov, G; Gentile, V; Goddard, B; Golinka-Bezshyyko, L; Golovatiuk, A; Golovtsov, V; Golubkov, D; Golutvin, A; Gorbounov, P; Gorbunov, D; Gorbunov, S; Gorkavenko, V; Gorshenkov, M; Grachev, V; Grandchamp, AL; Graverini, E; Grenard, JL; Grenier, D; Grichine, V; Gruzinskii, N; Guler, AM; Guz, Y; Haefeli, GJ; Hagner, C; Hakobyan, H; Harris, IW; van Herwijnen, E; Hessler, C; Hollnagel, A; Hosseini, B; Hushchyn, M; Iaselli, G; Iuliano, A; Jacobsson, R; Jokovic, D; Jonker, M; Kadenko, I; Kain, V; Kaiser, B; Kamiscioglu, C; Karpenkov, D; Kershaw, K; Khabibullin, M; Khalikov, E; Khaustov, G; Khoriauli, G; Khotyantsev, A; Kim, YG; Kim, V; Kitagawa, N; Ko, JW; Kodama, K; Kolesnikov, A; Kolev, DI; Kolosov, V; Komatsu, M; Kono, A; Konovalova, N; Kormannshaus, S; Korol, I; Korol'ko, I; Korzenev, A; Kostyukhin, V; Platia, EK; Kovalenko, S; Krasilnikova, I; Kudenko, Y; Kurbatov, E; Kurbatov, P; Kurochka, V; Kuznetsova, E; Lacker, HM; Lamont, M; Lanfranchi, G; Lantwin, O; Lauria, A; Lee, KS; Lee, KY; Leonardo, N; Lévy, JM; Loschiavo, VP; Lopes, L; Sola, EL; Lyubovitskij, V; Maalmi, J; Magnan, AM; Maleev, V; Malinin, A; Manabe, Y; Managadze, AK; Manfredi, M; Marsh, S; Marshall, AM; Mefodev, A; Mermod, P; Miano, A; Mikado, S; Mikhaylov, Y; Milstead, DA; Mineev, O; Montanari, A; Montesi, MC; Morishima, K; Movchan, S; Muttoni, Y; Naganawa, N; Nakamura, M; Nakano, T; Nasybulin, S; Ninin, P; Nishio, A; Obinyakov, B; Ogawa, S; Okateva, N; Opitz, B; Osborne, J; Ovchynnikov, M; Owtscharenko, N; Owen, PH; Pacholek, P; Paoloni, A; Park, BD; Pastore, A; Patel, M; Pereyma, D; Perillo-Marcone, A; Petkov, GL; Petridis, K; Petrov, A; Podgrudkov, D; Poliakov, V; Polukhina, N; Prieto, JP; Prokudin, M; Prota, A; Quercia, A; Rademakers, A; Rakai, A; Ratnikov, F; Rawlings, T; Redi, F; Ricciardi, S; Rinaldesi, M; Rodin, V; Rodin, V; Robbe, P; Cavalcante, ABR; Roganova, T; Rokujo, H; Rosa, G; Rovelli, T; Ruchayskiy, O; Ruf, T; Samoylenko, V; Samsonov, V; Galan, FS; Diaz, PS; Ull, AS; Saputi, A; Sato, O; Savchenko, ES; Schliwinski, JS; Schmidt-Parzefall, W; Serra, N; Sgobba, S; Shadura, O; Shakin, A; Shaposhnikov, M; Shatalov, P; Shchedrina, T; Shchutska, L; Shevchenko, V; Shibuya, H; Shirobokov, S; Shustov, A; Silverstein, SB; Simone, S; Simoniello, R; Skorokhvatov, M; Smirnov, S; Soares, G; Sohn, JY; Sokolenko, A; Solodko, E; Starkov, N; Stoel, L; Stramaglia, ME; Sukhonos, D; Suzuki, Y; Takahashi, S; Tastet, JL; Teterin, P; Naing, ST; Timiryasov, I; Tioukov, V; Tommasini, D; Torii, M; Tosi, N; Treille, D; Tsenov, R; Ulin, S; Ursov, E; Ustyuzhanin, A; Uteshev, Z; Uvarov, L; Vankova-Kirilova, G; Vannucci, F; Venturi, V; Vidulin, I; Vilchinski, S; Vincke, H; Vincke, H; Visone, C; Vlasik, K; Volkov, A; Voronkov, R; van Waasen, S; Wanke, R; Wertelaers, P; Williams, O; Woo, JK; Wurm, M; Xella, S; Yilmaz, D; Yilmazer, AU; Yoon, CS; Zaytsev, Y; Zelenov, A; Zimmerman, J

    EUROPEAN PHYSICAL JOURNAL C   Vol. 81 ( 5 )   2021.5

     More details

    Publisher:European Physical Journal C  

    Dark photons are hypothetical massive vector particles that could mix with ordinary photons. The simplest theoretical model is fully characterised by only two parameters: the mass of the dark photon mγD and its mixing parameter with the photon, ε. The sensitivity of the SHiP detector is reviewed for dark photons in the mass range between 0.002 and 10 GeV. Different production mechanisms are simulated, with the dark photons decaying to pairs of visible fermions, including both leptons and quarks. Exclusion contours are presented and compared with those of past experiments. The SHiP detector is expected to have a unique sensitivity for mγD ranging between 0.8 and 3.3-0.5+0.2 GeV, and ε2 ranging between 10 - 11 and 10 - 17.

    DOI: 10.1140/epjc/s10052-021-09224-3

    Web of Science

    Scopus

  17. Sensitivity of the SHiP experiment to light dark matter

    Ahdida, C; Akmete, A; Albanese, R; Alexandrov, A; Anokhina, A; Aoki, S; Arduini, G; Atkin, E; Azorskiy, N; Back, JJ; Bagulya, A; Dos Santos, FB; Baranov, A; Bardou, F; Barker, GJ; Battistin, M; Bauche, J; Bay, A; Bayliss, V; Bencivenni, G; Berdnikov, AY; Berdnikov, YA; Bertani, M; Betancourt, C; Bezshyiko, I; Bezshyyko, O; Bick, D; Bieschke, S; Blanco, A; Boehm, J; Bogomilov, M; Boiarska, I; Bondarenko, K; Bonivento, WM; Borburgh, J; Boyarsky, A; Brenner, R; Breton, D; Buscher, V; Buonaura, A; Buonocore, L; Buontempo, S; Cadeddu, S; Calcaterra, A; Calviani, M; Campanelli, M; Casolino, M; Charitonidis, N; Chau, P; Chauveau, J; Chepurnov, A; Chernyavskiy, M; Choi, KY; Chumakov, A; Ciambrone, P; Cicero, V; Congedo, L; Cornelis, K; Cristinziani, M; Crupano, A; Dallavalle, GM; Datwyler, A; D'Ambrosio, N; D'Appollonio, G; de Asmundis, R; Saraiva, JD; De Lellis, G; de Magistris, M; De Roeck, A; De Serio, M; De Simone, D; Dedenko, L; Dergachev, P; Di Crescenzo, A; Di Giulio, L; Di Marco, N; Dib, C; Dijkstra, H; Dmitrenko, V; Dougherty, LA; Dolmatov, A; Domenici, D; Donskov, S; Drohan, V; Dubreuil, A; Durhan, O; Ehlert, M; Elikkaya, E; Enik, T; Etenko, A; Fabbri, F; Fedin, O; Fedotovs, F; Felici, G; Ferrillo, M; Ferro-Luzzi, M; Filippov, K; Fini, RA; Fonte, P; Franco, C; Fraser, M; Fresa, R; Froeschl, R; Frugiuele, C; Fukuda, T; Galati, G; Gall, J; Gatignon, L; Gavrilov, G; Gentile, V; Goddard, B; Golinka-Bezshyyko, L; Golovatiuk, A; Golovtsov, V; Golubkov, D; Golutvin, A; Gorbounov, P; Gorbunov, D; Gorbunov, S; Gorkavenko, V; Gorshenkov, M; Grachev, V; Grandchamp, AL; Graverini, E; Grenard, JL; Grenier, D; Grichine, V; Gruzinskii, N; Guler, AM; Guz, Y; Haefeli, GJ; Hagner, C; Hakobyan, H; Harris, IW; van Herwijnen, E; Hessler, C; Hollnagel, A; Hosseini, B; Hushchyn, M; Iaselli, G; Iuliano, A; Jacobsson, R; Jokovic, D; Jonker, M; Kadenko, I; Kain, V; Kaiser, B; Kamiscioglu, C; Karpenkov, D; Kershaw, K; Khabibullin, M; Khalikov, E; Khaustov, G; Khoriauli, G; Khotyantsev, A; Kim, YG; Kim, V; Kitagawa, N; Ko, JW; Kodama, K; Kolesnikov, A; Kolev, DI; Kolosov, V; Komatsu, M; Kono, A; Konovalova, N; Kormannshaus, S; Korol, I; Korol'ko, I; Korzenev, A; Kostyukhin, V; Platia, EK; Kovalenko, S; Krasilnikova, I; Kudenko, Y; Kurbatov, E; Kurbatov, P; Kurochka, V; Kuznetsova, E; Lacker, HM; Lamont, M; Lanfranchi, G; Lantwin, O; Lauria, A; Lee, KS; Lee, KY; Lévy, JM; Loschiavo, VP; Lopes, L; Sola, EL; Lyubovitskij, V; Maalmi, J; Magnan, A; Maleev, V; Malinin, A; Maltoni, F; Manabe, Y; Managadze, AK; Manfredi, M; Marsh, S; Marshall, AM; Mattelaer, O; Mefodev, A; Mermod, P; Miano, A; Mikado, S; Mikhaylov, Y; Milstead, DA; Mineev, O; Montanari, A; Montesi, MC; Morishima, K; Movchan, S; Muttoni, Y; Naganawa, N; Nakamura, M; Nakano, T; Nasybulin, S; Ninin, P; Nishio, A; Novikov, A; Obinyakov, B; Ogawa, S; Okateva, N; Opitz, B; Osborne, J; Ovchynnikov, M; Owtscharenko, N; Owen, PH; Pacholek, P; Paoloni, A; Park, BD; Pastore, A; Patel, M; Pereyma, D; Perillo-Marcone, A; Petkov, GL; Petridis, K; Petrov, A; Podgrudkov, D; Poliakov, V; Polukhina, N; Prieto, JP; Prokudin, M; Prota, A; Quercia, A; Rademakers, A; Rakai, A; Ratnikov, F; Rawlings, T; Redi, F; Ricciardi, S; Rinaldesi, M; Rodin, V; Rodin, V; Robbe, P; Cavalcante, ABR; Roganova, T; Rokujo, H; Rosa, G; Rovelli, T; Ruchayskiy, O; Ruf, T; Samoylenko, V; Samsonov, V; Galan, FS; Diaz, PS; Ull, AS; Saputi, A; Sato, O; Savchenko, ES; Schliwinski, JS; Schmidt-Parzefall, W; Serra, N; Sgobba, S; Shadura, O; Shakin, A; Shaposhnikov, M; Shatalov, P; Shchedrina, T; Shchutska, L; Shevchenko, V; Shibuya, H; Shirobokov, S; Shustov, A; Silverstein, SB; Simone, S; Simoniello, R; Skorokhvatov, M; Smirnov, S; Sohn, JY; Sokolenko, A; Solodko, E; Starkov, N; Stoel, L; Stramaglia, ME; Sukhonos, D; Suzuki, Y; Takahashi, S; Tastet, JL; Teterin, P; Naing, ST; Timiryasov, I; Tioukov, V; Tommasini, D; Torii, M; Tosi, N; Tramontano, F; Treille, D; Tsenov, R; Ulin, S; Ursov, E; Ustyuzhanin, A; Uteshev, Z; Uvarov, L; Vankova-Kirilova, G; Vannucci, F; Venturi, V; Vilchinski, S; Vincke, H; Vincke, H; Visone, C; Vlasik, K; Volkov, A; Voronkov, R; van Waasen, S; Wanke, R; Wertelaers, P; Williams, O; Woo, JK; Wurm, M; Xella, S; Yilmaz, D; Yilmazer, AU; Yoon, CS; Zaytsev, Y; Zelenov, A; Zimmerman, J

    JOURNAL OF HIGH ENERGY PHYSICS   Vol. 2021 ( 4 )   2021.4

     More details

    Publisher:Journal of High Energy Physics  

    Dark matter is a well-established theoretical addition to the Standard Model supported by many observations in modern astrophysics and cosmology. In this context, the existence of weakly interacting massive particles represents an appealing solution to the observed thermal relic in the Universe. Indeed, a large experimental campaign is ongoing for the detection of such particles in the sub-GeV mass range. Adopting the benchmark scenario for light dark matter particles produced in the decay of a dark photon, with αD = 0.1 and mA′ = 3mχ, we study the potential of the SHiP experiment to detect such elusive particles through its Scattering and Neutrino detector (SND). In its 5-years run, corresponding to 2 · 1020 protons on target from the CERN SPS, we find that SHiP will improve the current limits in the mass range for the dark matter from about 1 MeV to 300 MeV. In particular, we show that SHiP will probe the thermal target for Majorana candidates in most of this mass window and even reach the Pseudo-Dirac thermal relic. [Figure not available: see fulltext.]

    DOI: 10.1007/JHEP04(2021)199

    Web of Science

    Scopus

  18. First measurement using a nuclear emulsion detector of the <i>ν<sub>μ</sub></i> charged-current cross section on iron around the 1 GeV energy region

    Oshima, H; Matsuo, T; Ali, A; Aoki, S; Berns, L; Fukuda, T; Hanaoka, Y; Hayato, Y; Hiramoto, A; Ichikawa, AK; Kawahara, H; Kikawa, T; Komatani, R; Komatsu, M; Kuretsubo, K; Marushima, T; Matsumoto, H; Mikado, S; Minamino, A; Mizuno, K; Morimoto, Y; Morishima, K; Naganawa, N; Naiki, M; Nakamura, M; Nakamura, Y; Nakano, N; Nakano, T; Nakaya, T; Nishio, A; Odagawa, T; Ogawa, S; Rokujo, H; Sato, O; Shibuya, H; Sugimura, K; Suzui, L; Suzuki, Y; Takagi, H; Takahashi, S; Takao, T; Tanihara, Y; Watanabe, R; Yamada, K; Yasutome, K; Yokoyama, M

    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS   Vol. 2021 ( 3 )   2021.3

     More details

    Publisher:Progress of Theoretical and Experimental Physics  

    We have carried out νμ charged-current interaction measurement on iron using an emulsion detector exposed to the T2K neutrino beam in the J-PARC neutrino facility. The data samples correspond to 4.0 × 1019 protons on target, and the neutrino mean energy is 1.49 GeV. The emulsion detector is suitable for precision measurements of charged particles produced in neutrino-iron interactions with a low momentum threshold thanks to a thin-layered structure and sub-μm spatial resolution. The charged particles are successfully detected, and their multiplicities are measured using the emulsion detector. The cross section was measured to be σFeCC = (1.28 ± 0.11(stat.)+0.12-0.11(syst.)) × 10-38, cm2/nucleon. The cross section in a limited kinematic phase space of induced muons, θμ < 45° and pμ > 400 MeV/c, on iron was σFeCC phase space = (0.84 ± 0.07(stat.)+0.07-0.06(syst.)) × 10-38, cm2/nucleon. The cross-section results are consistent with previous values obtained via different techniques using the same beamline, and they are reproduced well by current neutrino interaction models. These results demonstrate the capability of the detector in the detailed measurement of neutrino-nucleus interactions around the 1 GeV energy region.

    DOI: 10.1093/ptep/ptab027

    Web of Science

    Scopus

  19. Development of Solution Physical Development Method for Nuclear Emulsion to Improve Track Recognition Reviewed

    NAKANO Noboru, ROKUJO Hiroki

    Journal of The Society of Photographic Science and Technology of Japan   Vol. 84 ( 3 ) page: 204 - 210   2021

     More details

    Language:Japanese   Publisher:THE SOCIETY OF PHOTOGRAPHY AND IMAGING OF JAPAN  

    <p>Expanding the optical image of the developed silver grains in nuclear emulsion films is one of the important improvements for further speeding up automatic track scanning. In this paper, we have evaluated effects of expanding the developed silver grains caused by changing the development process. It was shown that the intensification obtained by solution physical development has the effect of increasing the size of the developed silver grains composing tracks. Furthermore, We have developed a two-bath development method, in which the development process is divided into chemical development and solution physical development, and obtained a 1.7-times increase in the size of the developed silver grains without increasing noise (fog) compared to the current standard development process (OPERA development).</p>

    DOI: 10.11454/photogrst.84.204

    CiNii Research

  20. First measurement of (ν)over-bar<sub>μ</sub> and ν<sub>μ</sub> charged-current inclusive interactions on water using a nuclear emulsion detector

    Hiramoto, A; Suzuki, Y; Ali, A; Aoki, S; Berns, L; Fukuda, T; Hanaoka, Y; Hayato, Y; Ichikawa, AK; Kawahara, H; Kikawa, T; Koga, T; Komatani, R; Komatsu, M; Kosakai, Y; Matsuo, T; Mikado, S; Minamino, A; Mizuno, K; Morimoto, Y; Morishima, K; Naganawa, N; Naiki, M; Nakamura, M; Nakamura, Y; Nakano, N; Nakano, T; Nakaya, T; Nishio, A; Odagawa, T; Ogawa, S; Oshima, H; Rokujo, H; Sanjana, I; Sato, O; Shibuya, H; Sugimura, K; Suzui, L; Takagi, H; Takao, T; Tanihara, Y; Yasutome, K; Yokoyama, M

    PHYSICAL REVIEW D   Vol. 102 ( 7 )   2020.10

     More details

    Publisher:Physical Review D  

    This paper reports the track multiplicity and kinematics of muons, charged pions, and protons from charged-current inclusive ν¯μ and νμ interactions on a water target, measured using a nuclear emulsion detector in the NINJA experiment. A 3-kg water target was exposed to the T2K antineutrino-enhanced beam corresponding to 7.1×1020 protons on target with a mean energy of 1.3 GeV. Owing to the high granularity of the nuclear emulsion, protons with momenta down to 200 MeV/c from the neutrino-water interactions were detected. We find good agreement between the observed data and model predictions for all kinematic distributions other than the number of charged pions and the muon kinematics shapes. These results demonstrate the capability of measurements with nuclear emulsion to improve neutrino interaction models.

    DOI: 10.1103/PhysRevD.102.072006

    Web of Science

    Scopus

  21. First observation of a tau neutrino charged current interaction with charm production in the OPERA experiment OPERA Collaboration

    Agafonova, N; Aleksandrov, A; Anokhina, A; Aoki, S; Ariga, A; Ariga, T; Bertolin, A; Bozza, C; Brugnera, R; Buonaura, A; Buontempo, S; Chernyavskiy, M; Chukanov, A; Consiglio, L; D'Ambrosio, N; De Lellis, G; De Serio, M; Sanchez, PD; Di Crescenzo, A; Di Ferdinando, D; Di Marco, N; Dmitrievski, S; Dracos, M; Duchesneau, D; Dusini, S; Dzhatdoev, T; Ebert, J; Ereditato, A; Fini, RA; Fornari, F; Fukuda, T; Galati, G; Garfagnini, A; Gentile, V; Goldberg, J; Gorbunov, S; Gornushkin, Y; Grella, G; Guler, AM; Gustavino, C; Hagner, C; Hara, T; Hayakawa, T; Hollnagel, A; Ishiguro, K; Iuliano, A; Jakovcic, K; Jollet, C; Kamiscioglu, C; Kamiscioglu, M; Kim, SH; Kitagawa, N; Klicek, B; Kodama, K; Komatsu, M; Kose, U; Kreslo, I; Laudisio, F; Lauria, A; Longhin, A; Loverre, P; Malgin, A; Malenica, M; Mandrioli, G; Matsuo, T; Matveev, V; Mauri, N; Medinaceli, E; Meregaglia, A; Mikado, S; Miyanishi, M; Mizutani, F; Monacelli, P; Montesi, MC; Morishima, K; Muciaccia, MT; Naganawa, N; Naka, T; Nakamura, M; Nakano, T; Niwa, K; Okateva, N; Ogawa, S; Ozaki, K; Paoloni, A; Paparella, L; Park, BD; Pasqualini, L; Pastore, A; Patrizii, L; Pessard, H; Podgrudkov, D; Polukhina, N; Pozzato, M; Pupilli, F; Roda, M; Roganova, T; Rokujo, H; Rosa, G; Ryazhskaya, O; Sato, O; Schembri, A; Shakirianova, I; Shchedrina, T; Shibuya, H; Shibayama, E; Shiraishi, T; Simone, S; Sirignano, C; Sirri, G; Sotnikov, A; Spinetti, M; Stanco, L; Starkov, N; Stellacci, SM; Stipcevic, M; Strolin, P; Takahashi, S; Tenti, M; Terranova, F; Tioukov, V; Vasina, S; Vilain, P; Voevodina, E; Votano, L; Vuilleumier, JL; Wilquet, G; Yoon, CS

    EUROPEAN PHYSICAL JOURNAL C   Vol. 80 ( 8 )   2020.8

     More details

    Publisher:European Physical Journal C  

    An event topology with two secondary vertices compatible with the decay of short-lived particles was found in the analysis of neutrino interactions in the OPERA target. The observed topology is compatible with tau neutrino charged current (CC) interactions with charm production and neutrino neutral current (NC) interactions with cc¯ pair production. However, other processes can mimic this topology. A dedicated analysis was implemented to identify the underlying process. A Monte Carlo simulation was developed and complementary procedures were introduced in the kinematic reconstruction. A multivariate analysis technique was used to achieve an optimal separation of signal from background. Most likely, this event is a ντ CC interaction with charm production, the tau and charm particle decaying into 1 prong and 2 prongs, respectively. The significance of this observation is evaluated.

    DOI: 10.1140/epjc/s10052-020-8160-y

    Web of Science

    Scopus

  22. Measurement of the muon flux from 400 GeV/c protons interacting in a thick molybdenum/tungsten target

    Ahdida, C; Akmete, A; Albanese, R; Alexandrov, A; Anokhina, A; Aoki, S; Arduini, G; Atkin, E; Azorskiy, N; Back, JJ; Bagulya, A; Dos Santos, FB; Baranov, A; Bardou, F; Barker, GJ; Battistin, M; Bauche, J; Bay, A; Bayliss, V; Bencivenni, G; Berdnikov, AY; Berdnikov, YA; Bertani, M; Betancourt, C; Bezshyiko, I; Bezshyyko, O; Bick, D; Bieschke, S; Blanco, A; Boehm, J; Bogomilov, M; Boiarska, I; Bondarenko, K; Bonivento, WM; Borburgh, J; Boyarsky, A; Brenner, R; Breton, D; Buscher, V; Buonaura, A; Buontempo, S; Cadeddu, S; Calcaterra, A; Calviani, M; Campanelli, M; Casolino, M; Charitonidis, N; Chau, P; Chauveau, J; Chepurnov, A; Chernyavskiy, M; Choi, KY; Chumakov, A; Ciambrone, P; Cicero, V; Congedo, L; Cornelis, K; Cristinziani, M; Crupano, A; Dallavalle, GM; Datwyler, A; D'Ambrosio, N; D'Appollonio, G; de Asmundis, R; Saraiva, JD; De Lellis, G; de Magistris, M; De Roeck, A; De Serio, M; De Simone, D; Dedenko, L; Dergachev, P; Di Crescenzo, A; Di Giulio, L; Di Marco, N; Dib, C; Dijkstra, H; Dmitrenko, V; Dmitrievskiy, S; Dougherty, LA; Dolmatov, A; Domenici, D; Donskov, S; Drohan, V; Dubreuil, A; Durhan, O; Ehlert, M; Elikkaya, E; Enik, T; Etenko, A; Fabbri, F; Fedin, O; Fedotovs, F; Felici, G; Ferrillo, M; Ferro-Luzzi, M; Filippov, K; Fini, RA; Fonte, P; Franco, C; Fraser, M; Fresa, R; Froeschl, R; Fukuda, T; Galati, G; Gall, J; Gatignon, L; Gavrilov, G; Gentile, V; Goddard, B; Golinka-Bezshyyko, L; Golovatiuk, A; Golubkov, D; Golutvin, A; Gorbounov, P; Gorbunov, D; Gorbunov, S; Gorkavenko, V; Gorshenkov, M; Grachev, V; Grandchamp, AL; Graverini, E; Grenard, JL; Grenier, D; Grichine, V; Gruzinskii, N; Guler, AM; Guz, Y; Haefeli, GJ; Hagner, C; Hakobyan, H; Harris, IW; van Herwijnen, E; Hessler, C; Hollnagel, A; Hosseini, B; Hushchyn, M; Iaselli, G; Iuliano, A; Jacobsson, R; Jokovic, D; Jonker, M; Kadenko, I; Kain, V; Kaiser, B; Kamiscioglu, C; Karpenkov, D; Kershaw, K; Khabibullin, M; Khalikov, E; Khaustov, G; Khoriauli, G; Khotyantsev, A; Kim, YG; Kim, V; Kitagawa, N; Ko, JW; Kodama, K; Kolesnikov, A; Kolev, DI; Kolosov, V; Komatsu, M; Kono, A; Konovalova, N; Kormannshaus, S; Korol, I; Korol'ko, I; Korzenev, A; Kostyukhin, V; Platia, EK; Kovalenko, S; Krasilnikova, I; Kudenko, Y; Kurbatov, E; Kurbatov, P; Kurochka, V; Kuznetsova, E; Lacker, HM; Lamont, M; Lanfranchi, G; Lantwin, O; Lauria, A; Lee, KS; Lee, KY; Lévy, JM; Loschiavo, VP; Lopes, L; Sola, EL; Lyubovitskij, V; Maalmi, J; Magnan, A; Maleev, V; Malinin, A; Manabe, Y; Managadze, AK; Manfredi, M; Marsh, S; Marshall, AM; Mefodev, A; Mermod, P; Miano, A; Mikado, S; Mikhaylov, Y; Milstead, DA; Mineev, O; Montanari, A; Montesi, MC; Morishima, K; Movchan, S; Muttoni, Y; Naganawa, N; Nakamura, M; Nakano, T; Nasybulin, S; Ninin, P; Nishio, A; Novikov, A; Obinyakov, B; Ogawa, S; Okateva, N; Opitz, B; Osborne, J; Ovchynnikov, M; Owtscharenko, N; Owen, PH; Pacholek, P; Paoloni, A; Park, BD; Pastore, A; Patel, M; Pereyma, D; Perillo-Marcone, A; Petkov, GL; Petridis, K; Petrov, A; Podgrudkov, D; Poliakov, V; Polukhina, N; Prieto, JP; Prokudin, M; Prota, A; Quercia, A; Rademakers, A; Rakai, A; Ratnikov, F; Rawlings, T; Redi, F; Ricciardi, S; Rinaldesi, M; Rodin, V; Rodin, V; Robbe, P; Cavalcante, ABR; Roganova, T; Rokujo, H; Rosa, G; Rovelli, T; Ruchayskiy, O; Ruf, T; Samoylenko, V; Samsonov, V; Galan, FS; Diaz, PS; Ull, AS; Saputi, A; Sato, O; Savchenko, ES; Schliwinski, JS; Schmidt-Parzefall, W; Serra, N; Sgobba, S; Shadura, O; Shakin, A; Shaposhnikov, M; Shatalov, P; Shchedrina, T; Shchutska, L; Shevchenko, V; Shibuya, H; Shihora, L; Shirobokov, S; Shustov, A; Silverstein, SB; Simone, S; Simoniello, R; Skorokhvatov, M; Smirnov, S; Sohn, JY; Sokolenko, A; Solodko, E; Starkov, N; Stoel, L; Stramaglia, ME; Sukhonos, D; Suzuki, Y; Takahashi, S; Tastet, JL; Teterin, P; Naing, ST; Timiryasov, I; Tioukov, V; Tommasini, D; Torii, M; Tosi, N; Treille, D; Tsenov, R; Ulin, S; Ursov, E; Ustyuzhanin, A; Uteshev, Z; Vankova-Kirilova, G; Vannucci, F; Venturi, V; Vilchinski, S; Vincke, H; Vincke, H; Visone, C; Vlasik, K; Volkov, A; Voronkov, R; van Waasen, S; Wanke, R; Wertelaers, P; Williams, O; Woo, JK; Wurm, M; Xella, S; Yilmaz, D; Yilmazer, AU; Yoon, CS; Zaytsev, Y; Zimmerman, J

    EUROPEAN PHYSICAL JOURNAL C   Vol. 80 ( 3 )   2020.3

     More details

    Publisher:European Physical Journal C  

    The SHiP experiment is proposed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/c proton beam dump at the CERN SPS. About 10 11 muons per spill will be produced in the dump. To design the experiment such that the muon-induced background is minimized, a precise knowledge of the muon spectrum is required. To validate the muon flux generated by our Pythia and GEANT4 based Monte Carlo simulation (FairShip), we have measured the muon flux emanating from a SHiP-like target at the SPS. This target, consisting of 13 interaction lengths of slabs of molybdenum and tungsten, followed by a 2.4 m iron hadron absorber was placed in the H4 400 GeV/c proton beam line. To identify muons and to measure the momentum spectrum, a spectrometer instrumented with drift tubes and a muon tagger were used. During a 3-week period a dataset for analysis corresponding to (3.27±0.07)×1011 protons on target was recorded. This amounts to approximatively 1% of a SHiP spill.

    DOI: 10.1140/epjc/s10052-020-7788-y

    Web of Science

    Scopus

  23. The magnet of the scattering and neutrino detector for the SHiP experiment at CERN

    Ahdida, C; Albanese, R; Alexandrov, A; Anokhina, A; Aoki, S; Arduini, G; Atkin, E; Azorskiy, N; Back, JJ; Bagulya, A; Dos Santos, FB; Baranov, A; Bardou, F; Barker, GJ; Battistin, M; Bauche, J; Bay, A; Bayliss, V; Bencivenni, G; Berdnikov, AY; Berdnikov, YA; Berezkina, I; Bertani, M; Betancourt, C; Bezshyiko, I; Bezshyyko, O; Bick, D; Bieschke, S; Blanco, A; Boehm, J; Bogomilov, M; Bondarenko, K; Bonivento, WM; Borburgh, J; Boyarsky, A; Brenner, R; Breton, D; Brundler, R; Bruschi, M; Büscher, V; Buonaura, A; Buontempo, S; Cadeddu, S; Calcaterra, A; Calviani, M; Campanelli, M; Casolino, M; Charitonidis, N; Chau, P; Chauveau, J; Chepurnov, A; Chernyavskiy, M; Choi, KY; Chumakov, A; Ciambrone, P; Congedo, L; Cornelis, K; Cristinziani, M; Crupano, A; Dallavalle, GM; Datwyler, A; D'Ambrosio, N; D'Appollonio, G; Saraiva, JD; De Lellis, G; de Magistris, M; De Roeck, A; De Serio, M; De Simone, D; Dedenko, L; Dergachev, P; Di Crescenzo, A; Dib, C; Dijkstra, H; Dipinto, P; Dmitrenko, V; Dmitrievskiy, S; Dougherty, LA; Dolmatov, A; Domenici, D; Donskov, S; Drohan, V; Dubreuil, A; Ehlert, M; Enik, T; Etenko, A; Fabbri, F; Fabbri, L; Fabich, A; Fedin, O; Fedotovs, F; Felici, G; Ferro-Luzzi, M; Filippov, K; Fini, RA; Fonte, P; Franco, C; Fraser, M; Fresa, R; Froeschl, R; Fukuda, T; Galati, G; Gall, J; Gatignon, L; Gavrilov, G; Gentile, V; Gerlach, S; Goddard, B; Golinka-Bezshyyko, L; Golovatiuk, A; Golubkov, D; Golutvin, A; Gorbounov, P; Gorbunov, D; Gorbunov, S; Gorkavenko, V; Gornushkin, Y; Gorshenkov, M; Grachev, V; Grandchamp, AL; Granich, G; Graverini, E; Grenard, JL; Grenier, D; Grichine, V; Gruzinskii, N; Guler, AM; Guz, Y; Haefeli, GJ; Hagner, C; Hakobyan, H; Harris, IW; Van Herwijnen, E; Hessler, C; Hollnagel, A; Hosseini, B; Hushchyn, M; Iaselli, G; Iuliano, A; Ivantchenko, V; Jacobsson, R; Jokovic, D; Jonker, M; Kadenko, I; Kain, V; Kaiser, B; Kamiscioglu, C; Kershaw, K; Khabibullin, M; Khalikov, E; Khaustov, G; Khoriauli, G; Khotyantsev, A; Kim, SH; Kim, YG; Kim, V; Kitagawa, N; Ko, JW; Kodama, K; Kolesnikov, A; Kolev, DI; Kolosov, V; Komatsu, M; Kondrateva, N; Kono, A; Konovalova, N; Kormannshaus, S; Korol, I; Korol'ko, I; Korzenev, A; Kostyukhin, V; Platia, EK; Kovalenko, S; Krasilnikova, I; Kudenko, Y; Kurbatov, E; Kurbatov, P; Kurochka, V; Kuznetsova, E; Lacker, HM; Lamont, M; Lanfranchi, G; Lantwin, O; Lauria, A; Lee, KS; Lee, KY; Lévy, JM; Loschiavo, VP; Lopes, L; Sola, EL; Lyubovitskij, V; Maalmi, J; Magnan, A; Maleev, V; Malinin, A; Manabe, Y; Managadze, AK; Manfredi, M; Marsh, S; Marshall, AM; Mefodev, A; Mermod, P; Miano, A; Mikado, S; Mikhaylov, Y; Milstead, DA; Mineev, O; Minutolo, V; Montanari, A; Montesi, MC; Morishima, K; Movchan, S; Muttoni, Y; Naganawa, N; Nakamura, M; Nakano, T; Nasybulin, S; Ninin, P; Nishio, A; Novikov, A; Obinyakov, B; Ogawa, S; Okateva, N; Opitz, B; Osborne, J; Ovchynnikov, M; Owtscharenko, N; Owen, PH; Pacholek, P; Paoloni, A; Park, BD; Park, SK; Passeggio, G; Pastore, A; Patel, M; Pereyma, D; Perillo-Marcone, A; Petkov, GL; Petridis, K; Petrov, A; Podgrudkov, D; Poliakov, V; Polukhina, N; Prieto, JP; Prokudin, M; Prota, A; Quercia, A; Rademakers, A; Rakai, A; Ratnikov, F; Rawlings, T; Redi, F; Ricciardi, S; Rinaldesi, M; Rodin, V; Rodin, V; Robbe, P; Cavalcante, ABR; Roganova, T; Rokujo, H; Rosa, G; Rovelli, T; Ruchayskiy, O; Ruf, T; Samoylenko, V; Samsonov, V; Galan, FS; Diaz, PS; Sanz, A; Saputi, A; Sato, O; Savchenko, ES; Schliwinski, JS; Schmidt-Parzefall, W; Serra, N; Sgobba, S; Shadura, O; Shakin, A; Shaposhnikov, M; Shatalov, P; Shchedrina, T; Shchutska, L; Shevchenko, V; Shibuya, H; Shihora, L; Shirobokov, S; Shustov, A; Silverstein, SB; Simone, S; Simoniello, R; Skorokhvatov, M; Smirnov, S; Sohn, JY; Sokolenko, A; Solodko, E; Starkov, N; Stoel, L; Storaci, B; Stramaglia, ME; Sukhonos, D; Suzuki, Y; Takahashi, S; Tastet, JL; Teterin, P; Naing, ST; Timiryasov, I; Tioukov, V; Tommasini, D; Torii, M; Tosi, N; Treille, D; Tsenov, R; Ulin, S; Ustyuzhanin, A; Uteshev, Z; Vankova-Kirilova, G; Vannucci, F; Venkova, P; Venturi, V; Vilchinski, S; Villa, M; Vincke, H; Vincke, H; Visone, C; Vlasik, K; Volkov, A; Voronkov, R; van Waasen, S; Wanke, R; Wertelaers, P; Woo, JK; Wurm, M; Xella, S; Yilmaz, D; Yilmazer, AU; Yoon, CS; Zarubin, P; Zarubina, I; Zaytsev, Y

    JOURNAL OF INSTRUMENTATION   Vol. 15 ( 1 )   2020.1

     More details

    Publisher:Journal of Instrumentation  

    The Search for Hidden Particles (SHiP) experiment proposal at CERN demands a dedicated dipole magnet for its scattering and neutrino detector. This requires a very large volume to be uniformly magnetized at B > 1.2 T, with constraints regarding the inner instrumented volume as well as the external region, where no massive structures are allowed and only an extremely low stray field is admitted. In this paper we report the main technical challenges and the relevant design options providing a comprehensive design for the magnet of the SHiP Scattering and Neutrino Detector.

    DOI: 10.1088/1748-0221/15/01/P01027

    Web of Science

    Scopus

  24. DsTau: study of tau neutrino production with 400 GeV protons from the CERN-SPS Reviewed

    Shigeki Aoki, Akitaka Ariga, Tomoko Ariga, Sergey Dmitrievsky, Elena Firu, Dean Forshaw, Tsutomu Fukuda, Yuri Gornushkin, Ali Murat Guler, Maria Haiduc, Koichi Kodama, Masahiro Komatsu, Muhtesem Akif Korkmaz, Umut Kose, Madalina Miloi, Antonio Miucci, Motoaki Miyanishi, Mitsuhiro Nakamura, Toshiyuki Nakano, Alina Neagu, Hiroki Rokujo, Osamu Sato, Elizaveta Sitnikova, Yosuke Suzuki, Tomoki Takao, Svetlana Vasina, Mykhailo Vladymyrov, Thomas Weston, Junya Yoshidaj, Masahiro Yoshimoto

    JOURNAL OF HIGH ENERGY PHYSICS   Vol. 2020 ( 1 )   2020.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER  

    In the DsTau experiment at the CERN SPS (NA65), an independent and direct way to measure tau neutrino production following high energy proton interactions was proposed. As the main source of tau neutrinos is a decay of D-s mesons, produced in proton-nucleus interactions, the project aims at measuring a differential cross section of this reaction. The experimental method is based on a use of high resolution emulsion detectors for effective registration of events with short lived particle decays. Here we present the motivation of the study, details of the experimental technique, and the first results of the analysis of the data collected during test runs, which prove feasibility of the full scale study of the process in future.

    DOI: 10.1007/JHEP01(2020)033

    Web of Science

    Scopus

    researchmap

  25. Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks

    Ahdida, C; Albanese, R; Alexandrov, A; Anokhina, A; Aoki, S; Arduini, G; Atkin, E; Azorskiy, N; Back, JJ; Bagulya, A; Dos Santos, FB; Baranov, A; Bardou, F; Barker, GJ; Battistin, M; Bauche, J; Bay, A; Bayliss, ; Bencivenni, G; Berdnikov, AY; Berdnikov, YA; Berezkina, ; Bertani, M; Betancourt, C; Bezshyiko, ; Bezshyyko, O; Bick, D; Bieschke, S; Blanco, A; Boehm, J; Bogomilov, M; Bondarenko, K; Bonivento, WM; Borburgh, J; Boyarsky, A; Brenner, R; Breton, D; Brundler, R; Bruschi, M; Bscher, ; Buonaura, A; Buontempo, S; Cadeddu, S; Calcaterra, A; Calviani, M; Campanelli, M; Casolino, M; Charitonidis, N; Chau, P; Chauveau, J; Chepurnov, A; Chernyavskiy, M; Choi, KY; Chumakov, A; Ciambrone, P; Congedo, L; Cornelis, K; Cristinziani, M; Crupano, A; Dallavalle, GM; Datwyler, A; D'Ambrosio, N; D'Appollonio, G; Saraiva, JD; De Lellis, G; de Magistris, M; De Roeck, A; De Serio, M; De Simone, D; Dedenko, L; Dergachev, P; Di Crescenzo, A; Di Marco, N; Dib, C; Dijkstra, H; Dipinto, P; Dmitrenko, ; Dmitrievskiy, S; Dougherty, LA; Dolmatov, A; Domenici, D; Donskov, S; Drohan, ; Dubreuil, A; Ehlert, M; Enik, T; Etenko, A; Fabbri, F; Fabbri, L; Fabich, A; Fedin, O; Fedotovs, F; Felici, G; Ferro-Luzzi, M; Filippov, K; Fini, RA; Fonte, P; Franco, C; Fraser, M; Fresa, R; Froeschl, R; Fukuda, T; Galati, G; Gall, J; Gatignon, L; Gavrilov, G; Gentile, ; Gerlach, S; Goddard, B; Golinka-Bezshyyko, L; Golovatiuk, A; Golubkov, D; Golutvin, A; Gorbounov, P; Gorbunov, D; Gorbunov, S; Gorkavenko, ; Gornushkin, Y; Gorshenkov, M; Grachev, ; Grandchamp, AL; Granich, G; Graverini, E; Grenard, JL; Grenier, D; Grichine, ; Gruzinskii, N; Guler, AM; Guz, Y; Haefeli, GJ; Hagner, C; Hakobyan, H; Harris, IW; van Herwijnen, E; Hessler, C; Hollnagel, A; Hosseini, B; Hushchyn, M; Iaselli, G; Iuliano, A; Ivantchenko, ; Jacobsson, R; Jokovic, D; Jonker, M; Kadenko, ; Kain, ; Kaiser, B; Kamiscioglu, C; Kershaw, K; Khabibullin, M; Khalikov, E; Khaustov, G; Khoriauli, G; Khotyantsev, A; Kim, SH; Kim, YG; Kim, ; Kitagawa, N; Ko, JW; Kodama, K; Kolesnikov, A; Kolev, D; Kolosov, ; Komatsu, M; Kondrateva, N; Kono, A; Konovalova, N; Kormannshaus, S; Korol, ; Korol'ko, ; Korzenev, A; Kostyukhin, ; Platia, EK; Kovalenko, S; Krasilnikova, ; Kudenko, Y; Kurbatov, E; Kurbatov, P; Kurochka, ; Kuznetsova, E; Lacker, HM; Lamont, M; Lanfranchi, G; Lantwin, O; Lauria, A; Lee, KS; Lee, KY; Lévy, JM; Loschiavo, VP; Lopes, L; Sola, EL; Lyubovitskij, ; Maalmi, J; Magnan, A; Maleev, ; Malinin, A; Manabe, Y; Managadze, AK; Manfredi, M; Marsh, S; Marshall, AM; Mefodev, A; Mermod, P; Miano, A; Mikado, S; Mikhaylov, Y; Milstead, DA; Mineev, O; Montanari, A; Montesi, MC; Morishima, K; Movchan, S; Muttoni, Y; Naganawa, N; Nakamura, M; Nakano, T; Nasybulin, S; Ninin, P; Nishio, A; Novikov, A; Obinyakov, B; Ogawa, S; Okateva, N; Opitz, B; Osborne, J; Ovchynnikov, M; Owtscharenko, N; Owen, PH; Pacholek, P; Paoloni, A; Park, BD; Park, SK; Pastore, A; Patel, M; Pereyma, D; Perillo-Marcone, A; Petkov, GL; Petridis, K; Petrov, A; Podgrudkov, D; Poliakov, ; Polukhina, N; Prieto, JP; Prokudin, M; Prota, A; Quercia, A; Rademakers, A; Rakai, A; Ratnikov, F; Rawlings, T; Redi, F; Ricciardi, S; Rinaldesi, M; Rodin, V; Rodin, V; Robbe, P; Cavalcante, ABR; Roganova, T; Rokujo, H; Rosa, G; Rovelli, T; Ruchayskiy, O; Ruf, T; Samoylenko, ; Samsonov, ; Galan, FS; Diaz, PS; Ull, AS; Saputi, A; Sato, O; Savchenko, ES; Schliwinski, JS; Schmidt-Parzefall, W; Serra, N; Sgobba, S; Shadura, O; Shakin, A; Shaposhnikov, M; Shatalov, P; Shchedrina, T; Shchutska, L; Shevchenko, ; Shibuya, H; Shihora, L; Shirobokov, S; Shustov, A; Silverstein, SB; Simone, S; Simoniello, R; Skorokhvatov, M; Smirnov, S; Sohn, JY; Sokolenko, A; Solodko, E; Starkov, N; Stoel, L; Storaci, B; Stramaglia, ME; Sukhonos, D; Suzuki, Y; Takahashi, S; Tastet, JL; Teterin, P; Naing, ST; Timiryasov, ; Tioukov, ; Tommasini, D; Torii, M; Tosi, N; Treille, D; Tsenov, R; Ulin, S; Ustyuzhanin, A; Uteshev, Z; Vankova-Kirilova, G; Vannucci, F; Venkova, P; Venturi, V; Vilchinski, S; Villa, M; Vincke, H; Vincke, H; Visone, C; Vlasik, K; Volkov, A; Voronkov, R; van Waasen, S; Wanke, R; Wertelaers, P; Woo, JK; Wurm, M; Xella, S; Yilmaz, D; Yilmazer, AU; Yoon, CS; Zarubin, P; Zarubina, ; Zaytsev, Y

    JOURNAL OF INSTRUMENTATION   Vol. 14 ( 11 )   2019.11

     More details

    Publisher:Journal of Instrumentation  

    This paper presents a fast approach to simulating muons produced in interactions of the SPS proton beams with the target of the SHiP experiment. The SHiP experiment will be able to search for new long-lived particles produced in a 400 GeV/c SPS proton beam dump and which travel distances between fifty metres and tens of kilometers. The SHiP detector needs to operate under ultra-low background conditions and requires large simulated samples of muon induced background processes. Through the use of Generative Adversarial Networks it is possible to emulate the simulation of the interaction of 400 GeV/c proton beams with the SHiP target, an otherwise computationally intensive process. For the simulation requirements of the SHiP experiment, generative networks are capable of approximating the full simulation of the dense fixed target, offering a speed increase by a factor of (106). To evaluate the performance of such an approach, comparisons of the distributions of reconstructed muon momenta in SHiP's spectrometer between samples using the full simulation and samples produced through generative models are presented. The methods discussed in this paper can be generalised and applied to modelling any non-discrete multi-dimensional distribution.

    DOI: 10.1088/1748-0221/14/11/P11028

    Web of Science

    Scopus

  26. Measurement of the cosmic ray muon flux seasonal variation with the OPERA detector

    Agafonova, N; Alexandrov, A; Anokhina, A; Aoki, S; Ariga, A; Ariga, T; Bertolin, A; Bozza, C; Brugnera, R; Buonaura, A; Buontempo, S; Chernyavskiy, M; Chukanov, A; Consiglio, L; D'Ambrosio, N; De Lellis, G; De Serio, M; Sanchez, PD; Di Crescenzo, A; Di Ferdinando, D; Di Marco, N; Dmitrievsky, S; Dracos, M; Duchesneau, D; Dusini, S; Dzhatdoev, T; Ebert, J; Ereditato, A; Fini, RA; Fornari, F; Fukuda, T; Galati, G; Garfagnini, A; Gentile, V; Goldberg, J; Gorbunov, S; Gornushkin, Y; Grella, G; Guler, AM; Gustavino, C; Hagner, C; Hara, T; Hayakawa, T; Hollnagel, A; Ishiguro, K; Iuliano, A; Jakovcic, K; Jollet, C; Kamiscioglu, C; Kamiscioglu, M; Kim, SH; Kitagawa, N; Klicek, B; Kodama, K; Komatsu, M; Kose, U; Kreslo, I; Laudisio, F; Lauria, A; Ljubicic, A; Longhin, A; Loverre, P; Malgin, A; Mandrioli, G; Matsuo, T; Matveev, V; Mauri, N; Medinaceli, E; Meregaglia, A; Mikado, S; Miyanishi, M; Mizutani, F; Monacelli, P; Montesi, MC; Morishima, K; Muciaccia, MT; Naganawa, N; Naka, T; Nakamura, M; Nakano, T; Niwa, K; Ogawa, S; Okateva, N; Ozaki, K; Paoloni, A; Paparella, L; Park, BD; Pasqualini, L; Pastore, A; Patrizii, L; Pessard, H; Podgrudkov, D; Polukhina, N; Pozzato, M; Pupilli, F; Roda, M; Roganova, T; Rokujo, H; Rosa, G; Ryazhskaya, O; Sato, O; Schembri, A; Shakiryanova, I; Shchedrina, T; Shibayama, E; Shibuya, H; Shiraishi, T; Simone, S; Sirignano, C; Sirri, G; Sotnikov, A; Spinetti, M; Stanco, L; Starkov, N; Stellacci, SM; Stipcevic, M; Strolin, P; Takahashi, S; Tenti, M; Terranova, F; Tioukov, V; Vasina, S; Vilain, P; Voevodina, E; Votano, L; Vuilleumier, JL; Wilquet, G; Yoon, CS

    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS   Vol. 2019 ( 10 )   2019.10

     More details

    Publisher:Journal of Cosmology and Astroparticle Physics  

    The OPERA experiment discovered muon neutrino into tau neutrino oscillations in appearance mode, detecting tau leptons by means of nuclear emulsion films. The apparatus was also endowed with electronic detectors with tracking capability, such as scintillator strips and resistive plate chambers. Because of its location in the underground Gran Sasso laboratory, under 3800 m.w.e., the OPERA detector has also been used as an observatory for TeV muons produced by cosmic rays in the atmosphere. In this paper the measurement of the single muon flux modulation and its correlation with the seasonal cycle of atmospheric temperature is reported.

    DOI: 10.1088/1475-7516/2019/10/003

    Web of Science

    Scopus

  27. Final results on neutrino oscillation parameters from the OPERA experiment in the CNGS beam

    Agafonova, N; Alexandrov, A; Anokhina, A; Aoki, S; Ariga, A; Ariga, T; Bertolin, A; Bozza, C; Brugnera, R; Buontempo, S; Chernyavskiy, M; Chukanov, A; Consiglio, L; D'Ambrosio, N; De Lellis, G; De Serio, M; Sanchez, PD; Di Crescenzo, A; Di Ferdinando, D; Di Marco, N; Dmitrievsky, S; Dracos, M; Duchesneau, D; Dusini, S; Dzhatdoev, T; Ebert, J; Ereditato, A; Fini, RA; Fukuda, T; Galati, G; Garfagnini, A; Gentile, V; Goldberg, J; Gorbunov, S; Gornushkin, Y; Grella, G; Guler, AM; Gustavino, C; Hagner, C; Hara, T; Hayakawa, T; Hollnagel, A; Ishiguro, K; Iuliano, A; Jakovcic, K; Jollet, C; Kamiscioglu, C; Kamiscioglu, M; Kim, SH; Kitagawa, N; Klicek, B; Kodama, K; Komatsu, M; Kose, U; Kreslo, I; Laudisio, F; Lauria, A; Longhin, A; Loverre, P; Malgin, A; Mandrioli, G; Matsuo, T; Matveev, V; Mauri, N; Medinaceli, E; Meregaglia, A; Mikado, S; Miyanishi, M; Mizutani, F; Monacelli, P; Montesi, MC; Morishima, K; Muciaccia, MT; Naganawa, N; Naka, T; Nakamura, M; Nakano, T; Niwa, K; Ogawa, S; Okateva, N; Ozaki, K; Paoloni, A; Paparella, L; Park, BD; Pasqualini, L; Pastore, A; Patrizii, L; Pessard, H; Podgrudkov, D; Polukhina, N; Pozzato, M; Pupilli, F; Roda, M; Roganova, T; Rokujo, H; Rosa, G; Ryazhskaya, O; Sato, O; Schembri, A; Shakiryanova, I; Shchedrina, T; Shibayama, E; Shibuya, H; Shiraishi, T; Simone, S; Sirignano, C; Sirri, G; Sotnikov, A; Spinetti, M; Stanco, L; Starkov, N; Stellacci, SM; Stipcevic, M; Strolin, P; Takahashi, S; Tenti, M; Terranova, F; Tioukov, V; Tufanli, S; Vasina, S; Vilain, P; Voevodina, E; Votano, L; Vuilleumier, JL; Wilquet, G; Yoon, CS

    PHYSICAL REVIEW D   Vol. 100 ( 5 )   2019.9

     More details

    Publisher:Physical Review D  

    The OPERA experiment has conclusively observed the appearance of tau neutrinos in the muon neutrino CNGS beam. Exploiting the OPERA detector capabilities, it was possible to isolate high purity samples of νe, νμ and ντ charged current weak neutrino interactions, as well as neutral current weak interactions. In this paper, the full dataset is used for the first time to test the three-flavor neutrino oscillation model and to derive constraints on the existence of a light sterile neutrino within the framework of the 3+1 neutrino model. For the first time, tau and electron neutrino appearance channels are jointly used to test the sterile neutrino hypothesis. A significant fraction of the sterile neutrino parameter space allowed by LSND and MiniBooNE experiments is excluded at 90% C.L. In particular, the best-fit values obtained by MiniBooNE combining neutrino and antineutrino data are excluded at 3.3σ significance.

    DOI: 10.1103/PhysRevD.100.051301

    Web of Science

    Scopus

  28. Development of a balloon-style pressure vessel gondola for balloon-borne emulsion gamma-ray telescopes Reviewed

    Rokujo H, Komiyama M, Aoki S, Hamada K, Hara T, Iyono A, Kawahara H, Kodama K, Komatani R, Komatsu M, Kuretsubo K, Marushima T, Matsuda S, Matsumoto H, Miyanishi M, Mizutani F, Morishima K, Morishita M, Naganawa N, Nakamura M, Nakamura T, Nakamura Y, Nakano T, Nishio A, Niwa K, Okada S, Otsuka N, Ozaki K, Sato O, Shibayama E, Suzuki A, Takahashi S, Tateishi Y, Torii M, Yabu M, Yamada K, Yamamoto S, Yoshimoto M

    JOURNAL OF INSTRUMENTATION   Vol. 14 ( 9 )   2019.9

  29. Sensitivity of the SHiP experiment to Heavy Neutral Leptons

    Ahdida, C; Albanese, R; Alexandrov, A; Anokhina, A; Aoki, S; Arduini, G; Atkin, E; Azorskiy, N; Dos Santos, FB; Back, JJ; Bagulya, A; Baranov, A; Bardou, F; Barker, GJ; Battistin, M; Bauche, J; Bay, A; Bayliss, V; Bencivenni, G; Berdnikov, YA; Berdnikov, AY; Berezkina, I; Bertani, M; Betancourt, C; Bezshyiko, I; Bezshyyko, O; Bick, D; Bieschke, S; Blanco, A; Boehm, J; Bogomilov, M; Bondarenko, K; Bonivento, WM; Borburgh, J; Boyarsky, A; Brenner, R; Breton, D; Brundler, R; Bruschi, M; Büscher, V; Buonaura, A; Buontempo, S; Cadeddu, S; Calcaterra, A; Calviani, M; Campanelli, M; Casolino, M; Charitonidis, N; Chau, P; Chauveau, J; Chepurnov, A; Chernyavskiy, M; Choi, KY; Chumakov, A; Ciambrone, P; Cornelis, K; Cristinziani, M; Crupano, A; Dallavalle, M; Datwyler, A; D'Ambrosio, N; D'Appollonio, G; Dedenko, L; Dergachev, P; Saraiva, JD; De Lellis, G; De Magistris, M; De Roeck, A; De Serio, M; De Simone, D; Dib, C; Dijkstra, H; Dipinto, P; Di Crescenzo, A; Di Marco, N; Dmitrenko, V; Dmitrievskiy, S; Dolmatov, A; Domenici, D; Donskov, S; Dougherty, LA; Drohan, V; Dubreuil, A; Ebert, J; Enik, T; Etenko, A; Fabbri, F; Fabbri, L; Fabich, A; Fedin, O; Fedotovs, F; Ferro-Luzzi, M; Felici, G; Filippov, K; Fini, RA; Fonte, P; Franco, C; Fraser, M; Fresa, R; Froeschl, R; Fukuda, T; Galati, G; Gall, J; Gatignon, L; Gavrilov, G; Gentile, V; Goddard, B; Golinka-Bezshyyko, L; Golovatiuk, A; Golubkov, D; Golutvin, A; Gorbounov, P; Gorbunov, S; Gorbunov, D; Gorkavenko, V; Gornushkin, Y; Gorshenkov, M; Grachev, V; Grandchamp, AL; Granich, G; Graverini, E; Grenard, JL; Grenier, D; Grichine, V; Gruzinskii, N; Guz, Y; Haefeli, GJ; Hagner, C; Hakobyan, H; Harris, IW; Hessler, C; Hollnagel, A; Hosseini, B; Hushchyn, M; Iaselli, G; Iuliano, A; Ivantchenko, V; Jacobsson, R; Jokovic, D; Jonker, M; Kadenko, I; Kain, V; Kamiscioglu, C; Kershaw, K; Khabibullin, M; Khalikov, E; Khaustov, G; Khoriauli, G; Khotyantsev, A; Kim, YG; Kim, V; Kim, SH; Kitagawa, N; Ko, JW; Kodama, K; Kolesnikov, A; Kolev, DI; Kolosov, V; Komatsu, M; Kondrateva, N; Kono, A; Konovalova, N; Kormannshaus, S; Korol, I; Korol'ko, I; Korzenev, A; Kostyukhin, V; Platia, EK; Kovalenko, S; Krasilnikova, I; Kudenko, Y; Kurbatov, E; Kurbatov, P; Kurochka, V; Kuznetsova, E; Lacker, HM; Lamont, M; Lanfranchi, G; Lantwin, O; Lauria, A; Lee, KS; Lee, KY; Lèvy, JM; Lopes, L; Sola, EL; Loschiavo, VP; Lyubovitskij, V; Guler, AM; Maalmi, J; Magnan, A; Maleev, V; Malinin, A; Manabe, Y; Managadze, AK; Manfredi, M; Marsh, S; Marshall, AM; Mefodev, A; Mermod, P; Miano, A; Mikado, S; Mikhaylov, Y; Milstead, DA; Mineev, O; Montanari, A; Montesi, MC; Morishima, K; Movchan, S; Muttoni, Y; Naganawa, N; Nakamura, M; Nakano, T; Nasybulin, S; Ninin, P; Nishio, A; Novikov, A; Obinyakov, B; Ogawa, S; Okateva, N; Opitz, B; Osborne, J; Ovchynnikov, M; Owen, PH; Owtscharenko, N; Pacholek, P; Paoloni, A; Paparella, R; Park, BD; Park, SK; Pastore, A; Patel, M; Pereyma, D; Perillo-Marcone, A; Petkov, GL; Petridis, K; Petrov, A; Podgrudkov, D; Poliakov, V; Polukhina, N; Prieto, JP; Prokudin, M; Prota, A; Quercia, A; Rademakers, A; Rakai, A; Ratnikov, F; Rawlings, T; Redi, F; Ricciardi, S; Rinaldesi, M; Robbe, P; Rodin, V; Rodin, V; Cavalcante, ABR; Roganova, T; Rokujo, H; Rosa, G; Rovelli, T; Ruchayskiy, O; Ruf, T; Samoylenko, V; Samsonov, V; Galan, FS; Diaz, PS; Ull, AS; Saputi, A; Sato, O; Savchenko, ES; Schmidt-Parzefall, W; Serra, N; Sgobba, S; Shadura, O; Shakin, A; Shaposhnikov, M; Shatalov, P; Shchedrina, T; Shchutska, L; Shevchenko, V; Shibuya, H; Shirobokov, S; Shustov, A; Silverstein, SB; Simone, S; Simoniello, R; Skorokhvatov, M; Smirnov, S; Sohn, JY; Sokolenko, A; Solodko, E; Starkov, N; Stoel, L; Storaci, B; Stramaglia, ME; Sukhonos, D; Suzuki, Y; Takahashi, S; Tastet, JL; Teterin, P; Naing, ST; Timiryasov, I; Tioukov, V; Tommasini, D; Torii, M; Tosi, N; Treille, D; Tsenov, R; Ulin, S; Ustyuzhanin, A; Uteshev, Z; Vankova-Kirilova, G; Vannucci, F; van Herwijnen, E; van Waasen, S; Venkova, P; Venturi, V; Vilchinski, S; Villa, M; Vincke, H; Vincke, H; Visone, C; Vlasik, K; Volkov, A; Voronkov, R; Wanke, R; Wertelaers, P; Woo, JK; Wurm, M; Xella, S; Yilmaz, D; Yilmazer, AU; Yoon, CS; Zarubin, P; Zarubina, I; Zaytsev, Y

    JOURNAL OF HIGH ENERGY PHYSICS   Vol. 2019 ( 4 )   2019.4

     More details

    Publisher:Journal of High Energy Physics  

    Heavy Neutral Leptons (HNLs) are hypothetical particles predicted by many extensions of the Standard Model. These particles can, among other things, explain the origin of neutrino masses, generate the observed matter-antimatter asymmetry in the Universe and provide a dark matter candidate. The SHiP experiment will be able to search for HNLs produced in decays of heavy mesons and travelling distances ranging between O(50 m) and tens of kilometers before decaying. We present the sensitivity of the SHiP experiment to a number of HNL’s benchmark models and provide a way to calculate the SHiP’s sensitivity to HNLs for arbitrary patterns of flavour mixings. The corresponding tools and data files are also made publicly available.[Figure not available: see fulltext.].

    DOI: 10.1007/JHEP04(2019)077

    Web of Science

    Scopus

  30. The experimental facility for the Search for Hidden Particles at the CERN SPS

    Ahdida, C; Albanese, R; Alexandrov, A; Anokhina, A; Aoki, S; Arduini, G; Atkin, E; Azorskiy, N; Back, JJ; Bagulya, A; Dos Santos, FB; Baranov, A; Bardou, F; Barker, GJ; Battistin, M; Bauche, J; Bay, A; Bayliss, V; Bencivenni, G; Berdnikov, AY; Berdnikov, YA; Berezkina, I; Bertani, M; Betancourt, C; Bezshyiko, I; Bezshyyko, O; Bick, D; Bieschke, S; Blanco, A; Boehm, J; Bogomilov, M; Bondarenko, K; Bonivento, WM; Borburgh, J; Boyarsky, A; Brenner, R; Breton, D; Brundler, R; Bruschi, M; Buscher, V; Buonaura, A; Buontempo, S; Cadeddu, S; Calcaterra, A; Calviani, M; Campanelli, M; Casolino, M; Charitonidis, N; Chau, P; Chauveau, J; Chepurnov, A; Chernyavskiy, M; Choi, KY; Chumakov, A; Ciambrone, P; Cornelis, K; Cristinziani, M; Crupano, A; Dallavalle, GM; Datwyler, A; D'Ambrosio, N; D'Appollonio, G; Saraiva, JD; De Lellis, G; de Magistris, M; De Roeck, A; De Serio, M; De Simone, D; Dedenko, L; Dergachev, P; Di Crescenzo, A; Di Marco, N; Dib, C; Dijkstra, H; Dipinto, P; Dmitrenko, V; Dmitrievskiy, S; Dougherty, LA; Dolmatov, A; Domenici, D; Donskov, S; Drohan, V; Dubreuil, A; Ebert, J; Enik, T; Etenko, A; Fabbri, F; Fabbri, L; Fabich, A; Fedin, O; Fedotovs, F; Felici, G; Ferro-Luzzi, M; Filippov, K; Fini, RA; Fonte, P; Franco, C; Fraser, M; Fresa, R; Froeschl, R; Fukuda, T; Galati, G; Gall, J; Gatignon, L; Gavrilov, G; Gentile, V; Goddard, B; Golinka-Bezshyyko, L; Golovatiuk, A; Golubkov, D; Golutvin, A; Gorbounov, P; Gorbunov, D; Gorbunov, S; Gorkavenko, V; Gornushkin, Y; Gorshenkov, M; Grachev, V; Grandchamp, AL; Granich, G; Graverini, E; Grenard, JL; Grenier, D; Grichine, V; Gruzinskii, N; Guler, AM; Guz, Y; Haefeli, GJ; Hagner, C; Hakobyan, H; Harris, IW; van Herwijnen, E; Hessler, C; Hollnagel, A; Hosseini, B; Hushchyn, M; Iaselli, G; Iuliano, A; Ivantchenko, V; Jacobsson, R; Jokovic, D; Jonker, M; Kadenko, I; Kain, V; Kamiscioglu, C; Kershaw, K; Khabibullin, M; Khalikov, E; Khaustov, G; Khoriauli, G; Khotyantsev, A; Kim, SH; Kim, YG; Kim, V; Kitagawa, N; Ko, JW; Kodama, K; Kolesnikov, A; Kolev, DI; Kolosov, V; Komatsu, M; Kondrateva, N; Kono, A; Konovalova, N; Kormannshaus, S; Korol, I; Korol'ko, I; Korzenev, A; Kostyukhin, V; Platia, EK; Kovalenko, S; Krasilnikova, I; Kudenko, Y; Kurbatov, E; Kurbatov, P; Kurochka, V; Kuznetsova, E; Lacker, HM; Lamont, M; Lanfranchi, G; Lantwin, O; Lauria, A; Lee, KS; Lee, KY; Lévy, JM; Loschiavo, VP; Lopes, L; Sola, EL; Lyubovitskij, V; Maalmi, J; Magnan, A; Maleev, V; Malinin, A; Manabe, Y; Managadze, AK; Manfredi, M; Marsh, S; Marshall, AM; Mefodev, A; Mermod, P; Miano, A; Mikado, S; Mikhaylov, Y; Milstead, DA; Mineev, O; Montanari, A; Montesi, MC; Morishima, K; Movchan, S; Muttoni, Y; Naganawa, N; Nakamura, M; Nakano, T; Nasybulin, S; Ninin, P; Nishio, A; Novikov, A; Obinyakov, B; Ogawa, S; Okateva, N; Opitz, B; Osborne, J; Ovchynnikov, M; Owtscharenko, N; Owen, PH; Pacholek, P; Paoloni, A; Paparella, R; Park, BD; Park, SK; Pastore, A; Patel, M; Pereyma, D; Perillo-Marcone, A; Petkov, GL; Petridis, K; Petrov, A; Podgrudkov, D; Poliakov, V; Polukhina, N; Prieto, JP; Prokudin, M; Prota, A; Quercia, A; Rademakers, A; Rakai, A; Ratnikov, F; Rawlings, T; Redi, F; Ricciardi, S; Rinaldesi, M; Rodin, V; Rodin, V; Robbe, P; Cavalcante, ABR; Roganova, T; Rokujo, H; Rosa, G; Rovelli, T; Ruchayskiy, O; Ruf, T; Samoylenko, V; Samsonov, V; Galan, FS; Diaz, PS; Ull, AS; Saputi, A; Sato, O; Savchenko, ES; Schmidt-Parzefall, W; Serra, N; Sgobba, S; Shadura, O; Shakin, A; Shaposhnikov, M; Shatalov, P; Shchedrina, T; Shchutska, L; Shevchenko, V; Shibuya, H; Shirobokov, S; Shustov, A; Silverstein, SB; Simone, S; Simoniello, R; Skorokhvatov, M; Smirnov, S; Sohn, JY; Sokolenko, A; Solodko, E; Starkov, N; Stoel, L; Storaci, B; Stramaglia, ME; Sukhonos, D; Suzuki, Y; Takahashi, S; Tastet, JL; Teterin, P; Naing, ST; Timiryasov, I; Tioukov, V; Tommasini, D; Torii, M; Tosi, N; Treille, D; Tsenov, R; Ulin, S; Ustyuzhanin, A; Uteshev, Z; Vankova-Kirilova, G; Vannucci, F; Venkova, P; Venturi, V; Vilchinski, S; Villa, M; Vincke, H; Vincke, H; Visone, C; Vlasik, K; Volkov, A; Voronkov, R; van Waasen, S; Wanke, R; Wertelaers, P; Woo, JK; Wurm, M; Xella, S; Yilmaz, D; Yilmazer, AU; Yoon, CS; Zarubin, P; Zarubina, I; Zaytsev, Y

    JOURNAL OF INSTRUMENTATION   Vol. 14 ( 3 )   2019.3

     More details

    Publisher:Journal of Instrumentation  

    The Search for Hidden Particles (SHiP) Collaboration has shown that the CERN SPS accelerator with its 400 GeV/c proton beam offers a unique opportunity to explore the Hidden Sector [1-3]. The proposed experiment is an intensity frontier experiment which is capable of searching for hidden particles through both visible decays and through scattering signatures from recoil of electrons or nuclei. The high-intensity experimental facility developed by the SHiP Collaboration is based on a number of key features and developments which provide the possibility of probing a large part of the parameter space for a wide range of models with light long-lived super-weakly interacting particles with masses up to (10) GeV/c2 in an environment of extremely clean background conditions. This paper describes the proposal for the experimental facility together with the most important feasibility studies. The paper focuses on the challenging new ideas behind the beam extraction and beam delivery, the proton beam dump, and the suppression of beam-induced background.

    DOI: 10.1088/1748-0221/14/03/P03025

    Web of Science

    Scopus

  31. 原子核乾板技術の進化と展開~デジカメ時代を生き抜くアナログフィルム

    福田 努, 中野 敏行, 六條 宏紀, 佐藤 修

    放射線化学   Vol. 第107 号   page: 35 - 48   2019

     More details

  32. Latest results of the OPERA experiment on nu-tau appearance in the CNGS neutrino beam

    Agafonova N., Alexandrov A., Anokhina A., Aoki S., Ariga A., Ariga T., Bertolin A., Bozza C., Brugnera R., Buonaura A., Buontempo S., Chernyavskiy M., Chukanov A., Consiglio L., D'Ambrosio N., De Lellis G., De Serio M., del Amo Sanchez P., Di Crescenzo A., Di Ferdinando D., Di Marco N., Dmitrievsky S., Dracos M., Duchesneau D., Dusini S., Dzhatdoev T., Ebert J., Ereditato A., Favier J., Fini R.A., Fornari F., Fukuda T., Galati G., Garfagnini A., Gentile V., Goldberg J., Gorbunov S., Gornushkin Y., Grella G., Guler A.M., Gustavino C., Hagner C., Hara T., Hayakawa T., Hollnagel A., Ishiguro K., Iuliano A., Jakovcic K., Jollet C., Kamiscioglu C., Kamiscioglu M., Kim S.H., Kitagawa N., Klicek B., Kodama K., Komatsu M., Kose U., Kreslo I., Laudisio F., Lauria A., Longhin A., Loverre P., Malenica M., Malgin A., Mandrioli G., Matsuo T., Matveev V., Mauri N., Medinaceli E., Meregaglia A., Mikado S., Miyanishi M., Mizutani F., Monacelli P., Montesi M.C., Morishima K., Muciaccia M.T., Naganawa N., Naka T., Nakamura M., Nakano T., Niwa K., Ogawa S., Olchevsky A., Okateva N., Ozaki K., Paoloni A., Paparella L., Park B.D., Pasqualini L., Pastore A., Patrizii L., Pessard H., Pistillo C., Podgrudkov D., Polukhina N., Pozzato M., Pupilli F., Roda M., Roganova T.

    Physical Review Letters   ( 1 )   2019

     More details

    Publisher:Physical Review Letters  

    OPERA is a long-baseline experiment designed to search for νμ → ντ oscillations in appearance mode. It was based at the INFN Gran Sasso laboratory (LNGS) and took data from 2008 to 2012 with the CNGS neutrino beam from CERN. After the discovery of ντ appearance in 2015, with 5.1σ significance, the criteria to select ντ candidates have been extended and a multivariate approach has been used for events identification. In this way the statistical uncertainty in the measurement of the oscillation parameters and of ντ properties has been improved. Results are reported.

    DOI: 10.21468/SciPostPhysProc.1.028

    Scopus

  33. Gamma-ray imaging performance of nuclear emulsion telescope in GRAINE-2018 balloon experiment

    Rokujo H., Komiyama M., Nakamura Y., Yamamoto S.

    Proceedings of Science   Vol. 358   2019

     More details

    Publisher:Proceedings of Science  

    Since 2008, the Large Area Telescope onboard the Fermi Gamma-ray Space Tele- scope (Fermi-LAT) has surveyed the sub-GeV/GeV gamma-ray sky and achieved high statistics measurements. However, observation at low galactic latitudes remains difficult owing to the lack of the angular resolution, and new issues following the operation of Fermi-LAT have arisen. We devised a precise gamma-ray observation project, Gamma-Ray Astro-Imager with Nuclear Emulsion (GRAINE), using balloon-borne emulsion gamma-ray telescopes to realize high angular resolution, polarization-sensitive, and large-aperture observations in the 0.01-100 GeV energy region. On April 26, 2018, the 3rd balloon experiment of the GRAINE project was conducted in Alice Springs, Australia, to detect celestial gamma-ray sources and to demonstrate the overall performance of the middle-sized emulsion telescope (aperture area of 0.4 m2). The balloon floated at the altitude of 36-38 km for 15 h, and the telescope observed the target object, Vela pulsar, for 6 h. Following the recovery and the photofinishing, the data acquisition by the emulsion scanning system were completed, and then the flight data analysis has been performed using reconstructed gamma-ray events. In this presentation, the in-flight performance focusing on the converter part of the emulsion telescope employed in the GRAINE 2018 balloon experiment is reported.

    Scopus

  34. GRAINE project: precise gamma-ray observations with balloon-borne emulsion telescope

    Rokujo, H

    XX INTERNATIONAL SYMPOSIUM ON VERY HIGH ENERGY COSMIC RAY INTERACTIONS (ISVHECRI 2018)   Vol. 208   2019

  35. Study of charged hadron multiplicities in charged-current neutrino-lead interactions in the OPERA detector (vol 78, 62, 2018)

    Agafonova, N; Aleksandrov, A; Anokhina, A; Aoki, S; Ariga, A; Ariga, T; Bertolin, A; Bodnarchuk, I; Bozza, C; Brugnera, R; Buonaura, A; Buontempo, S; Chernyavskiy, M; Chukanov, A; Consiglio, L; D'Ambrosio, N; De Lellis, G; De Serio, M; Sanchez, PD; Di Crescenzo, A; Di Ferdinando, D; Di Marco, N; Dmitrievski, S; Dracos, M; Duchesneau, D; Dusini, S; Dzhatdoev, T; Ebert, J; Ereditato, A; Fini, RA; Fornari, F; Fukuda, T; Galati, G; Garfagnini, A; Gentile, V; Goldberg, J; Gornushkin, Y; Gorbunov, S; Grella, G; Guler, AM; Gustavino, C; Hagner, C; Hara, T; Hayakawa, T; Hollnagel, A; Hosseini, B; Ishiguro, K; Jakovcic, K; Jollet, C; Kamiscioglu, C; Kamiscioglu, M; Kim, SH; Kitagawa, N; Klicek, B; Kodama, K; Komatsu, M; Kose, U; Kreslo, I; Laudisio, F; Lauria, A; Ljubicic, A; Longhin, A; Loverre, P; Malgin, A; Malenica, M; Mandrioli, G; Matsuo, T; Matveev, V; Mauri, N; Medinaceli, E; Meregaglia, A; Mikado, S; Miyanishi, M; Mizutani, F; Monacelli, P; Montesi, MC; Morishima, K; Muciaccia, MT; Naganawa, N; Naka, T; Nakamura, M; Nakano, T; Niwa, K; Okateva, N; Ogawa, S; Ozaki, K; Paoloni, A; Paparella, L; Park, BD; Pasqualini, L; Pastore, A; Patrizii, L; Pessard, H; Podgrudkov, D; Polukhina, N; Pozzato, M; Pupilli, F; Roda, M; Roganova, T; Rokujo, H; Rosa, G; Ryazhskaya, O; Sato, O; Schembri, A; Shakirianova, I; Shchedrina, T; Shibuya, H; Shibayama, E; Shiraishi, T; Simone, S; Sirignano, C; Sirri, G; Sotnikov, A; Spinetti, M; Stanco, L; Starkov, N; Stellacci, SM; Stipcevic, M; Strolin, P; Takahashi, S; Tenti, M; Terranova, F; Tioukov, V; Vasina, S; Vilain, P; Voevodina, E; Votano, L; Vuilleumier, JL; Wilquet, G; Wonsak, B; Yoon, CS

    EUROPEAN PHYSICAL JOURNAL C   Vol. 78 ( 9 )   2018.9

     More details

    Publisher:European Physical Journal C  

    Section Analysis, line 9: sub-sample of 818 events becomes sub-sample of 817 events.

    DOI: 10.1140/epjc/s10052-018-6223-0

    Web of Science

    Scopus

  36. Final results of the search for <i>v</i><sub>μ</sub> → <i>v</i><sub>e</sub> oscillations with the OPERA detector in the CNGS beam

    Agafonova, N; Aleksandrov, A; Anokhina, A; Aoki, S; Ariga, A; Ariga, T; Bertolin, A; Bozza, C; Brugnera, R; Buonaura, A; Buontempo, S; Chernyavskiy, M; Chukanov, A; Consiglio, L; D'Ambrosio, N; De Lellis, G; De Serio, M; Sanchez, PD; Di Crescenzo, A; Di Ferdinando, D; Di Marco, N; Dmitrievsky, S; Dracos, M; Duchesneau, D; Dusini, S; Dzhatdoev, T; Ebert, J; Ereditato, A; Favier, J; Fini, RA; Fornari, F; Fukuda, T; Galati, G; Garfagnini, A; Gentile, V; Goldberg, J; Gornushkin, Y; Gorbunov, S; Grella, G; Guler, AM; Gustavino, C; Hagner, C; Hara, T; Hayakawa, T; Hollnagel, A; Hosseini, B; Ishiguro, K; Iuliano, A; Jakovcic, K; Jollet, C; Kamiscioglu, C; Kamiscioglu, M; Kim, SH; Kitagawa, N; Klicek, B; Kodama, K; Komatsu, M; Kose, U; Kreslo, I; Laudisio, F; Lauria, A; Ljubicic, A; Longhin, A; Loverre, P; Malgin, A; Malenica, M; Mandrioli, G; Matsuo, T; Matveev, V; Mauri, N; Medinaceli, E; Meisel, F; Meregaglia, A; Mikado, S; Miyanishi, M; Mizutani, F; Monacelli, P; Montesi, MC; Morishima, K; Muciaccia, MT; Naganawa, N; Naka, T; Nakamura, M; Nakano, T; Niwa, K; Okateva, N; Ogawa, S; Ozaki, K; Paoloni, A; Paparella, L; Park, BD; Pasqualini, L; Pastore, A; Patrizii, L; Pessard, H; Podgrudkov, D; Polukhina, N; Pozzato, M; Pupilli, F; Roda, M; Roganova, T; Rokujo, H; Rosa, G; Ryazhskaya, O; Sato, O; Schembri, A; Shakiryanova, I; Shchedrina, T; Shibuya, H; Shibayama, E; Shiraishi, T; Simone, S; Sirignano, C; Sirri, G; Sotnikov, A; Spinetti, M; Stanco, L; Starkov, N; Stellacci, SM; Stipcevic, M; Strolin, P; Takahashi, S; Tenti, M; Terranova, F; Tioukov, V; Vasina, S; Vilain, P; Voevodina, E; Votano, L; Vuilleumier, JL; Wilquet, G; Yoon, CS

    JOURNAL OF HIGH ENERGY PHYSICS   Vol. 2018 ( 6 )   2018.6

     More details

    Publisher:Journal of High Energy Physics  

    The OPERA experiment has discovered the tau neutrino appearance in the CNGS muon neutrino beam, in agreement with the 3 neutrino flavour oscillation hypothesis. The OPERA neutrino interaction target, made of Emulsion Cloud Chambers, was particularly efficient in the reconstruction of electromagnetic showers. Moreover, thanks to the very high granularity of the emulsion films, showers induced by electrons can be distinguished from those induced by π0s, thus allowing the detection of charged current interactions of electron neutrinos. In this paper the results of the search for electron neutrino events using the full dataset are reported. An improved method for the electron neutrino energy estimation is exploited. Data are compatible with the 3 neutrino flavour mixing model expectations and are used to set limits on the oscillation parameters of the 3+1 neutrino mixing model, in which an additional mass eigenstate m4 is introduced. At high Δm412 (≳0.1 eV2), an upper limit on sin2 2θμe is set to 0.021 at 90% C.L. and Δm412 ≳ 4 × 10− 3 eV2 is excluded for maximal mixing in appearance mode.[Figure not available: see fulltext.].

    DOI: 10.1007/JHEP06(2018)151

    Web of Science

    Scopus

  37. First demonstration of gamma‐ray imaging using a balloon‐borne emulsion telescope Reviewed

    ROKUJO Hiroki, AOKI Shigeki, HAMADA Kaname, HARA Toshio, INOUE Tatsuki, ISHIGURO Katsumi, IYONO Atsushi, KAWAHARA Hiroaki, KODAMA Koichi, KOMATANI Ryosuke, KOMATSU Masahiro, KOSAKA Tetsuya, MIYANISHI Motoaki, MIZUTANI Fukashi, MORISHIMA Kunihiro, MORISHITA Misaki, NAGANAWA Naotaka, NAKAMURA Mitsuhiro, NAKANO Toshiyuki, NISHIO Akira, NIWA Kimio, OTSUKA Naoto, OZAKI Keita, SATO Osamu, SHIBAYAMA Emi, SUZUKI Atsumu, TAKAHASHI Satoru, TANAKA Ryo, TATEISHI Yurie, TAWA Shuichi, YABU Misato, YAMADA Kyohei, YAMAMOTO Saya, YOSHIMOTO Masahiro

    Progress of Theoretical and Experimental Physics (Web)   Vol. 2018 ( 6 )   2018.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Oxford University Press (OUP)  

    DOI: 10.1093/ptep/pty056

    Web of Science

    Scopus

    researchmap

  38. Final Results of the OPERA Experiment on ν<sub>τ </sub>Appearance In the CNGS Neutrino Beam

    Agafonova, N; Alexandrov, A; Anokhina, A; Aoki, S; Ariga, A; Ariga, T; Bertolin, A; Bozza, C; Brugnera, R; Buonaura, A; Buontempo, S; Chernyavskiy, M; Chukanov, A; Consiglio, L; D'Ambrosio, N; De Lellis, G; De Serio, M; Sanchez, PD; Di Crescenzo, A; Di Ferdinando, D; Di Marco, N; Dmitrievsky, S; Dracos, M; Duchesneau, D; Dusini, S; Dzhatdoev, T; Ebert, J; Ereditato, A; Favier, J; Fini, RA; Fornari, F; Fukuda, T; Galati, G; Garfagnini, A; Gentile, V; Goldberg, J; Gorbunov, S; Gornushkin, Y; Grella, G; Guler, AM; Gustavino, C; Hagner, C; Hara, T; Hayakawa, T; Hollnagel, A; Ishiguro, K; Iuliano, A; Jakovcic, K; Jollet, C; Kamiscioglu, C; Kamiscioglu, M; Kim, SH; Kitagawa, N; Klicek, B; Kodama, K; Komatsu, M; Kose, U; Kreslo, I; Laudisio, F; Lauria, A; Ljubicic, A; Longhin, A; Loverre, P; Malenica, M; Malgin, A; Mandrioli, G; Matsuo, T; Matveev, V; Mauri, N; Medinaceli, E; Meregaglia, A; Mikado, S; Miyanishi, M; Mizutani, F; Monacelli, P; Montesi, MC; Morishima, K; Muciaccia, MT; Naganawa, N; Naka, T; Nakamura, M; Nakano, T; Niwa, K; Ogawa, S; Okateva, N; Olchevsky, A; Ozaki, K; Paoloni, A; Paparella, L; Park, BD; Pasqualini, L; Pastore, A; Patrizii, L; Pessard, H; Pistillo, C; Podgrudkov, D; Polukhina, N; Pozzato, M; Pupilli, F; Roda, M; Roganova, T; Rokujo, H; Rosa, G; Ryazhskaya, O; Sadovsky, A; Sato, O; Schembri, A; Shakiryanova, I; Shchedrina, T; Shibayama, E; Shibuya, H; Shiraishi, T; Simone, S; Sirignano, C; Sirri, G; Sotnikov, A; Spinetti, M; Stanco, L; Starkov, N; Stellacci, SM; Stipcevic, M; Strolin, P; Takahashi, S; Tenti, M; Terranova, F; Tioukov, V; Tufanli, S; Ustyuzhanin, A; Vasina, S; Vilain, P; Voevodina, E; Votano, L; Vuilleumier, JL; Wilquet, G; Wonsak, B; Yoon, CS

    PHYSICAL REVIEW LETTERS   Vol. 120 ( 21 ) page: 211801   2018.5

     More details

    Language:English   Publisher:Physical Review Letters  

    The OPERA experiment was designed to study νμ→ντ oscillations in the appearance mode in the CERN to Gran Sasso Neutrino beam (CNGS). In this Letter, we report the final analysis of the full data sample collected between 2008 and 2012, corresponding to 17.97×1019 protons on target. Selection criteria looser than in previous analyses have produced ten ντ candidate events, thus reducing the statistical uncertainty in the measurement of the oscillation parameters and of ντ properties. A multivariate approach for event identification has been applied to the candidate events and the discovery of ντ appearance is confirmed with an improved significance level of 6.1σ. |Δm322| has been measured, in appearance mode, with an accuracy of 20%. The measurement of the ντ charged-current cross section, for the first time with a negligible contamination from ντ, and the first direct evidence for the ντ lepton number are also reported.

    DOI: 10.1103/PhysRevLett.120.211801

    Web of Science

    Scopus

    PubMed

  39. Study of charged hadron multiplicities in charged-current neutrino–lead interactions in the OPERA detector Reviewed

    Agafonova N, Aoki S, Hara T, Mizutani F, Ozaki K, Rokujo H, Shibayama E, Takahashi S

    Eur. Phys. J. C   Vol. 78 ( 1 ) page: P05011   2018.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1140/epjc/s10052-017-5509-y

    Web of Science

    Scopus

    researchmap

  40. GRAINE Project: Analysis Status of Balloon Experiment in 2015

    MIZUTANI Fukashi, AOKI Shigeki, HAMADA Kaname, HARA Toshio, IYONO Atsushi, KAWAHARA Hiroaki, KODAMA Koichi, KOMATANI Ryosuke, KOMATSU Masahiro, KURETSUBO Kenji, MARUSHIMA Toshitsugu, MATSUMOTO Haruka, MIYANISHI Motoaki, MORISHIMA Kunihiro, MORISHITA Misaki, NAGANAWA Naotaka, NAKAMURA Mitsuhiro, NAKANO Toshiyuki, NISHIO Akira, NIWA Kimio, OTSUKA Naoto, OZAKI Keita, ROKUJO Hiroki, SATO Osamu, SHIBAYAMA Emi, SUZUKI Atsumu, TAKAHASHI Satoru, TATEISHI Yurie, YABU Misato, YAMADA Kyohei, YAMAMOTO Saya, YOSHIMOTO Masahiro

    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN   Vol. 16 ( 6 ) page: 464 - 469   2018

     More details

    Language:English   Publisher:THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES  

    <p>Cosmic gamma-ray observation provides much information on high energy objects and phenomena in space. Sub-GeV/GeV gamma-ray astronomy has been developed by projects such as EGRET, AGILE, and Fermi; however, many problems have yet to be solved. Not only high statistics observation but also high quality observation are required to advance gamma-ray astronomy. Therefore, we promote the GRAINE project, of which the aim is precise and polarization observations with an emulsion gamma-ray telescope. The balloon flight was performed in Australia during 2015. We aimed for the detection of the Vela pulsar and verification of the overall performance of the telescope. In this paper, we report the analysis status of the balloon flight during 2015.</p>

    DOI: 10.2322/tastj.16.464

    CiNii Research

  41. More results from the OPERA experiment

    Galati G., Agafonova N., Aleksandrov A., Anokhina A., Aoki S., Ariga A., Ariga T., Bender D., Bertolin A., Bodnarchuk I., Bozza C., Brugnera R., Buonaura A., Buontempo S., Büttner B., Chernyavskiy M., Chukanov A., Consiglio L., D'Ambrosio N., De Lellis G., De Serio M., Del Amo Sanchez P., Di Crescenzo A., Di Ferdinando D., Di Marco N., Dmitrievski S., Dracos M., Duchesneau D., Dusini S., Dzhatdoev T., Ebert J., Ereditato A., Fini R.A., Fornari F., Fukuda T., Garfagnini A., Goldberg J., Gornushkin Y., Grella G., Guler A.M., Gustavino C., Hagner C., Hara T., Hayakawa H., Hollnagel A., Hosseini B., Ishiguro K., Jakovcic K., Jollet C., Kamiscioglu C., Kamiscioglu M., Kim S.H., Kitagawa N., Klicek B., Kodama K., Komatsu M., Kose U., Kreslo I., Laudisio F., Lauria A., Ljubicic A., Longhin A., Loverre P.F., Malenica M., Malgin A., Mandrioli G., Matsuo T., Matveev V., Mauri N., Medinaceli E., Meregaglia A., Mikado S., Miyanishi M., Mizutani F., Monacelli P., Montesi M.C., Morishima K., Muciaccia M.T., Naganawa N., Naka T., Nakamura M., Nakano T., Niwa K., Ogawa S., Omura T., Osaki K., Paoloni A., Paparella L., Park B.D., Pasqualini L., Pastore A., Patrizii L., Pessard H., Podgrudkov D., Polukhina N., Pozzato M., Pupilli F., Roda M., Roganova T., Rokujo H.

    Nuovo Cimento della Societa Italiana di Fisica C   Vol. 40 ( 5 )   2017.9

     More details

    Publisher:Nuovo Cimento della Societa Italiana di Fisica C  

    The OPERA experiment reached its main goal by proving the appearance of vτ in the CNGS vμ beam. Five vτ candidates were detected with a S/B ratio of ∼ 10, allowing to reject the null hypothesis at 5.1σ. The search has been extended by loosening the selection criteria in order to improve the statistical uncertainty. One of the vτ candidates selected with the new strategy shows a double vertex topology and, after a dedicated multivariate analysis, is compatible with being a vTτ interaction with charm production. Based on the enlarged data sample the estimation of Δm223 in appearance mode is being performed. The search for ve interactions has been extended over the full data set with a more than twofold increase in statistics: data are compatible with the non-oscillation hypothesis in the three-flavour mixing model. The implications of the electron neutrino sample in the framework of the 3+1 sterile mode will lead to exclusion limits on sin2 2θμe. Finally, the analysis of the annual modulation of cosmic muons is introduced.

    DOI: 10.1393/ncc/i2017-17160-0

    Scopus

  42. Latest nuclear emulsion technology Reviewed

    Hiroki Rokujo, Hiroaki Kawahara, Ryosuke Komatani, Misaki Morishita, Toshiyuki Nakano, Naoto Otsuka, Masahiro Yoshimoto

    EPJ Web of Conferences   Vol. 145   2017.6

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:EDP Sciences  

    Nuclear emulsion is a extremely high-resolution 3D tracking detector. Since the discovery of the pion by C.F. Powell et al. in 1946, experiments with nuclear emulsions have contributed to the development of particle physics. (e.g. the OPERA collaboration reported the discovery of νμ ∗ ντ oscillations in appearance mode in 2015) The technology of nuclear emulsion still keeps making progress. Since 2010, we have introduced a system of nuclear emulsion gel production to our laboratory in Nagoya University, and have started self-development of the new gel, instead of from the photographic film companies. Moreover, a faster automated emulsion scanning system is developed. Its scanning speed reaches 4000 cm2/h, and the load for analyzing becomes more and more lighter. In this presentation, we report the status of nuclear emulsion technologies for cosmic ray experiments.

    DOI: 10.1051/epjconf/201614519020

    Scopus

    researchmap

  43. GRAINE balloon experiment in 2015: Precise observations of cosmic gamma rays by a high-resolution emulsion telescope

    Rokujo H.

    EPJ Web of Conferences   Vol. 145   2017.6

     More details

    Publisher:EPJ Web of Conferences  

    Observations of cosmic gamma rays are important for studying high energy phenomena in the universe. Since 2008, the Large Area Telescope on the Fermi satellite has surveyed the whole gamma-ray sky in the sub-GeV/GeV energy region, and accumurated a large amount of data. However, observations at the low galactic latitude remains difficult because of a lack of angular resolution, increase of background flux originating from galactic diffuse gamma rays, etc. The Gamma-Ray Astro-Imager with Nuclear Emulsion (GRAINE) is a gamma-ray observation project with a new balloon-borne emulsion gamma-ray telescope. Nuclear emulsion is a high-resolution 3D tracking device. It determines the incident angle with 0.1? resolution for 1 GeV gamma rays (1.0? for 100 MeV), and has linear polarization sensitivity. GRAINE aims at precise observation of gamma-ray sources, especially in the galactic plane, by repeating long-duration balloon flights with large-aperture-area (10 m2) high-resolution emulsion telescopes. In May 2015, we performed a balloon-borne experiment in Alice Springs, Australia, in order to demonstrate the imaging performance of our telescope. The emulsion telescope that has an aperture area of 0.4 m2 was employed in this experiment. It observed the Vela pulsar (the brightest gamma-ray source in the GeV sky) at an altitude of 37 km for 6 hours out of the flight duration of 14 hours. In this presentation, we will report the latest results and the status of the GRAINE project.

    DOI: 10.1051/epjconf/201614506002

    Scopus

  44. First neutrino event detection with nuclear emulsion at J-PARC neutrino beamline Reviewed

    T. Fukuda, S. Aoki, S. Cao, N. Chikuma, Y. Fukuzawa, M. Gonin, T. Hayashino, Y. Hayato, A. Hiramoto, F. Hosomi, K. Ishiguro, S. Iori, T. Inoh, H. Kawahara, H. Kim, N. Kitagawa, T. Koga, R. Komatani, M. Komatsu, A. Matsushita, S. Mikado, A. Minamino, H. Mizusawa, K. Morishima, T. Matsuo, T. Matsumoto, Y. Morimoto, M. Morishita, K. Nakamura, M. Nakamura, Y. Nakamura, N. Naganawa, T. Nakano, T. Nakaya, Y. Nakatsuka, A. Nishio, S. Ogawa, H. Oshima, B. Quilain, H. Rokujo, O. Sato, Y. Seiya, H. Shibuya, T. Shiraishi, Y. Suzuki, S. Tada, S. Takahashi, K. Yamada, M. Yoshimoto, M. Yokoyama

    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS   Vol. 2017 ( 6 ) page: 063C02   2017.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:OXFORD UNIV PRESS INC  

    Precise neutrino-nucleus interaction measurements in the sub-multi-GeV region are important to reduce the systematic uncertainty in future neutrino oscillation experiments. Furthermore, an excess of.e interactions, as a possible interpretation of the existence of a sterile neutrino, has been observed in such an energy region. The nuclear emulsion technique can measure all the final state particles with low energy threshold for a variety of targets (Fe, C, H2O, and so on). Its subam position resolution allows measurements of the.e cross-section with good electron/gamma separation capability. We started a new experiment at J-PARC to study sub-multi-GeV neutrino interactions by introducing the nuclear emulsion technique. The J-PARC T60 experiment has been implemented as a first step in such a project. Systematic neutrino event analysis with full scanning data in the nuclear emulsion detector was performed for the first time. The first neutrino event detection and its analysis are described in this paper.

    DOI: 10.1093/ptep/ptx077

    Web of Science

    Scopus

    researchmap

  45. First demonstration of an emulsion multi-stage shifter for accelerator neutrino experiments in J-PARC T60 Reviewed

    K. Yamada, S. Aoki, S. Cao, N. Chikuma, T. Fukuda, Y. Fukuzawa, M. Gonin, T. Hayashino, Y. Hayato, A. Hiramoto, F. Hosomi, T. Inoh, S. Iori, K. Ishiguro, H. Kawahara, H. Kim, N. Kitagawa, T. Koga, R. Komatani, M. Komatsu, A. Matsushita, S. Mikado, A. Minamino, H. Mizusawa, T. Matsumoto, T. Matsuo, Y. Morimoto, K. Morishima, M. Morishita, N. Naganawa, K. Nakamura, M. Nakamura, Y. Nakamura, T. Nakano, Y. Nakatsuka, T. Nakaya, A. Nishio, S. Ogawa, H. Oshima, B. Quilain, H. Rokujo, O. Sato, Y. Seiya, H. Shibuya, T. Shiraishi, Y. Suzuki, S. Tada, S. Takahashi, M. Yokoyama, M. Yoshimoto

    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS   Vol. 2017 ( 6 )   2017.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:OXFORD UNIV PRESS INC  

    We describe the first ever implementation of a clock-based, multi-stage emulsion shifter in an accelerator neutrino experiment. The system was installed in the neutrino monitoring building at the Japan Proton Accelerator Research Complex as part of a test experiment, T60, and stable operation was maintained for a total of 126.6 days. By applying time information to emulsion films, various results were obtained. Time resolutions of 5.3-14.7 s were evaluated in an operation spanning 46.9 days ( yielding division numbers of 1.4-3.8x10(5)). By using timing and spatial information, reconstruction of coincident events consisting of high-multiplicity and vertex-contained events, including neutrino events, was performed. Emulsion events were matched to events observed by INGRID, one of the on-axis near detectors of the T2K experiment, with high reliability 98.5%), and hybrid analysis of the emulsion and INGRID events was established by means of the multi-stage shifter. The results demonstrate that the multi-stage shifter can feasibly be used in neutrino experiments.

    DOI: 10.1093/ptep/ptx083

    Web of Science

    Scopus

    researchmap

  46. The active muon shield in the SHiP experiment Reviewed

    A. Akmete, A. Alexandrov, A. Anokhina, S. Aoki, E. Atkin, N. Azorskiy, J. J. Back, A. Bagulya, A. Baranov, G. J. Barker, A. Bay, V. Bayliss, G. Bencivenni, A. Y. Berdnikov, Y. A. Berdnikov, M. Bertani, C. Betancourt, I. Bezshyiko, O. Bezshyyko, D. Bick, S. Bieschke, A. Blanco, J. Boehm, M. Bogomilov, K. Bondarenko, W. M. Bonivento, A. Boyarsky, R. Brenner, D. Breton, R. Brundler, M. Bruschi, V. Buscher, A. Buonaura, S. Buontempo, S. Cadeddu, A. Calcaterra, M. Campanelli, J. Chauveau, A. Chepurnov, M. Chernyavsky, K. -Y. Choi, A. Chumakov, P. Ciambrone, G. M. Dallavalle, N. D'Ambrosio, G. D'Appollonio, G. De Lellis, A. De Roeck, M. De Serio, L. Dedenko, A. Di Crescenzo, N. Di Marco, C. Dib, H. Dijkstra, V. Dmitrenko, D. Domenici, S. Donskov, A. Dubreuil, J. Ebert, T. Enik, A. Etenko, F. Fabbri, L. Fabbri, O. Fedin, G. Fedorova, G. Felici, M. Ferro-Luzzi, R. A. Fini, P. Fonte, C. Franco, T. Fukuda, G. Galati, G. Gavrilov, S. Gerlach, L. Golinka-Bezshyyko, D. Golubkov, A. Golutvin, D. Gorbunov, S. Gorbunov, V. Gorkavenko, Y. Gornushkin, M. Gorshenkov, V. Grachev, E. Graverini, V. Grichine, A. M. Guler, Yu. Guz, C. Hagner, H. Hakobyan, E. van Herwijnen, A. Hollnagel, B. Hosseini, M. Hushchyn, G. Iaselli, A. Iuliano, R. Jacobsson, M. Jonker, I. Kadenko, C. Kamiscioglu, M. Kamiscioglu, M. Khabibullin, G. Khaustov, A. Khotyantsev, S. H. Kim, V. Kim, Y. G. Kim, N. Kitagawa, J. -W. Ko, K. Kodama, A. Kolesnikov, D. I. Kolev, V. Kolosov, M. Komatsu, N. Konovalova, M. A. Korkmaz, I. Korol, I. Korol'ko, A. Korzenev, S. Kovalenko, I. Krasilnikova, K. Krivova, Y. Kudenko, V. Kurochka, E. Kuznetsova, H. M. Lacker, A. Lai, G. Lanfranchi, O. Lantwin, A. Lauria, H. Lebbolo, K. Y. Lee, J. -M. Levy, L. Lopes, V. Lyubovitskij, J. Maalmi, A. Magnan, V. Maleev, A. Malinin, A. Mefodev, P. Mermod, S. Mikado, Yu. Mikhaylov, D. A. Milstead, O. Mineev, A. Montanari, M. C. Montesi, K. Morishima, S. Movchan, N. Naganawa, M. Nakamura, T. Nakano, A. Novikov, B. Obinyakov, S. Ogawa, N. Okateva, P. H. Owen, A. Paoloni, B. D. Park, L. Paparella, A. Pastore, M. Patel, D. Pereyma, D. Petrenko, K. Petridis, D. Podgrudkov, V. Poliakov, N. Polukhina, M. Prokudin, A. Prota, A. Rademakers, F. Ratnikov, T. Rawlings, M. Razeti, F. Redi, S. Ricciardi, T. Roganova, A. Rogozhnikov, H. Rokujo, G. Rosa, T. Rovelli, O. Ruchayskiy, T. Ruf, V. Samoylenko, A. Saputi, O. Sato, E. S. Savchenko, W. Schmidt-Parzefall, N. Serra, A. Shakin, M. Shaposhnikov, P. Shatalov, T. Shchedrina, L. Shchutska, V. Shevchenko, H. Shibuya, A. Shustov, S. B. Silverstein, S. Simone, M. Skorokhvatov, S. Smirnov, J. Y. Sohn, A. Sokolenko, N. Starkov, B. Storaci, P. Strolin, S. Takahashi, I. Timiryasov, V. Tioukov, N. Tosi, D. Treille, R. Tsenov, S. Ulin, A. Ustyuzhanin, Z. Uteshev, G. Vankova-Kirilova, F. Vannucci, P. Venkova, S. Vilchinski, M. Villa, K. Vlasik, A. Volkov, R. Voronkov, R. Wanke, J. -K. Woo, M. Wurm, S. Xella, D. Yilmaz, A. U. Yilmazer, C. S. Yoon, Yu. Zaytsev

    JOURNAL OF INSTRUMENTATION   Vol. 12 ( 5 ) page: P05011   2017.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:IOP PUBLISHING LTD  

    The SHiP experiment is designed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/c proton beam dump at the CERN SPS. An essential task for the experiment is to keep the Standard Model background level to less than 0.1 event after 2 x 10(20) protons on target. In the beam dump, around 10(11) muons will be produced per second. The muon rate in the spectrometer has to be reduced by at least four orders of magnitude to avoid muon-induced combinatorial background. A novel active muon shield is used to magnetically deflect the muons out of the acceptance of the spectrometer. This paper describes the basic principle of such a shield, its optimization and its performance.

    DOI: 10.1088/1748-0221/12/05/P05011

    Web of Science

    Scopus

    researchmap

  47. GRAINE Project: A balloon-borne emulsion gamma-ray telescope

    Rokujo H.

    Proceedings of Science   Vol. 2017-January   2017

     More details

    Publisher:Proceedings of Science  

    Observations of cosmic gamma rays emitted from black holes, pulsars, super nova remnants, etc. are important to understand such high-energy objects or phenomena in the universe. Some gamma-ray telescopes loaded on satellites have surveyed the sub-GeV/GeV gamma-ray sky, and contributed to the development of gamma-ray astronomy. On the other hand, new issues have come to light. Especially, observations at the low galactic latitude remain difficult because of a lack of angular resolution. The Gamma-Ray Astro-Imager with Nuclear Emulsion (GRAINE) project aims at precise observations of gamma-ray sources by a balloon-borne gamma-ray tele- scope. The high-angular resolution gamma-ray telescope, called emulsion telescope, consists of nuclear emulsion films. Its angular resolution is 0.9? at 100 MeV or 0.1? at 1 GeV. Our second balloon experiment, GRAINE 2015, was performed in 2015 to detect gamma-ray sources, and demonstrate the imaging performance of the emulsion telescope in the 100 MeV energy region. Currently the flight data analysis is on going. In this paper, we checked the imaging performance of the emulsion telescope with an external calibration source. In the energy range above 100 MeV, we verified that the emulsion telescope in the flight had the expected angular resolution.

    Scopus

  48. GRAINE balloon experiment in 2015 Precise observations of cosmic gamma rays by a high-resolution emulsion telescope

    Rokujo, H

    ISVHECRI 2016 - XIX INTERNATIONAL SYMPOSIUM ON VERY HIGH ENERGY COSMIC RAY INTERACTIONS   Vol. 145   2017

  49. GRAINE balloon-borne experiment in 2015: Observations with a high angular resolution gamma-ray telescope

    Rokujo H.

    Proceedings of Science     2017

     More details

    Publisher:Proceedings of Science  

    Aichi University of Education, ISAS/JAXA, Utsunomiya University, Okayama University of Science, Kobe University, and Nagoya University Observations of cosmic gamma rays are important to promote an understanding of such high-energy objects and phenomena in the universe. Since 2008, the Large Area Telescope on the Fermi satellite has surveyed the whole gamma-ray sky in the sub-GeV/GeV energy region, and accumulated a large amount of data. However, observations at low galactic latitudes remain difficult because of a lack of angular resolution, an increase of background flux originating from galactic diffuse gamma rays, etc. The Gamma-Ray Astro-Imager with Nuclear Emulsion (GRAINE) is a gamma-ray observation project with a new balloon-borne emulsion gamma-ray telescope. Nuclear emulsion is a high-resolution 3D tracking device. It determines the incident angle with 0.1° resolution for 1 GeV gamma rays (1.0° for 100 MeV), and has polarization sensitivity. The goal of the GRAINE is to achieve precise observations of gamma-ray sources, especially in the galactic plane, by repeating long-duration balloon flights with large-aperture-area (10 m2) high-resolution emulsion telescopes. In May 2015, we performed a balloon-borne experiment in Alice Springs, Australia, in order to demonstrate the imaging performance of our telescope. The emulsion telescope that has an aperture area of 0.4 m2 was employed in this experiment. It observed the Vela pulsar (the brightest gamma-ray source in the GeV sky) at an altitude of 37 km for 6 hours out of the flight duration of 14 hours. In this paper, we report the data analysis, especially evaluations of the detector performance in the GRAINE 2015 experiment by observing an external calibration source.

    DOI: 10.22323/1.301.0695

    Scopus

▼display all

MISC 3

  1. GRAINE Project, Precise Observations of High-energy Cosmic Gamma-rays with Balloon-borne Emulsion Telescope

    Aoki Shigeki, Takahashi Satoru, Rokujo Hiroki

    RADIOISOTOPES   Vol. 68 ( 12 ) page: 877 - 891   2019

     More details

    Language:Japanese   Publisher:Japan Radioisotope Association  

    <p>We are developing GRAINE project, 10 MeV–100 GeV cosmic γ-ray observations with a precise (0.08 degree @1–2 GeV) and polarization sensitive large-aperture-area (~10 m<sup>2</sup>) emulsion telescope by repeating long duration balloon flights. An overview, status and prospect of our project are described.</p>

    DOI: 10.3769/radioisotopes.68.877

    CiNii Books

    CiNii Research

    researchmap

  2. Evolusion of nuclear emulsion technology and its applications-Survival of analog film through the era of degital cameras-

    長縄直崇, 福田努, 北川暢子, 小松雅宏, 森島邦博, 中竜大, 中野敏行, 西尾晃, 六條宏紀, 佐藤修, 木村充宏, 歳藤利行

    放射線化学(Web)   ( 107 )   2019

  3. Study of tau-neutrino production at the CERN SPS

    S. Aoki, A. Ariga, T. Ariga, E. Firu, T. Fukuda, Y. Gornushkin, A.M. Guler, M. Haiduc, K. Kodama, M.A. Korkmaz, U. Kose, M. Nakamura, T. Nakano, A.T. Neagu, H. Rokujo, O. Sato, S. Vasina, M. Vladymyrov, M. Yoshimoto

    CERN Document Server (Scientific Committee Paper), CERN-SPSC-2017-029, SPSC-P-354     2017.8

     More details

    Language:English   Publishing type:Internal/External technical report, pre-print, etc.  

    researchmap

Presentations 3

  1. Overview on emulsion detector technique Invited

    Hiroki Rokujo, Toshiyuki Nakano

    The XXX International Conference on Neutrino Physics and Astrophysics (Neutrino 2022), virtual Seoul, Korea 

     More details

    Event date: 2022.5 - 2022.6

    Presentation type:Oral presentation (invited, special)  

    researchmap

  2. Nuclear Emulsion Facilities in Tokai National Higher Education and Research System Invited

    Hiroki Rokujo

    International Conference on Materials and Systems for Sustainability, Nagoya University 

     More details

    Event date: 2021.11

    Presentation type:Oral presentation (invited, special)  

    researchmap

  3. 大面積・高解像 原子核乾板ガンマ線望遠鏡 実現のための研究開発 Invited

    六條宏紀

    2022 年度 日本写真学会オンライン年次大会 

     More details

    Presentation type:Oral presentation (invited, special)  

    researchmap

KAKENHI (Grants-in-Aid for Scientific Research) 5

  1. Measuring three-flavor neutrinos at the LHC

    Grant number:22H01233  2022.4 - 2025.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

      More details

    Authorship:Coinvestigator(s)  Grant type:Competitive

    researchmap

  2. Development of large-aperture emulsion gamma-ray telescopes for high-angular resolution observation of the galactic center

    Grant number:20H01915  2020.4 - 2023.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    Rokujo Hiroki

      More details

    Authorship:Principal investigator 

    Grant amount:\17810000 ( Direct Cost: \13700000 、 Indirect Cost:\4110000 )

    For the next balloon experiment (postponed two years due to COVID-19, to be conducted in spring 2023), the following R&Ds were conducted to realize the aperture area expansion of the world's highest angular-resolution gamma-ray telescope consisting of nuclear emulsion. 1) Construction and installation of a new large-scale nuclear emulsion gel production system at Nagoya University. 2) New construction and installation of roll-to-roll nuclear emulsion film coating system at Nagoya University. 3) Demonstration of the performance of the new nuclear emulsion through rehearsal of atmospheric gamma-ray observation at Mt. Norikura. 4) Mass production of nuclear emulsion and assembling large-aperture converters through continuous and stable operation of the new facilities. 5) Development of 5-m-long balloon-style pressure vessel gondolas. 6) Development and introduction of solution physical development method. 7) Completion of final preparations for Australian balloon experiment (GRAINE 2023).

    researchmap

  3. Development of emulsion telescope for precise gamma-ray observation

    Grant number:18K13562  2018.4 - 2020.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Early-Career Scientists

    Rokujo Hiroki

      More details

    Authorship:Principal investigator 

    Grant amount:\4160000 ( Direct Cost: \3200000 、 Indirect Cost:\960000 )

    The purpose of this research is to develop a next-generation balloon-borne gamma-ray telescope using nuclear emulsion technology and enable precise observation of cosmic gamma-rays in the sub-GeV/GeV energy region. In April 2018, a 0.4-m^2 emulsion gamma ray telescope was launched from Alice Springs, Australia. The desired balloon flight and stable operation of the detector were achieved. Following data acquisition from recovered emulsion films, we completed the evaluation and calibration of in-flight performance. As the result, gamma-ray signals from Vela pulsar region were significantly detected. We succeeded in the first detection from celestial gamma-ray source using emulsion telescope and the world’s highest angular resolution in the 100-MeV energy region.

    researchmap

  4. Cosmic gamma-ray observation by balloon borne emulsion telescope to study unsolved issues

    Grant number:17H06132  2017.5 - 2022.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (S)

    Aoki Shigeki

      More details

    Authorship:Coinvestigator(s) 

    Using nuclear emulsion film with excellent spatial resolution, we have realized a gamma-ray telescope with a large area and a wide viewing angle (from the zenith to 45 degrees zenith angle), and performed observation of cosmic gamma rays at the top layer of the atmosphere.
    In 2018, observations in Australia using a telescope with an aperture area of 0.38 m^2 successfully imaged the known bright gamma-ray object Vela pulsar, and confirmed the improvement of angular resolution from the Fermi-LAT detector currently operated by NASA using real celestial data, which is one order of magnitude in the projection angle (two orders of magnitude for the solid angle). Furthermore, we have developed and realized a large-area telescope equipped with multiple 1.25 m^2 telescope units, and have begun scientific observations in 2023.

    researchmap

  5. Flight data analysis of GRAINE 2015 balloon borne experiment: High resolution gamma-ray imaging using emulsion telescope

    Grant number:16K17691  2016.4 - 2018.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Young Scientists (B)

    Rokujo Hiroki

      More details

    Authorship:Principal investigator 

    Grant amount:\3900000 ( Direct Cost: \3000000 、 Indirect Cost:\900000 )

    We evaluated the imaging performance of the emulsion gamma-ray telescope using the flight data of the balloon-borne experiment, which was performed in 2015. The emulsion telescope detected signals from a calibration source (gamma rays from the interaction of cosmic rays with an aluminum plate, which was situated 4.4 m above the telescope) with a high significance during the balloon observation and created a gamma-ray image consistent with the source size and the expected angular resolution in the energy range of 100-300 MeV. The flight performance proves that balloon-borne emulsion telescope experiments with larger area are feasible while maintaining expected imaging performance.

    researchmap

 

Social Contribution 1

  1. 研究者・大学院生との懇談会

    Role(s):Lecturer

    岐阜県立多治見北高等学校  2016.7