Updated on 2025/03/29

写真a

 
SHIMASAKI Takafumi
 
Organization
Graduate School of Pharmaceutical Sciences Department of Basic Medicinal Sciences Assistant Professor
Graduate School
Graduate School of Pharmaceutical Sciences
Undergraduate School
School of Agricultural Sciences Department of Applied Biosciences
Title
Assistant Professor
Contact information
メールアドレス

Degree 1

  1. 博士(創薬科学) ( 2017.3   名古屋大学 ) 

Research History 1

  1. Nagoya University   School of Agricultural Sciences

    2018.4

Professional Memberships 4

  1. 酵母遺伝学フォーラム

  2. 日本ゲノム微生物学会

  3. 日本分子生物学会

  4. 日本農芸化学会

Committee Memberships 1

  1. 日本農芸化学会中部支部   会計幹事  

    2021.3 - 2023.2   

      More details

    Committee type:Academic society

 

Papers 26

  1. Novel TORC1 inhibitor Ecl1 is regulated by phosphorylation in fission yeast Reviewed Open Access

    Ohtsuka, H; Kawai, S; Ito, Y; Kato, Y; Shimasaki, T; Imada, K; Otsubo, Y; Yamashita, A; Mishiro-Sato, E; Kuwata, K; Aiba, H

    AGING CELL     page: e14450   2025.2

     More details

    Language:English   Publisher:Aging Cell  

    Extender of chronological lifespan 1 (Ecl1) inhibits target of rapamycin complex 1 (TORC1) and is necessary for appropriate cellular responses to various stressors, such as starvation, in fission yeast. However, little is known about the effect of posttranslational modifications on Ecl1 regulation. Thus, we investigated the phosphorylation levels of Ecl1 extracted from yeast under conditions of sulfur or metal starvation. Mass spectrometry analysis revealed that Ecl1 was phosphorylated at Thr7, and the level was decreased by starvation. The phosphorylation-mimetic mutation of Thr7 significantly reduced the effects of Ecl1-induced cellular responses to starvation, suggesting that Ecl1 function was suppressed by Thr7 phosphorylation. By contrast, regardless of starvation exposure, TORC1 was significantly suppressed, even when Thr7 phosphorylation-mimetic Ecl1 was overexpressed. This indicated that Ecl1 suppressed TORC1 regardless of Thr7 phosphorylation. We newly identified that Ecl1 physically interacted with TORC1 subunit RAPTOR (Mip1). Based on these evidences, we propose that, Ecl1 has dual functional modes: quantity-dependent TORC1 inhibition and Thr7 phosphorylation–dependent control of cellular function.

    DOI: 10.1111/acel.14450

    Open Access

    Web of Science

    Scopus

    PubMed

  2. A novel transcription factor Sdr1 involving sulfur depletion response in fission yeast Reviewed

    Ohtsuka, H; Ohara, K; Shimasaki, T; Hatta, Y; Maekawa, Y; Aiba, H

    GENES TO CELLS   Vol. 29 ( 8 ) page: 667 - 680   2024.8

     More details

    Language:English   Publisher:Genes to Cells  

    In the fission yeast Schizosaccharomyces pombe, the response to sulfur depletion has been less studied compared to the response to nitrogen depletion. Our study reveals that the fission yeast gene, SPCC417.09c, plays a significant role in the sulfur depletion response. This gene encodes a protein with a Zn2Cys6 fungal-type DNA-binding domain and a transcription factor domain, and we have named it sdr1+ (sulfur depletion response 1). Interestingly, while sulfur depletion typically induces autophagy akin to nitrogen depletion, we found that autophagy was not induced under sulfur depletion in the absence of sdr1+. This suggests that sdr1+ is necessary for the induction of autophagy under conditions of sulfur depletion. Although sdr1+ is not essential for the growth of fission yeast, its overexpression, driven by the nmt1 promoter, inhibits growth. This implies that Sdr1 may possess cell growth-inhibitory capabilities. In addition, our analysis of Δsdr1 cells revealed that sdr1+ also plays a role in regulating the expression of genes associated with the phosphate depletion response. In conclusion, our study introduces Sdr1 as a novel transcription factor that contributes to an appropriate cellular nutrient starvation response. It does so by inhibiting inappropriate cell growth and inducing autophagy in response to sulfur depletion.

    DOI: 10.1111/gtc.13136

    Web of Science

    Scopus

    PubMed

  3. Low-Molecular Weight Compounds that Extend the Chronological Lifespan of Yeasts, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. Reviewed

    Ohtsuka H, Shimasaki T, Aiba H

    Advanced biology     page: e2400138   2024.4

     More details

    Language:English  

    DOI: 10.1002/adbi.202400138

    PubMed

  4. Identification of <i>plb1</i> mutation that extends longevity via activating Sty1 MAPK in <i>Schizosaccharomyces pombe</i> Reviewed

    Maekawa, Y; Matsui, K; Okamoto, K; Shimasaki, T; Ohtsuka, H; Tani, M; Ihara, K; Aiba, H

    MOLECULAR GENETICS AND GENOMICS   Vol. 299 ( 1 ) page: 20   2024.2

     More details

    Language:English   Publisher:Molecular Genetics and Genomics  

    To understand the lifespan of higher organisms, including humans, it is important to understand lifespan at the cellular level as a prerequisite. So, fission yeast is a good model organism for the study of lifespan. To identify the novel factors involved in longevity, we are conducting a large-scale screening of long-lived mutant strains that extend chronological lifespan (cell survival in the stationary phase) using fission yeast. One of the newly acquired long-lived mutant strains (No.98 mutant) was selected for analysis and found that the long-lived phenotype was due to a missense mutation (92Phe → Ile) in the plb1+ gene. plb1+ gene in fission yeast is a nonessential gene encoding a homolog of phospholipase B, but its functions under normal growth conditions, as well as phospholipase B activity, remain unresolved. Our analysis of the No.98 mutant revealed that the plb1 mutation reduces the integrity of the cellular membrane and cell wall and activates Sty1 via phosphorylation.

    DOI: 10.1007/s00438-024-02107-8

    Web of Science

    Scopus

    PubMed

  5. <i>ecl</i> family genes: Factors linking starvation and lifespan extension in <i>Schizosaccharomyces pombe</i>

    Ohtsuka, H; Otsubo, Y; Shimasaki, T; Yamashita, A; Aiba, H

    MOLECULAR MICROBIOLOGY   Vol. 120 ( 5 ) page: 645 - 657   2023.11

     More details

    Language:English   Publisher:Molecular Microbiology  

    In the fission yeast Schizosaccharomyces pombe, the duration of survival in the stationary phase, termed the chronological lifespan (CLS), is affected by various environmental factors and the corresponding gene activities. The ecl family genes were identified in the genomic region encoding non-coding RNA as positive regulators of CLS in S. pombe, and subsequently shown to encode relatively short proteins. Several studies revealed that ecl family genes respond to various nutritional starvation conditions via different mechanisms, and they are additionally involved in stress resistance, autophagy, sexual differentiation, and cell cycle control. Recent studies reported that Ecl family proteins strongly suppress target of rapamycin complex 1, which is a conserved eukaryotic nutrient-sensing kinase complex that also regulates longevity in a variety of organisms. In this review, we introduce the regulatory mechanisms of Ecl family proteins and discuss their emerging findings.

    DOI: 10.1111/mmi.15134

    Web of Science

    Scopus

    PubMed

  6. <i>Metarhizium robertsii </i>COH1 functionally complements <i>Schizosaccharomyces pombe</i> Ecl family proteins Reviewed

    Ohtsuka Hokuto, Kawai Sawa, Otsubo Yoko, Shimasaki Takafumi, Yamashita Akira, Aiba Hirofumi

    The Journal of General and Applied Microbiology   Vol. advpub ( 0 )   2023.10

     More details

    Language:English   Publisher:Applied Microbiology, Molecular and Cellular Biosciences Research Foundation  

    <p>The fission yeast <i>Schizosaccharomyces pombe ecl</i> family genes respond to various starvation signals and induce appropriate intracellular responses, including the extension of chronological lifespan and induction of sexual differentiation. Herein, we propose that the colonization of hemocoel 1 (COH1) protein of <i>Metarhizium robertsii</i>, an insect-pathogenic fungus, is a functional homolog of <i>S. pombe</i> Ecl1 family proteins.</p>

    DOI: 10.2323/jgam.2023.09.001

    PubMed

    CiNii Research

  7. The ecl family gene ecl3<SUP>+</SUP> is induced by phosphate starvation and contributes to sexual differentiation in fission yeast Reviewed

    Ohtsuka, H; Sakata, H; Kitazaki, Y; Tada, M; Shimasaki, T; Otsubo, Y; Maekawa, Y; Kobayashi, M; Imada, K; Yamashita, A; Aiba, H

    JOURNAL OF CELL SCIENCE   Vol. 136 ( 6 )   2023.3

     More details

    Language:English   Publisher:Journal of Cell Science  

    In Schizosaccharomyces pombe, ecl family genes are induced by several signals, such as starvation of various nutrients, including sulfur, amino acids and Mg2+, and environmental stress, including heat or oxidative stress. These genes mediate appropriate cellular responses and contribute to the maintenance of cell viability and induction of sexual differentiation. Although this yeast has three ecl family genes with overlapping functions, any environmental conditions that induce ecl3+ remain unidentified. We demonstrate that ecl3+ is induced by phosphate starvation, similar to its chromosomally neighboring genes, pho1+ and pho84+, which respectively encode an extracellular acid phosphatase and an inorganic phosphate transporter. ecl3+ expression was induced by the transcription factor Pho7 and affected by the cyclin-dependent kinase (CDK)-activating kinase Csk1. Phosphate starvation induced G1 arrest and sexual differentiation via ecl family genes. Biochemical analyses suggested that this G1 arrest was mediated by the stabilization of the CDK inhibitor Rum1, which was dependent on ecl family genes. This study shows that ecl family genes are required for appropriate responses to phosphate starvation and provides novel insights into the diversity and similarity of starvation responses.

    DOI: 10.1242/jcs.260759

    Web of Science

    Scopus

    PubMed

  8. Sporulation: A response to starvation in the fission yeast <i>Schizosaccharomyces pombe</i> Reviewed

    Ohtsuka, H; Imada, K; Shimasaki, T; Aiba, H

    MICROBIOLOGYOPEN   Vol. 11 ( 3 ) page: e1303   2022.6

     More details

    Language:English   Publisher:MicrobiologyOpen  

    The fission yeast Schizosaccharomyces pombe employs two main strategies to adapt to the environment and survive when starved for nutrients. The strategies employ sporulation via sexual differentiation and extension of the chronological lifespan. When a cell is exposed to nutrient starvation in the presence of a cell of the opposite sex, the cells undergo fusion through conjugation and sporulation through meiosis. S. pombe spores are highly resistant to diverse stresses and may survive for a very long time. In this minireview, among the various sexual differentiation processes induced by starvation, we focused on and summarized the findings of the molecular mechanisms of spore formation in fission yeast. Furthermore, comparative measurements of the chronological lifespan of stationary phase cells and G0 cells and the survival period of spore cells revealed that the spore cells survived for a long period, indicating the presence of an effective mechanism for survival. Currently, many molecules involved in sporulation and their functions are being discovered; however, our understanding of these is not complete. Further understanding of spores may not only deepen our comprehension of sexual differentiation but may also provide hints for sustaining life.

    DOI: 10.1002/mbo3.1303

    Web of Science

    Scopus

    PubMed

  9. Tschimganine has different targets for chronological lifespan extension and growth inhibition in fission yeast Reviewed

    Ohtsuka, H; Matsumoto, T; Mochida, T; Shimasaki, T; Shibuya, M; Yamamoto, Y; Aiba, H

    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY   Vol. 86 ( 6 ) page: 775 - 779   2022.5

     More details

    Language:English   Publisher:Bioscience, Biotechnology and Biochemistry  

    Tschimganine inhibits growth and extends the chronological lifespan in Schizosaccharomyces pombe. We synthesized a Tschimganine analog, Mochimganine, which extends the lifespan similar to Tschimganine but exhibits a significantly weaker growth inhibition effect. Based on the comparative analysis of these compounds, we propose that Tschimganine has at least 2 targets: one extends the lifespan and the other inhibits growth.

    DOI: 10.1093/bbb/zbac051

    Web of Science

    Scopus

    PubMed

  10. Response to leucine in Schizosaccharomyces pombe (fission yeast). Reviewed

    Ohtsuka H, Shimasaki T, Aiba H

    FEMS yeast research   Vol. 22 ( 1 )   2022.4

     More details

  11. Characterization of hexose transporter genes in the views of the chronological life span and glucose uptake in fission yeast

    Maruyama Teppei, Hayashi Kanako, Matsui Kotaro, Maekawa Yasukichi, Shimasaki Takafumi, Ohtsuka Hokuto, Shigeaki Saitoh, Aiba Hirofumi

    The Journal of General and Applied Microbiology   Vol. 68 ( 6 ) page: 270 - 277   2022

     More details

    Language:English   Publisher:Applied Microbiology, Molecular and Cellular Biosciences Research Foundation  

    <p>Fission yeast, <i>Schizosaccharomyces pombe</i>, possesses eight hexose transporters, Ght1~8. In order to clarify the role of each hexose transporter on glucose uptake, a glucose uptake assay system was established and the actual glucose uptake activity of each hexose transporter-deletion mutant was measured. Under normal growth condition containing 2% glucose, ∆<i>ght5</i> and ∆<i>ght2</i> mutants showed large and small decrease in glucose uptake activity, respectively.<b> </b>On the other hand, the other deletion mutants did not show any decrease in glucose uptake activity indicating that, in the presence of Ght5 and Ght2, the other hexose transporters do not play a significant role in glucose uptake. To understand the relevance between glucose uptake and lifespan regulation, we measured the chronological lifespan of each hexose transporter deletion mutant, and found that only ∆<i>ght5</i> mutant showed a significant lifespan extension. Based on these results we showed that Ght5 is mainly involved in the glucose uptake in <i>Schizosaccharomyces pombe</i>, and suggested that the ∆<i>ght5</i> mutant has prolonged lifespan due to physiological changes similar to calorie restriction.</p>

    DOI: 10.2323/jgam.2022.05.006

    Web of Science

    Scopus

    PubMed

    CiNii Research

  12. Identification of ksg1 mutation showing long-lived phenotype in fission yeast Reviewed

    Matsui Kotaro, Okamoto Keisuke, Hasegawa Tomoka, Ohtsuka Hokuto, Shimasaki Takafumi, Ihara Kunio, Goto Yuhei, Aoki Kazuhiro, Aiba Hirofumi

    GENES TO CELLS   Vol. 26 ( 12 ) page: 967 - 978   2021.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1111/gtc.12897

    Web of Science

    Scopus

    PubMed

  13. Response to sulfur in Schizosaccharomyces pombe Reviewed

    Ohtsuka Hokuto, Shimasaki Takafumi, Aiba Hirofumi

    FEMS YEAST RESEARCH   Vol. 21 ( 5 )   2021.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1093/femsyr/foab041

    Web of Science

    Scopus

    PubMed

  14. Extension of chronological lifespan in Schizosaccharomyces pombe Reviewed

    Ohtsuka Hokuto, Shimasaki Takafumi, Aiba Hirofumi

    GENES TO CELLS   Vol. 26 ( 7 ) page: 459 - 473   2021.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1111/gtc.12854

    Web of Science

    Scopus

    PubMed

  15. Identification of sur2 mutation affecting the lifespan of fission yeast Reviewed

    Kurauchi Tatsuhiro, Matsui Kotaro, Shimasaki Takafumi, Ohtsuka Hokuto, Tsubouchi Satoshi, Ihara Kunio, Tani Motohiro, Aiba Hirofumi

    FEMS MICROBIOLOGY LETTERS   Vol. 368 ( 12 )   2021.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1093/femsle/fnab070

    Web of Science

    Scopus

    PubMed

  16. Genes affecting the extension of chronological lifespan in Schizosaccharomyces pombe (fission yeast) Reviewed

    Ohtsuka Hokuto, Shimasaki Takafumi, Aiba Hirofumi

    MOLECULAR MICROBIOLOGY   Vol. 115 ( 4 ) page: 623 - 642   2021.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1111/mmi.14627

    Web of Science

    Scopus

    PubMed

  17. Magnesium depletion extends fission yeast lifespan via general amino acid control activation Reviewed

    Ohtsuka, H; Kobayashi, M; Shimasaki, T; Sato, T; Akanuma, G; Kitaura, Y; Otsubo, Y; Yamashita, A; Aiba, H

    MICROBIOLOGYOPEN   Vol. 10 ( 2 ) page: e1176   2021.3

     More details

    Language:English   Publisher:MicrobiologyOpen  

    Nutrients including glucose, nitrogen, sulfur, zinc, and iron are involved in the regulation of chronological lifespan (CLS) of yeast, which serves as a model of the lifespan of differentiated cells of higher organisms. Herein, we show that magnesium (Mg2+) depletion extends CLS of the fission yeast Schizosaccharomyces pombe through a mechanism involving the Ecl1 gene family. We discovered that ecl1+ expression, which extends CLS, responds to Mg2+ depletion. Therefore, we investigated the underlying intracellular responses. In amino acid auxotrophic strains, Mg2+ depletion robustly induces ecl1+ expression through the activation of the general amino acid control (GAAC) pathway—the equivalent of the amino acid response of mammals. Polysome analysis indicated that the expression of Ecl1 family genes was required for regulating ribosome amount when cells were starved, suggesting that Ecl1 family gene products control the abundance of ribosomes, which contributes to longevity through the activation of the evolutionarily conserved GAAC pathway. The present study extends our understanding of the cellular response to Mg2+ depletion and its influence on the mechanism controlling longevity.

    DOI: 10.1002/mbo3.1176

    Web of Science

    Scopus

    PubMed

  18. Tschimganine has different targets for chronological lifespan extension and growth inhibition in fission yeast Reviewed

    Ohtsuka H*, Matsumoto T*, Mochida T, Shimasaki T, Shibuya M, Yamamoto Aiba H

    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY     2021

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  19. Cdc13 (cyclin B) is degraded by autophagy under sulfur depletion in fission yeast Reviewed

    Ohtsuka H, Hatta Y, Hayashi K, Shimasaki T, Otsubo Y, Ito Y, Tsutsui Y, Hattori N, Yamashita A, Murakami H, Aiba H.

    Autophagy Reports     2021

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  20. Sulfur depletion induces autophagy through Ecl1 family genes in fission yeast Reviewed

    Shimasaki, T; Okamoto, K; Ohtsuka, H; Aiba, H

    GENES TO CELLS   Vol. 25 ( 12 ) page: 825 - 830   2020.12

     More details

    Language:English   Publisher:Genes to Cells  

    Autophagy is an intracellular degradation system widely conserved among various species. Autophagy is induced by the depletion of various nutrients, and this degradation mechanism is essential for adaptation to such conditions. In this study, we demonstrated that sulfur depletion induces autophagy in the fission yeast Schizosaccharomyces pombe. Based on the finding that autophagy induced by sulfur depletion was completely abolished in a mutant in which the ecl1, ecl2 and ecl3 genes were deleted (Δecls), we report that these three genes are essential for the induction of autophagy by sulfur depletion. Furthermore, autophagy-defective mutant cells exhibited poor growth and short lifespan (compared with wild-type cells) under the sulfur-depleted condition. These results indicated that the mechanism of autophagy is necessary for the appropriate adaptation to sulfur depletion.

    DOI: 10.1111/gtc.12815

    Web of Science

    Scopus

    PubMed

  21. gas1 mutation extends chronological lifespan via Pmk1 and Sty1 MAPKs in Schizosaccharomyces pombe Reviewed

    Imai Yuki, Shimasaki Takafumi, Enokimura Chihiro, Ohtsuka Hokuto, Tsubouchi Satoshi, Ihara Kunio, Aiba Hirofumi

    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY   Vol. 84 ( 2 ) page: 330 - 337   2020.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1080/09168451.2019.1676695

    Web of Science

    Scopus

    PubMed

  22. Leucine depletion extends the lifespans of leucine-auxotrophic fission yeast by inducing Ecl1 family genes via the transcription factor Fil1 Reviewed

    Ohtsuka Hokuto, Kato Takanori, Sato Teppei, Shimasaki Takafumi, Kojima Takaaki, Aiba Hirofumi

    MOLECULAR GENETICS AND GENOMICS   Vol. 294 ( 6 ) page: 1499 - 1509   2019.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1007/s00438-019-01592-6

    Web of Science

    Scopus

    PubMed

  23. Tschimganine and its derivatives extend the chronological life span of yeast via activation of the Sty1 pathway Reviewed

    Hibi Takahide, Ohtsuka Hokuto, Shimasaki Takafumi, Inui Shougo, Shibuya Masatoshi, Tatsukawa Hideki, Kanie Kei, Yamamoto Yoshihiko, Aiba Hirofumi

    GENES TO CELLS   Vol. 23 ( 8 ) page: 620 - 637   2018.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1111/gtc.12604

    Web of Science

    Scopus

    PubMed

  24. Sulfur restriction extends fission yeast chronological lifespan through Ecl1 family genes by downregulation of ribosome Reviewed

    Ohtsuka Hokuto, Takinami Masahiro, Shimasaki Takafumi, Hibi Takahide, Murakami Hiroshi, Aiba Hirofumi

    MOLECULAR MICROBIOLOGY   Vol. 105 ( 1 ) page: 84 - 97   2017.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1111/mmi.13686

    Web of Science

    Scopus

    PubMed

  25. Ecl1 is a zinc-binding protein involved in the zinc-limitation-dependent extension of chronological life span in fission yeast Reviewed

    Shimasaki Takafumi, Ohtsuka Hokuto, Naito Chikako, Azuma Kenko, Tenno Takeshi, Hiroaki Hidekazu, Murakami Hiroshi, Aiba Hirofumi

    MOLECULAR GENETICS AND GENOMICS   Vol. 292 ( 2 ) page: 475 - 481   2017.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1007/s00438-016-1285-x

    Web of Science

    Scopus

    PubMed

  26. Ecl1 is activated by the transcription factor Atf1 in response to H2O2 stress in Schizosaccharomyces pombe Reviewed

        2014.4

▼display all

Presentations 18

  1. 分裂酵母における(Ecl1ファミリー遺伝子を介した)硫黄枯渇による細胞小型化の解析

    八田佳子, 筒井優, 服部允赳, 島崎崇史, 大塚北斗, 饗場浩文

    第42回 日本分子生物学会年会  

     More details

    Event date: 2020.12

    Language:Japanese   Presentation type:Poster presentation  

    Venue:福岡   Country:Japan  

  2. Mg枯渇時における分裂酵母の経時寿命延長因子Ecl1 Family遺伝子の解析

    小林未来登, 佐藤哲平, 大塚北斗, 島崎嵩史, 饗場浩文

    日本農芸化学会中部支部第187回例会  

     More details

    Event date: 2020.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:Web開催   Country:Japan  

  3. 分裂酵母におけるGhtファミリータンパク質の欠失がグルコース取り込みと寿命へ与える影響の解析

    丸山哲平、林可奈子、島崎嵩史、大塚北斗、齋藤成昭、饗場浩文

    日本農芸化学会中部支部第187回例会 

     More details

    Event date: 2020.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:Web開催   Country:Japan  

  4. 分裂酵母におけるTschimganineの作用機構の解析

    松本拓磨、大塚北斗、持田尚宏、島崎嵩史、澁谷正俊、山本芳彦、饗場浩文

    日本農芸化学会中部支部第187回例会 

     More details

    Event date: 2020.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:Web開催   Country:Japan  

  5. 分裂酵母における硫黄枯渇制限下での細胞小型化の解析

    八田佳子、筒井優、服部允赳、島崎嵩史、大塚北斗、饗場浩文

    日本農芸化学会中部支部第187回例会 

     More details

    Event date: 2020.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:Web開催   Country:Japan  

  6. 分裂酵母において硫黄枯渇はEcl1ファミリー遺伝子依存的にオートファジーを誘導する

    島崎嵩史, 岡本啓佑, 大塚北斗, 饗場浩文

    酵母遺伝学フォーラム第53回研究報告会 

     More details

    Event date: 2020.9

    Presentation type:Oral presentation (general)  

    Venue:Web開催   Country:Japan  

  7. 分裂酵母におけるTschimganineの作用機構の解析

    松本拓磨、大塚北斗、持田尚宏、島崎嵩史、山本芳彦、饗場浩文

    酵母遺伝学フォーラム第53回研究報告会  

     More details

    Event date: 2020.9

    Language:Japanese   Presentation type:Poster presentation  

    Venue:Web開催   Country:Japan  

  8. 経時寿命が延長する分裂酵母変異株のスクリーニングと新規寿命関連因子の同定

    松井滉太朗、岡本啓佑、長谷川朋香、島崎嵩史、大塚北斗、井原邦夫、後藤祐平、青木一洋、饗場浩文

    酵母遺伝学フォーラム第53回研究報告会  

     More details

    Event date: 2020.9

    Language:Japanese   Presentation type:Poster presentation  

    Venue:Web開催   Country:Japan  

  9. Mg枯渇時における分裂酵母の経時寿命延長因子Ecl1ファミリー遺伝子の解析

    小林未来登, 佐藤哲平, 大塚北斗, 島崎嵩史, 饗場浩文

    酵母遺伝学フォーラム第53回研究報告会  

     More details

    Event date: 2020.9

    Language:Japanese   Presentation type:Poster presentation  

    Venue:Web開催   Country:Japan  

  10. 分裂酵母における硫黄枯渇による細胞小型化の解析

    八田佳子、筒井優、服部允赳、大塚北斗、島崎嵩史、饗場浩文

    酵母遺伝学フォーラム第53回研究報告会  

     More details

    Event date: 2020.9

    Language:Japanese   Presentation type:Poster presentation  

    Venue:Web開催   Country:Japan  

  11. 分裂酵母におけるアミノ酸枯渇応答機構の解析

    島崎嵩史、大塚北斗、佐藤哲平、赤沼元気、饗場浩文

    第14回 日本ゲノム微生物学会年会  

     More details

    Event date: 2020.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:名古屋   Country:Japan  

  12. 分裂酵母における硫黄枯渇と細胞応答

    筒井優、服部允赳、八田佳子、大塚北斗、島崎嵩史、饗場浩文

    第14回 日本ゲノム微生物学会年会 

     More details

    Event date: 2020.3

    Language:Japanese   Presentation type:Poster presentation  

    Venue:名古屋   Country:Japan  

  13. 分裂酵母におけるTschimganineの作用機構の解析

    持田尚宏、大塚北斗、松本拓磨、島崎嵩史、澁谷正俊、山本芳彦、饗場浩文

    第14回 日本ゲノム微生物学会年会  

     More details

    Event date: 2020.3

    Language:Japanese   Presentation type:Poster presentation  

    Venue:名古屋   Country:Japan  

  14. 経時寿命が延長する分裂酵母変異株のスクリーニングと新規寿命関連因子の同定

    松井滉太朗、岡本啓佑、長谷川朋香、島崎嵩史、大塚北斗、井原邦夫、中村彰伸、後藤祐平、青木一洋、饗場浩文

    第14回 日本ゲノム微生物学会年会  

     More details

    Event date: 2020.3

    Language:Japanese   Presentation type:Poster presentation  

    Venue:名古屋   Country:Japan  

  15. マグネシウム枯渇条件下における分裂酵母の経時寿命延長因子Ecl1 family遺伝子の解析

    小林未来登, 佐藤哲平, 大塚北斗, 島崎嵩史, 饗場浩文

    第42回 日本分子生物学会年会  

     More details

    Event date: 2019.12

    Language:Japanese   Presentation type:Poster presentation  

    Venue:福岡   Country:Japan  

  16. アミノ酸枯渇に応答する分裂酵母の経時寿命延長因子Ecl1 Family 遺伝子の解析

    佐藤哲平、大塚北斗、加藤敬典、島崎嵩史、饗場浩文

    酵母遺伝学フォーラム第52回研究報告会  

     More details

    Event date: 2019.9

    Language:Japanese   Presentation type:Poster presentation  

    Venue:静岡市清水文化会館マリナート  

  17. 分裂酵母におけるgas1 変異による寿命延長機構の解析

    島崎嵩史、今井優希、榎村千尋、大塚北斗、井原邦夫、饗場浩文

    酵母遺伝学フォーラム第52回研究報告会 

     More details

    Event date: 2019.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:静岡市清水文化会館マリナート   Country:Japan  

  18. Leucine depletion extends the lifespans of fission yeast by inducing Ecl1 family genes via the transcription factor Fil1. International conference

    Hirofumi Aiba, Hokuto Ohtsuka, Takanori Kato, Teppei Sato, and Takafumi Shimasaki

    The 10 th International Fission Yeast Meeting  

     More details

    Event date: 2019.7

    Language:English   Presentation type:Poster presentation  

    Venue:Barcelona, Spain   Country:Spain  

▼display all

KAKENHI (Grants-in-Aid for Scientific Research) 2

  1. 細胞周期制御に関わる新規寿命関連因子の機能解明

    Grant number:23K13868  2023.4 - 2025.3

    科学研究費助成事業  若手研究

    島崎 嵩史

      More details

    Authorship:Principal investigator 

    Grant amount:\4550000 ( Direct Cost: \3500000 、 Indirect Cost:\1050000 )

    過去に新規寿命制御因子の同定を目的として長寿命変異株のスクリーニングが行われ、解析の対象であるnnk1変異株が取得された。全ゲノムシークエンス解析の結果、機能未知の遺伝子nnk1+において変異(nnk1-35変異)が確認され、この変異が長寿命の表現型の原因であることが明らかとなった。nnk1+遺伝子は生育に必須であり、nnk1変異株も高温感受性の表現型を示すが、解析の結果、Nnk1タンパク質が寿命制御だけでなく細胞周期の制御に関与することが示唆された。本研究ではこのNnk1タンパク質の生理学的機能を明らかにし、Nnk1タンパク質による寿命制御および細胞周期制御メカニズムの解明を目指す。
    本研究では分裂酵母における新規寿命制御因子であるNnk1タンパク質の機能解析を行なっている。Nnk1タンパク質はC末端側の領域にキナーゼドメインを保持していることからキナーゼとしての機能を保持していると考えられるが、そのリン酸化基質や生理学的機能は明らかになっていない。まず、Nnk1タンパク質のリン酸化標的を明らかにするために、Nnk1タンパク質の活性が低下した変異株を用いてリン酸化プロテオミクス解析を行なった。その結果、Nnk1タンパク質の活性が低下すると、主にグルコースやビタミンなどの細胞内への栄養取り込みに関与する各種トランスポーターのリン酸化レベルが大きく低下することが明らかになった。また、逆にNnk1タンパク質を過剰発現した際のリン酸化プロテオミクス解析や、Nnk1タンパク質のプルダウンアッセイを行うために分裂酵母の細胞内でNnk1タンパク質の過剰発現を試みたが、うまく過剰発現されず少量のタンパク質しか発現されなかった。この過剰発現されない原因を特定した結果、Nnk1タンパク質がプロテアソームで分解の制御を受けており、さらにNnk1タンパク質のN末端側の領域がその分解制御の標的になっていることが明らかになった。そこで、Nnk1タンパク質のN末端側の領域を削り、改めて分裂酵母の細胞内で発現したところ、十分な発現量が得られたことが確認された。またこのN末端側を欠損させたNnk1タンパク質は、全長のNnk1と同等の活性を保持することが変異株の相補実験によって保障されている。現在、この過剰発現が可能なNnk1タンパク質を用いて、前述のリン酸化プロテオミクス解析やプルダウンアッセイを進行中である。
    Nnk1タンパク質不活性化時のリン酸化プロテオミクス解析は予定通り実施できたが、過剰発現時のリン酸化プロテオミクス解析やプルダウンアッセイは研究実績の概要に記述した通り、予期しなかったNnk1タンパク質の分解によって実施できていなかった。しかし、分解の原因を特定し、その対処法も取ることに成功したため、これら2つの解析についても実施可能であると考えている。
    当初行えなかったNnk1タンパク質の過剰発現時のリン酸化プロテオミクス解析と、プルダウンアッセイを引き続き行なっていく予定である。これら2つの解析と、先行して実施したNnk1タンパク質不活性化時のリン酸化プロテオミクス解析の結果を統合し、Nnk1タンパク質がどのような基質をリン酸化するのかを明らかにしていきたい。

  2. Elucidation of the lifespan control mechanism by a novel kinase Nnk1 in fission yeast

    Grant number:21K14769  2021.4 - 2024.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Early-Career Scientists

    Shimasaki Takafumi

      More details

    Authorship:Principal investigator 

    Grant amount:\4550000 ( Direct Cost: \3500000 、 Indirect Cost:\1050000 )

    In this study, we performed a functional analysis of the Nnk1 protein, which is involved in the control of chronological lifespan in fission yeast. The Nnk1 protein contains a kinase domain in the C-terminal region, but its phosphorylation substrates and physiological functions have not been elucidated. The analysis revealed that the Nnk1 protein is involved in cell wall stress response and is required for the activation of Pmk1 MAPK, which is important for the response. In addition, phosphorylation proteomic analysis revealed that decreased activity of the Nnk1 protein reduces the phosphorylation levels of several nutrient transporters.

 

Teaching Experience (On-campus) 12

  1. Biological Science Research Course (Advanced Course)

    2021

  2. Seminar in Life Science IIC

    2021

  3. Seminar in Life Science IIA

    2021

  4. Specific Lecture for Advanced Pharmaceutical Sciences

    2021

  5. Biological Science Research Course

    2021

  6. Seminar in Biological Science ⅠB

    2021

  7. Seminar in Biological Science ⅠA

    2021

  8. Basic Training for Crossover Research Course

    2021

  9. Basic Training for Crossover Research

    2021

  10. Seminar in Life Science IID

    2021

  11. Seminar in Life Science IIB

    2021

  12. 応用生命科学実験実習

    2020

▼display all