Updated on 2025/10/24

写真a

 
TAKI Yosuke
 
Organization
Nagoya University Hospital Ophthalmology Assistant Professor of Hospital
Title
Assistant Professor of Hospital
 

Papers 3

  1. Perioperative anaphylaxis attributed to acetaminophen following intravenous acetaminophen administration: a case report Open Access

    Amano, Y; Taki, Y; Konishi, Y; Fujii, T; Tamura, T

    JA CLINICAL REPORTS   Vol. 11 ( 1 ) page: 52   2025.9

     More details

    Language:English   Publisher:Ja Clinical Reports  

    Background: Anaphylaxis caused by intravenous acetaminophen is extremely rare, but a few case reports have identified mannitol, an excipient, as the causative component. Since mannitol is widely present in medications and foods, distinguishing the true antigen is essential to prevent recurrence. Case Presentation: A 67-year-old woman developed anaphylaxis with pulseless electrical activity during ophthalmic surgery after intravenous administration of acetaminophen (Acelio®). Allergy testing revealed positive reactions to both Acelio® and acetaminophen in skin tests and the basophil activation test, while reactions with mannitol were negative. Acetaminophen was confirmed as the causative agent. Hence, the patient was instructed to avoid only acetaminophen. Conclusions: Accurate identification of the causative component in intravenous acetaminophen formulations is critical. Clarifying whether the reaction is due to the active ingredient or an excipient such as mannitol helps prevent unnecessary drug restrictions and expands future treatment options.

    DOI: 10.1186/s40981-025-00816-6

    Open Access

    Web of Science

    Scopus

    PubMed

  2. 増刊号 6年前の常識は現在の非常識!-AI時代へ向かう今日の眼科医へ Ⅱ.デジタル眼科学 角膜疾患に対するAI診断

    滝 陽輔, 山口 剛史

    臨床眼科   Vol. 78 ( 11 ) page: 35 - 39   2024.10

     More details

    Publisher:株式会社医学書院  

    DOI: 10.11477/mf.1410215319

    CiNii Research

  3. Analysis of the performance of the CorneAI for iOS in the classification of corneal diseases and cataracts based on journal photographs Open Access

    Taki, Y; Ueno, Y; Oda, M; Kitaguchi, Y; Ibrahim, OMA; Aketa, N; Yamaguchi, T

    SCIENTIFIC REPORTS   Vol. 14 ( 1 ) page: 15517   2024.7

     More details

    Language:English   Publisher:Scientific Reports  

    CorneAI for iOS is an artificial intelligence (AI) application to classify the condition of the cornea and cataract into nine categories: normal, infectious keratitis, non-infection keratitis, scar, tumor, deposit, acute primary angle closure, lens opacity, and bullous keratopathy. We evaluated its performance to classify multiple conditions of the cornea and cataract of various races in images published in the Cornea journal. The positive predictive value (PPV) of the top classification with the highest predictive score was 0.75, and the PPV for the top three classifications exceeded 0.80. For individual diseases, the highest PPVs were 0.91, 0.73, 0.42, 0.72, 0.77, and 0.55 for infectious keratitis, normal, non-infection keratitis, scar, tumor, and deposit, respectively. CorneAI for iOS achieved an area under the receiver operating characteristic curve of 0.78 (95% confidence interval [CI] 0.5–1.0) for normal, 0.76 (95% CI 0.67–0.85) for infectious keratitis, 0.81 (95% CI 0.64–0.97) for non-infection keratitis, 0.55 (95% CI 0.41–0.69) for scar, 0.62 (95% CI 0.27–0.97) for tumor, and 0.71 (95% CI 0.53–0.89) for deposit. CorneAI performed well in classifying various conditions of the cornea and cataract when used to diagnose journal images, including those with variable imaging conditions, ethnicities, and rare cases.

    DOI: 10.1038/s41598-024-66296-3

    Open Access

    Web of Science

    Scopus

    PubMed

KAKENHI (Grants-in-Aid for Scientific Research) 1

  1. 角膜混濁細分類のAI作成とスマートフォンへの搭載

    Grant number:25K20201  2025.4 - 2027.3

    科学研究費助成事業  若手研究

    滝 陽輔

      More details

    Authorship:Principal investigator 

    Grant amount:\3120000 ( Direct Cost: \2400000 、 Indirect Cost:\720000 )

    臨床診断のみでは角膜混濁の診断をすることが難しいことがあるため、まずは遺伝子診断を併用して角膜混濁の疾患を診断する。その後角膜混濁の細分類を診断できるAIを作成し、診断精度を検証する。実臨床でどれだけ役立つか検証する必要があるためAIが検証した画像と同じものを角膜専門医と非専門医(名古屋大学、東京歯科大学市川総合病院の医師)それぞれに分類してもらい精度を検証する。また各病態における診断性能比較、誤りやすい病態など についても検証する。最終的に アタッチメントを要さないスマートフォンにAIを搭載、その診断精度を検証する。