2023/12/18 更新

写真a

ヤマサキ ナオト
山崎 直人
YAMASAKI Naoto
所属
大学院創薬科学研究科 基盤創薬学専攻 創薬有機化学 助教
大学院担当
大学院創薬科学研究科
職名
助教

研究キーワード 4

  1. 陸上養殖 (ヒトエグサ )

  2. 水銀触媒

  3. 有機合成化学

  4. 天然物合成

研究分野 2

  1. ライフサイエンス / 薬系化学、創薬科学

  2. ライフサイエンス / 環境、天然医薬資源学

経歴 2

  1. 名古屋大学   大学院 創薬科学研究科 基盤創薬学専攻プロセス化学分野   助教

    2023年12月 - 現在

      詳細を見る

    国名:日本国

  2. スクリプス研究所   (Dale L. Boger lab)   博士研究員

    2021年12月 - 2023年11月

      詳細を見る

    国名:アメリカ合衆国

所属学協会 2

  1. 有機合成化学協会

  2. 日本薬学会

 

論文 1

  1. Tetrachlorovancomycin: Total Synthesis of a Designed Glycopeptide Antibiotic of Reduced Synthetic Complexity. 国際誌

    Maxwell J Moore, Pengjin Qin, Naoto Yamasaki, Xianhuang Zeng, D Jamin Keith, Sunna Jung, Takumi Fukazawa, Katherine Graham-O'Regan, Zhi-Chen Wu, Shreyosree Chatterjee, Dale L Boger

    Journal of the American Chemical Society     2023年9月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    A technically straightforward total synthesis of a new class of vancomycin analogues of reduced synthetic complexity was developed that provided tetrachlorovancomycin (1, LLS = 15 steps, 15% overall yield) and its precursor aglycon 29 (nearly 20% overall yield). The class retains all the intricate vancomycin structural features that contribute to its target binding affinity and selectivity, maintains the antimicrobial activity of vancomycin, and achieves the simplification by an unusual addition, not removal, of benign substituents to the core structure. The modification, accomplished by addition of two aryl chloride substituents to provide 1, permitted a streamlined total synthesis of the new glycopeptide antibiotic class by removing the challenges associated with CD and DE ring system atropisomer stereochemical control. This also enabled their simultaneous and further-activated SNAr macrocyclizations that establish the tricyclic skeleton of 1. Key elements of the approach include catalyst-controlled diastereoselective formation of the AB biaryl axis of chirality (>30:1 dr), an essentially instantaneous macrolactamization of the AB ring system free of competitive epimerization (>30:1 dr), racemization free coupling of the E ring tetrapeptide, room temperature simultaneous CD and DE ring system cyclizations, a highly refined 4-step conversion of the cyclization product to the aglycon, and a protecting-group-free one-pot enzymatic glycosylation for disaccharide introduction. In addition to the antimicrobial evaluation of tetrachlorovancomycin (1), the preparation of key peripherally modified derivatives, which introduce independent and synergistic mechanisms of action, revealed their exceptional antimicrobial potency and provide the foundation for future use of this new class of synthetic glycopeptide analogues.

    DOI: 10.1021/jacs.3c08358

    PubMed