2024/11/04 更新

写真a

ヒライ ヒロシ
平井 広志
HIRAI Hiroshi
所属
大学院多元数理科学研究科 多元数理科学専攻 数理解析 教授
大学院担当
大学院多元数理科学研究科
学部担当
理学部 数理学科
職名
教授

学位 1

  1. 博士(理学) ( 2009年7月   京都大学 ) 

研究キーワード 3

  1. 最適化

  2. アルゴリズム

  3. 離散数学

研究分野 3

  1. 情報通信 / 数理情報学

  2. 自然科学一般 / 数学基礎

  3. 自然科学一般 / 応用数学、統計数学

経歴 4

  1. 名古屋大学   大学院多元数理科学研究科   教授

    2023年5月 - 現在

  2. 東京大学   大学院情報理工学系研究科 数理情報学専攻   准教授

    2014年4月 - 2023年5月

  3. 東京大学   大学院情報理工学系研究科 数理情報学専攻   講師

    2010年11月 - 2014年3月

  4. 京都大学   数理解析研究所   助教

    2004年4月 - 2010年10月

学歴 1

  1. 東京大学   情報理工学系研究科   数理情報学専攻

    2002年4月 - 2004年3月

      詳細を見る

    国名: 日本国

所属学協会 2

  1. 日本応用数理学会

  2. 日本オペレーションズリサーチ学会

委員歴 2

  1. SIAM Journal on Applied Algebra and Geometry (SIAGA)   Associate Editor  

    2021年1月 - 現在   

      詳細を見る

    団体区分:学協会

  2. 日本応用数理学会   離散システム研究部会 主査  

    2019年4月 - 現在   

受賞 7

  1. 日本オペレーションズ・リサーチ学会フェロー

    2019年3月  

  2. 日本オペレーションズ・リサーチ学会60周年記念論文賞

    2018年9月  

  3. 文部科学大臣表彰 若手科学者賞

    2018年4月  

  4. 人工知能学会研究会優秀賞

    2015年6月  

  5. 日本オペレーションズ・リサーチ学会研究賞

    2014年8月  

  6. 日本オペレーションズ・リサーチ学会文献賞奨励賞

    2009年3月  

  7. 日本オペレーションズ・リサーチ学会学生論文賞

    2004年9月  

▼全件表示

 

論文 62

  1. Algebraic combinatorial optimization on the degree of determinants of noncommutative symbolic matrices 査読有り

    Hiroshi Hirai, Yuni Iwamasa, Taihei Oki, Tasuku Soma

    Mathematical Programming     2024年11月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Springer Science and Business Media LLC  

    Abstract

    We address the computation of the degrees of minors of a noncommutative symbolic matrix of form $$ A[c] :=\sum _{k=1}^m A_k t^{c_k} x_k, $$where $$A_k$$ are matrices over a field $$\mathbb {K}$$, $$x_k$$ are noncommutative variables, $$c_k$$ are integer weights, and t is a commuting variable specifying the degree. This problem extends noncommutative Edmonds’ problem (Ivanyos et al. in Comput Complex 26:717–763, 2017), and can formulate various combinatorial optimization problems. Extending the study by Hirai 2018, and Hirai, Ikeda 2022, we provide novel duality theorems and polyhedral characterization for the maximum degrees of minors of A[c] of all sizes, and develop a strongly polynomial-time algorithm for computing them. This algorithm is viewed as a unified algebraization of the classical Hungarian method for bipartite matching and the weight-splitting algorithm for linear matroid intersection. As applications, we provide polynomial-time algorithms for weighted fractional linear matroid matching and for membership of rank-2 Brascamp–Lieb polytopes.

    DOI: 10.1007/s10107-024-02158-0

    その他リンク: https://link.springer.com/article/10.1007/s10107-024-02158-0/fulltext.html

  2. Gradient descent for unbounded convex functions on Hadamard manifolds and its applications to scaling problems 査読有り

    Hiroshi Hirai, Keiya Sakabe

    FOCS     頁: 2387 - 2402   2024年

  3. Polyhedral Clinching Auctions for Indivisible Goods. 査読有り

    Hiroshi Hirai, Ryosuke Sato

    Web and Internet Economics. WINE 2023. Lecture Notes in Computer Science     頁: 366 - 383   2023年12月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)  

    DOI: 10.1007/978-3-031-48974-7_21

    その他リンク: https://dblp.uni-trier.de/db/conf/wine/wine2023.html#HiraiS23

  4. 行列スケーリングから非正曲率空間上の測地的凸最適化へ 招待有り

    平井広志

    RAMP数理最適化シンポジウム論文集     頁: 59 - 79   2023年11月

     詳細を見る

    担当区分:筆頭著者, 最終著者, 責任著者   記述言語:日本語   掲載種別:研究論文(研究会,シンポジウム資料等)  

  5. Interior-point methods on manifolds: theory and applications. 査読有り 国際共著

    Hiroshi Hirai, Harold Nieuwboer, Michael Walter

    2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)     頁: 2021 - 2030   2023年11月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)  

    DOI: 10.1109/FOCS57990.2023.00123

    その他リンク: https://dblp.uni-trier.de/db/conf/focs/focs2023.html#0001N023

  6. Finding Hall Blockers by Matrix Scaling 査読有り

    Koyo Hayashi, Hiroshi Hirai, Keiya Sakabe

    Mathematics of Operations Research     2023年10月

     詳細を見る

    担当区分:筆頭著者, 最終著者, 責任著者   記述言語:英語   掲載種別:研究論文(学術雑誌)  

    DOI: 10.1287/moor.2022.0198

  7. Convex Analysis on Hadamard Spaces and Scaling Problems 査読有り

    Hiroshi Hirai

    Foundations of Computational Mathematics     2023年10月

     詳細を見る

    担当区分:筆頭著者, 最終著者, 責任著者   記述言語:英語   掲載種別:研究論文(学術雑誌)  

    In this paper, we address the bounded/unbounded determination of geodesically convex optimization on Hadamard spaces. In Euclidean convex optimization, the recession function is a basic tool to study the unboundedness and provides the domain of the Legendre–Fenchel conjugate of the objective function. In a Hadamard space, the asymptotic slope function (Kapovich et al. in J Differ Geom 81:297–354, 2009), which is a function on the boundary at infinity, plays a role of the recession function. We extend this notion by means of convex analysis and optimization and develop a convex analysis foundation for the unbounded determination of geodesically convex optimization on Hadamard spaces, particularly on symmetric spaces of nonpositive curvature. We explain how our developed theory is applied to operator scaling and related optimization on group orbits, which are our motivation.

    DOI: 10.1007/s10208-023-09628-5

    Scopus

  8. Two Flags in a Semimodular Lattice Generate an Antimatroid 査読有り

    Hayashi Koyo, Hirai Hiroshi

      41 巻 ( 2 ) 頁: 463 - 470   2023年6月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Order  

    A basic property in a modular lattice is that any two flags generate a distributive sublattice. It is shown (Abels 1991, Herscovici 1998) that two flags in a semimodular lattice no longer generate such a good sublattice, whereas shortest galleries connecting them form a relatively good join-sublattice. In this note, we sharpen this investigation to establish an analogue of the two-flag generation theorem for a semimodular lattice. We consider the notion of a modular convex subset, which is a subset closed under the join and meet only for modular pairs, and show that the modular convex hull of two flags in a semimodular lattice of rank n is isomorphic to a union-closed family on [n]. This family uniquely determines an antimatroid, which coincides with the join-sublattice of shortest galleries of the two flags.

    DOI: 10.1007/s11083-023-09639-5

    Web of Science

    Scopus

  9. Node-Connectivity Terminal Backup, Separately Capacitated Multiflow, and Discrete Convexity. 査読有り

    Hiroshi Hirai, Motoki Ikeda

    SIAM Journal on Discrete Mathematics   37 巻 ( 1 ) 頁: 351 - 378   2023年3月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    The terminal backup problems ([E. Anshelevich and A. Karagiozova, SIAM J. Comput., 40 (2011), pp. 678-708]) form a class of network design problems: Given an undirected graph with a requirement on terminals, the goal is to find a minimum-cost subgraph satisfying the connectivity requirement. The node-connectivity terminal backup problem requires a terminal to connect other terminals with a number of node-disjoint paths. This problem is not known whether is NP-hard or tractable. Fukunaga [SIAM J. Discrete Math., 30 (2016), pp. 777-800] gave a 4/3-approximation algorithm based on an LP-rounding scheme using a general LP-solver. In this paper, we develop a combinatorial algorithm for the relaxed LP to find a half-integral optimal solution in O(mlog(nUA) · MF(kn,m + k2n)) time, where n is the number of nodes, m is the number of edges, k is the number of terminals, A is the maximum edge-cost, U is the maximum edge-capacity, and MF(n' ,m') is the time complexity of a max-flow algorithm in a network with n' nodes and m' edges. The algorithm implies that the 4/3-approximation algorithm for the node-connectivity terminal backup problem is also efficiently implemented. For the design of algorithm, we explore a connection between the node-connectivity terminal backup problem and a new type of a multiflow, which is called a separately capacitated multiflow. We show a min-max theorem which extends the Lovász-Cherkassky theorem to the node-capacity setting. Our results build on discrete convexity in the node-connectivity terminal backup problem.

    DOI: 10.1137/20m1361857

    Scopus

  10. A cost-scaling algorithm for computing the degree of determinants 査読有り

    Hiroshi Hirai, Motoki Ikeda

    Computational Complexity   31 巻 ( 2 )   2022年12月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    In this paper, we address computation of the degree deg Det A of Dieudonné determinant Det A ofA=∑k=1mAkxktck, where Ak are n× n matrices over a field K, xk are noncommutative variables,t is a variable commuting with xk, ck are integers,and the degree is considered for t.This problem generalizes noncommutative Edmonds' problem andfundamental combinatorial optimization problemsincluding the weighted linear matroid intersection problem.It was shown that deg Det A is obtained bya discrete convex optimization on a Euclidean building (Hirai 2019).We extend this framework by incorporating a cost-scaling techniqueand show that deg Det Acan be computed in time polynomial of n, m, log 2C, where C: = max k| ck|.We give a polyhedral interpretation of deg Det ,which says that deg Det A is given by linear optimizationover an integral polytope with respect to objective vector c= (ck).Based on it, we show that our algorithm becomes a strongly polynomial one.We also apply our result to an algebraic combinatorial optimization problemarising from a symbolic matrix having 2 × 2 -submatrix structure.

    DOI: 10.1007/s00037-022-00227-4

    Scopus

  11. A combinatorial algorithm for computing the rank of a generic partitioned matrix with 2 × 2 submatrices 査読有り

    Hiroshi Hirai, Yuni Iwamasa

    Mathematical Programming   195 巻 ( 1-2 ) 頁: 1 - 37   2022年9月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    In this paper, we consider the problem of computing the rank of a block-structured symbolic matrix (a generic partitioned matrix) A= (Aαβxαβ) , where Aαβ is a 2 × 2 matrix over a field F and xαβ is an indeterminate for α= 1 , 2 , ⋯ , μ and β= 1 , 2 , ⋯ , ν. This problem can be viewed as an algebraic generalization of the bipartite matching problem and was considered by Iwata and Murota (SIAM J Matrix Anal Appl 16(3):719–734, 1995). Recent interests in this problem lie in the connection with non-commutative Edmonds’ problem by Ivanyos et al. (Comput Complex 27:561–593, 2018) and Garg et al. (Found. Comput. Math. 20:223–290, 2020), where a result by Iwata and Murota implicitly states that the rank and non-commutative rank (nc-rank) are the same for this class of symbolic matrices. The main result of this paper is a simple and combinatorial O((μν) 2min { μ, ν}) -time algorithm for computing the symbolic rank of a (2 × 2) -type generic partitioned matrix of size 2 μ× 2 ν. Our algorithm is inspired by the Wong sequence algorithm by Ivanyos et al. for the nc-rank of a general symbolic matrix, and requires no blow-up operation, no field extension, and no additional care for bounding the bit-size. Moreover it naturally provides a maximum rank completion of A for an arbitrary field F.

    DOI: 10.1007/s10107-021-01676-5

    Scopus

  12. A cost-scaling algorithm for minimum-cost node-capacitated multiflow problem 査読有り

    Hiroshi Hirai, Motoki Ikeda

    Mathematical Programming   195 巻 ( 1-2 ) 頁: 149 - 181   2022年9月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    In this paper, we address the minimum-cost node-capacitated multiflow problem in undirected networks. For this problem, Babenko and Karzanov (JCO 24: 202–228, 2012) showed strong polynomial-time solvability via the ellipsoid method. Our result is the first combinatorial polynomial-time algorithm for this problem. Our algorithm finds a half-integral minimum-cost maximum multiflow in O(mlog (nCD) SF (kn, m, k)) time, where n is the number of nodes, m is the number of edges, k is the number of terminals, C is the maximum node capacity, D is the maximum edge cost, and SF (n′, m′, η) is the time complexity of solving the submodular flow problem in a network of n′ nodes, m′ edges, and a submodular function with η-time-computable exchange capacity. Our algorithm is built on discrete convex analysis on graph structures and the concept of reducible bisubmodular flows.

    DOI: 10.1007/s10107-021-01683-6

    Scopus

  13. Reconstructing Phylogenetic Trees from Multipartite Quartet Systems 査読有り

    Hiroshi Hirai, Yuni Iwamasa

    Algorithmica   84 巻 ( 7 ) 頁: 1875 - 1896   2022年7月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    A phylogenetic tree is a graphical representation of an evolutionary history of taxa in which the leaves correspond to the taxa and the non-leaves correspond to speciations. One of important problems in phylogenetic analysis is to assemble a global phylogenetic tree from small phylogenetic trees, particularly, quartet trees. Quartet Compatibility is the problem of deciding whether there is a phylogenetic tree inducing a given collection of quartet trees, and to construct such a phylogenetic tree if it exists. It is known that Quartet Compatibility is NP-hard and that there are only a few results known for polynomial-time solvable subclasses. In this paper, we introduce two novel classes of quartet systems, called complete multipartite quartet system and full multipartite quartet system, and present polynomial-time algorithms for Quartet Compatibility for these systems.

    DOI: 10.1007/s00453-022-00945-9

    Scopus

  14. Polyhedral Clinching Auctions for Two-Sided Markets 査読有り

    Hiroshi Hirai, Ryosuke Sato

    Mathematics of Operations Research   47 巻 ( 1 ) 頁: 259 - 285   2022年2月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    In this paper, we present a new model and mechanisms for auctions in twosided markets of buyers and sellers, where budget constraints are imposed on buyers. Our model incorporates polymatroidal environments and is applicable to a variety of models that include multiunit auctions, matching markets, and reservation exchangemarkets. Our mechanisms are built on the polymatroidal network flow model by Lawler and Martel. Additionally, they feature nice properties such as the incentive compatibility of buyers, individual rationality, Pareto optimality, and strong budget balance. The firstmechanismis a two-sided generalization of the polyhedral clinching auction by Goel et al. for one-sided markets. The second mechanism is a reduce-to-recover algorithm that reduces the market to be one-sided, applies the polyhedral clinching auction by Goel et al., and lifts the resulting allocation to the original two-sided market via the polymatroidal network flow. Both mechanisms are implemented by polymatroid algorithms. We demonstrate how our framework is applied to the Internet display advertisement auctions.

    DOI: 10.1287/moor.2021.1124

    Scopus

  15. Compression of M<sup>♮</sup>-convex functions — Flag matroids and valuated permutohedra 査読有り

    Satoru Fujishige, Hiroshi Hirai

    Journal of Combinatorial Theory. Series A   185 巻   2022年1月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    Murota (1998) and Murota and Shioura (1999) introduced concepts of M-convex function and M♮-convex function as discrete convex functions, which are generalizations of valuated matroids due to Dress and Wenzel (1992). In the present paper we consider a new operation defined by a convolution of sections of an M♮-convex function that transforms the given M♮-convex function to an M-convex function, which we call a compression of an M♮-convex function. For the class of valuated generalized matroids, which are special M♮-convex functions, the compression induces a valuated permutohedron together with a decomposition of the valuated generalized matroid into flag-matroid strips, each corresponding to a maximal linearity domain of the induced valuated permutohedron. We examine the details of the structure of flag-matroid strips and the induced valuated permutohedron by means of discrete convex analysis of Murota.

    DOI: 10.1016/j.jcta.2021.105525

    Scopus

  16. A nonpositive curvature property of modular semilattices 査読有り

    Hiroshi Hirai

    Geometriae Dedicata   214 巻 ( 1 ) 頁: 427 - 463   2021年10月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    The orthoscheme complex of a graded poset is a metrization of its order complex such that the simplex of each maximal chain is isometric to the Euclidean simplex of vertices 0 , e1, e1+ e2, … , e1+ e2+ ⋯ + en. This notion was introduced by Brady and McCammond in geometric group theory, and has applications in discrete optimization and submodularity theory. We address the question of which poset can yield the orthoscheme complex with CAT(0) property. The orthoscheme complex of a modular lattice has been shown to be CAT(0), and it is conjectured that this is the case for a modular semilattice. In this paper, we prove this conjecture affirmatively. This result implies that a larger class of weakly modular graphs yields CAT(0) complexes.

    DOI: 10.1007/s10711-021-00623-0

    Scopus

  17. Minimum 0-extension problems on directed metrics 査読有り

    Hiroshi Hirai, Ryuhei Mizutani

    Discrete Optimization   40 巻   2021年5月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    For a metric μ on a finite set T, the minimum 0-extension problem 0-Ext[μ] is defined as follows: Given V⊇T and c:V2→Q+, minimize ∑c(xy)μ(γ(x),γ(y)) subject to γ:V→T,γ(t)=t(∀t∈T), where the sum is taken over all unordered pairs in V. This problem generalizes several classical combinatorial optimization problems such as the minimum cut problem or the multiterminal cut problem. Karzanov and Hirai established a complete classification of metrics μ for which 0-Ext[μ] is polynomial time solvable or NP-hard. This result can also be viewed as a sharpening of the general dichotomy theorem for finite-valued CSPs (Thapper and Živný 2016) specialized to 0-Ext[μ]. In this paper, we consider a directed version 0⃗-Ext[μ] of the minimum 0-extension problem, where μ and c are not assumed to be symmetric. We extend the NP-hardness condition of 0-Ext[μ] to 0⃗-Ext[μ]: If μ cannot be represented as the shortest path metric of an orientable modular graph with an orbit-invariant “directed” edge-length, then 0⃗-Ext[μ] is NP-hard. We also show a partial converse: If μ is a directed metric of a modular lattice with an orbit-invariant directed edge-length, then 0⃗-Ext[μ] is tractable. We further provide a new NP-hardness condition characteristic of 0⃗-Ext[μ], and establish a dichotomy for the case where μ is a directed metric of a star.

    DOI: 10.1016/j.disopt.2021.100642

    Scopus

  18. Computing the nc-Rank via discrete convex optimization on cat(0) spaces 査読有り

    Masaki Hamada, Hiroshi Hirai

    SIAM Journal on Applied Algebra and Geometry   5 巻 ( 3 ) 頁: 455 - 478   2021年

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    We study the noncommutative rank (nc-rank) computation of a symbolic matrix whose entries are linear forms in noncommutative variables. For this problem, polynomial time algorithms were given by Garg, Gurvits, Oliveira, and Wigderson over the rational numbers, and by Ivanyos, Qiao, and Subrahmanyam over arbitrary fields. We present a significantly different polynomial time algorithm that works for any field. Our algorithm is based on a combination of submodular optimization on modular lattices and convex optimization on CAT(0) spaces.

    DOI: 10.1137/20M138836X

    Scopus

  19. Weakly modular graphs and nonpositive curvature 査読有り

    Jérémie Chalopin, Victor Chepoi, Hiroshi Hirai, Damian Osajda

    Memoirs of the American Mathematical Society   268 巻 ( 1309 ) 頁: 1 - 172   2020年11月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    This article investigates structural, geometrical, and topological characterizations and properties of weakly modular graphs and of cell complexes derived from them. The unifying themes of our investigation are various “nonpositive curvature” and “local-to-global” properties and characterizations of weakly modular graphs and their subclasses. Weakly modular graphs have been introduced as a far-reaching common generalization of median graphs (and more generally, of modular and orientable modular graphs), Helly graphs, bridged graphs, and dual polar graphs occurring under different disguises (1-skeletons, collinearity graphs, covering graphs, domains, etc.) in several seemingly-unrelated fields of mathematics: • Metric graph theory • Geometric group theory • Incidence geometries and buildings • Theoretical computer science and combinatorial optimization We give a local-to-global characterization of weakly modular graphs and their subclasses in terms of simple connectedness of associated triangle-square complexes and specific local combinatorial conditions. In particular, we revisit characterizations of dual polar graphs by Cameron and by Brouwer-Cohen. We also show that (disk-)Helly graphs are precisely the clique-Helly graphs with simply connected clique complexes. With l1-embeddable weakly modular and sweakly modular graphs we associate high-dimensional cell complexes, having several strong topological and geometrical properties (contractibility and the CAT(0) property). Their cells have a specific structure: they are basis polyhedra of even Δ-matroids in the first case and orthoscheme complexes of gated dual polar subgraphs in the second case. We resolve some open problems concerning subclasses of weakly modular graphs: we prove a Brady-McCammond conjecture about CAT(0) metric on the orthoscheme complexes of modular lattices; we answer Chastand's question about prime graphs for pre-median graphs. We also explore negative curvature for weakly modular graphs.

    DOI: 10.1090/memo/1309

    Scopus

  20. A Compact Representation for Modular Semilattices and Its Applications 査読有り

    Hiroshi Hirai, So Nakashima

    Order   37 巻 ( 3 ) 頁: 479 - 507   2020年10月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    A modular semilattice is a semilattice generalization of a modular lattice. We establish a Birkhoff-type representation theorem for modular semilattices, which says that every modular semilattice is isomorphic to the family of ideals in a certain poset with additional relations. This new poset structure, which we axiomatize in this paper, is called a PPIP (projective poset with inconsistent pairs). A PPIP is a common generalization of a PIP (poset with inconsistent pairs) and a projective ordered space. The former was introduced by Barthélemy and Constantin for establishing Birkhoff-type theorem for median semilattices, and the latter by Herrmann, Pickering, and Roddy for modular lattices. We show the Θ(n) representation complexity and a construction algorithm for PPIP-representations of (∧,∨)-closed sets in the product Ln of modular semilattice L. This generalizes the results of Hirai and Oki for a special median semilattice Sk. We also investigate implicational bases for modular semilattices. Extending earlier results of Wild and Herrmann for modular lattices, we determine optimal implicational bases and develop a polynomial time recognition algorithm for modular semilattices. These results can be applied to retain the minimizer set of a submodular function on a modular semilattice.

    DOI: 10.1007/s11083-019-09516-0

    Scopus

  21. On a weighted linear matroid intersection algorithm by Deg-Det computation 査読有り

    Hiroki Furue, Hiroshi Hirai

    Japan Journal of Industrial and Applied Mathematics   37 巻 ( 3 ) 頁: 677 - 696   2020年9月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    In this paper, we address the weighted linear matroid intersection problem from computation of the degree of the determinant of a symbolic matrix. We show that a generic algorithm computing the degree of noncommutative determinants, proposed by the second author, becomes an O(mn3log n) time algorithm for the weighted linear matroid intersection problem, where two matroids are given by column vectors of n× m matrices A, B. We reveal that our algorithm is viewed as a “nonstandard” implementation of Frank’s weight splitting algorithm for linear matroids. This gives a linear algebraic reasoning to Frank’s algorithm. Although our algorithm is slower than existing algorithms in the worst case estimate, it has a notable feature. Contrary to existing algorithms, our algorithm works on different matroids represented by another “sparse” matrices A, B, which skips unnecessary Gaussian eliminations for constructing residual graphs.

    DOI: 10.1007/s13160-020-00413-3

    Scopus

  22. Minimum 0-extension problems on directed metrics 査読有り

    Hiroshi Hirai, Ryuhei Mizutani

    Leibniz International Proceedings in Informatics, LIPIcs   170 巻   2020年8月

     詳細を見る

    掲載種別:研究論文(国際会議プロシーディングス)  

    For a metric µ on a finite set T, the minimum 0-extension problem 0-Ext[µ] is defined as follows: Given V ⊇ T and c: (V/2) → Q+, minimize P c(xy)µ(γ(x), γ(y)) subject to γ: V → T, γ(t) = t (∀t ∈ T), where the sum is taken over all unordered pairs in V . This problem generalizes several classical combinatorial optimization problems such as the minimum cut problem or the multiterminal cut problem. The complexity dichotomy of 0-Ext[µ] was established by Karzanov and Hirai, which is viewed as a manifestation of the dichotomy theorem for finite-valued CSPs due to Thapper and Živný. In this paper, we consider a directed version →0 -Ext[µ] of the minimum 0-extension problem, where µ and c are not assumed to be symmetric. We extend the NP-hardness condition of 0-Ext[µ] to →0 -Ext[µ]: If µ cannot be represented as the shortest path metric of an orientable modular graph with an orbit-invariant “directed” edge-length, then →0 -Ext[µ] is NP-hard. We also show a partial converse: If µ is a directed metric of a modular lattice with an orbit-invariant directed edge-length, then →0 -Ext[µ] is tractable. We further provide a new NP-hardness condition characteristic of → 0 -Ext[µ], and establish a dichotomy for the case where µ is a directed metric of a star.

    DOI: 10.4230/LIPIcs.MFCS.2020.46

    Scopus

  23. Uniform modular lattices and affine buildings 査読有り

    Hiroshi Hirai

    Advances in Geometry   20 巻 ( 3 ) 頁: 375 - 390   2020年7月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    A simple lattice-theoretic characterization for affine buildings of type A is obtained. We introduce a class of modular lattices, called uniform modular lattices, and show that uniform modular lattices and affine buildings of type A constitute the same object. This is an affine counterpart of the well-known equivalence between projective geometries ( complemented modular lattices) and spherical buildings of type A.

    DOI: 10.1515/advgeom-2020-0007

    Scopus

  24. Node-connectivity terminal backup, separately-capacitated multiflow, and discrete convexity 査読有り

    Hiroshi Hirai, Motoki Ikeda

    Leibniz International Proceedings in Informatics, LIPIcs   168 巻   2020年6月

     詳細を見る

    掲載種別:研究論文(国際会議プロシーディングス)  

    The terminal backup problems [Anshelevich and Karagiozova, 2011] form a class of network design problems: Given an undirected graph with a requirement on terminals, the goal is to find a minimum cost subgraph satisfying the connectivity requirement. The node-connectivity terminal backup problem requires a terminal to connect other terminals with a number of node-disjoint paths. This problem is not known whether is NP-hard or tractable. Fukunaga (2016) gave a 4/3-approximation algorithm based on LP-rounding scheme using a general LP-solver. In this paper, we develop a combinatorial algorithm for the relaxed LP to find a half-integral optimal solution in O(mlog(mUA)·MF(kn,m+k2n)) time, where m is the number of edges, k is the number of terminals, A is the maximum edge-cost, U is the maximum edge-capacity, and MF(n0,m0) is the time complexity of a max-flow algorithm in a network with n0 nodes and m0 edges. The algorithm implies that the 4/3-approximation algorithm for the node-connectivity terminal backup problem is also efficiently implemented. For the design of algorithm, we explore a connection between the node-connectivity terminal backup problem and a new type of a multiflow, called a separately-capacitated multiflow. We show a min-max theorem which extends Lovász-Cherkassky theorem to the node-capacity setting. Our results build on discrete convex analysis for the node-connectivity terminal backup problem.

    DOI: 10.4230/LIPIcs.ICALP.2020.65

    Scopus

  25. Counting integral points in polytopes via numerical analysis of contour integration 査読有り

    Hiroshi Hirai, Ryunosuke Oshiro, Ken'ichiro Tanaka

    Mathematics of Operations Research   45 巻 ( 2 ) 頁: 455 - 464   2020年5月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    In this paper, we address the problem of counting integer points in a rational polytope described by P(y) = {x ∈ ℝm: Ax = y, x ≥ 0}, where A is an n × m integer matrix and y is an n-dimensional integer vector. We study the Z transformation approach initiated in works by Brion and Vergne, Beck, and Lasserre and Zeron from the numerical analysis point of view and obtain a new algorithm on this problem. If A is nonnegative, then the number of integer points in P(y) can be computed in O(poly(n, m, ||y||∞)(||y||∞ + 1)n) time and O(poly(n, m, ||y||∞)) space. This improves, in terms of space complexity, a naive DP algorithm with O((||y||∞ + 1)n)-size dynamic programming table. Our result is based on the standard error analysis of the numerical contour integration for the inverse Z transform and establishes a new type of an inclusion-exclusion formula for integer points in P(y). We apply our result to hypergraph b-matching and obtain a O(poly(n, m, ||b||∞)(||b||∞+ 1)(1−1/k)n) time algorithm for counting b-matchings in a k-partite hypergraph with n vertices and m hyperedges. This result is viewed as a b-matching generalization of the classical result by Ryser for k = 2 and its multipartite extension by Björklund and Husfeldt.

    DOI: 10.1287/moor.2019.0997

    Scopus

  26. A Combinatorial Algorithm for Computing the Rank of a Generic Partitioned Matrix with 2 × 2 Submatrices 査読有り

    Hiroshi Hirai, Yuni Iwamasa

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)   12125 LNCS 巻   頁: 196 - 208   2020年

     詳細を見る

    掲載種別:研究論文(国際会議プロシーディングス)  

    In this paper, we consider the problem of computing the rank of a block-structured symbolic matrix (a generic partitioned matrix) [Formula Presented], where [Formula Presented] is a [Formula Presented] matrix over a field [Formula Presented] and [Formula Presented] is an indeterminate for [Formula Presented] and [Formula Presented]. This problem can be viewed as an algebraic generalization of the bipartite matching problem, and was considered by Iwata and Murota (1995). One of recent interests on this problem lies in the connection with non-commutative Edmonds’ problem by Ivanyos, Qiao and Subrahamanyam (2018), and Garg, Gurvits, Oliveiva and Wigderson (2019), where a result by Iwata and Murota implicitly says that the rank and the non-commutative rank (nc-rank) are the same for this class of symbolic matrices. The main result of this paper is a combinatorial [Formula Presented]-time algorithm for computing the symbolic rank of a [Formula Presented]-type generic partitioned matrix of size [Formula Presented]. Our algorithm is based on the Wong sequence algorithm by Ivanyos, Qiao, and Subrahamanyam for the nc-rank of a general symbolic matrix, but is simpler. Our proposed algorithm requires no blow-up operation, no field extension, and no additional care for bounding the bit-size. Moreover it naturally provides a maximum rank completion of A for an arbitrary field [Formula Presented].

    DOI: 10.1007/978-3-030-45771-6_16

    Scopus

  27. A tractable class of binary vcsps via m-convex intersection 査読有り

    Hiroshi Hirai, Yuni Iwamasa, Kazuo Murota, Stanislav Zivný

    ACM Transactions on Algorithms   15 巻 ( 3 )   2019年7月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    A binary VCSP is a general framework for the minimization problem of a function represented as the sum of unary and binary cost functions. An important line of VCSP research is to investigate what functions can be solved in polynomial time. Cooper and Živn?classified the tractability of binary VCSP instances according to the concept of "triangle," and showed that the only interesting tractable case is the one induced by the joint winner property (JWP). Recently, Iwamasa, Murota, and Živn?made a link between VCSP and discrete convex analysis, showing that a function satisfying the JWPcan be transformed into a function represented as the sum of two quadratic M-convex functions, which can be minimized in polynomial time via an M-convex intersection algorithm if the value oracle of each M-convex function is given. In this article,we give an algorithmic answer to a natural question:What binary finite-valued CSP instances can be represented as the sum of two quadratic M-convex functions and can be solved in polynomial time via an M-convex intersection algorithm? We solve this problem by devising a polynomial-Time algorithm for obtaining a concrete form of the representation in the representable case. Our result presents a larger tractable class of binary finite-valued CSPs, which properly contains the JWP class.

    DOI: 10.1145/3329862

    Scopus

  28. Uniform semimodular lattices and valuated matroids 査読有り

    Hiroshi Hirai

    Journal of Combinatorial Theory. Series A   165 巻   頁: 325 - 359   2019年7月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    In this paper, we present a lattice-theoretic characterization for valuated matroids, which is an extension of the well-known cryptomorphic equivalence between matroids and geometric lattices (= atomistic semimodular lattices). We introduce a class of semimodular lattices, called uniform semimodular lattices, and establish a cryptomorphic equivalence between integer-valued valuated matroids and uniform semimodular lattices. Our result includes a coordinate-free lattice-theoretic characterization of integer points in tropical linear spaces, incorporates the Dress-Terhalle completion process of valuated matroids, and establishes a smooth connection with Euclidean buildings of type A.

    DOI: 10.1016/j.jcta.2019.02.013

    Scopus

  29. Computing the degree of determinants via discrete convex optimization on euclidean buildings 査読有り

    Hiroshi Hirai

    SIAM Journal on Applied Algebra and Geometry   3 巻 ( 3 ) 頁: 523 - 557   2019年

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    In this paper, we consider the computation of the degree of the Dieudonne determinant of a linear symbolic matrix A = A0 + A1x1 + \cdot \cdot \cdot + Amxm, where each Ai is an n \times n polynomial matrix over \BbbK [t] and x1, x2, . . ., xm are pairwise ``noncommutative"" variables. This quantity is regarded as a weighted generalization of the noncommutative rank (nc-rank) of a linear symbolic matrix, and its computation is shown to be a generalization of several basic combinatorial optimization problems, such as weighted bipartite matching and weighted linear matroid intersection problems. Based on the work on nc-rank by Fortin and Reutenauer [Sem. Lothar. Combin., 52 (2004), B52f] and Ivanyos, Qiao, and Subrahmanyam [Comput. Complex., 27 (2018), pp. 561-593], we develop a framework to compute the degree of the Dieudonne determinant of a linear symbolic matrix. We show that the deg-det computation reduces to a discrete convex optimization problem on the Euclidean building for SL(\BbbK (t)n). To deal with this optimization problem, we introduce a class of discrete convex functions on the building. This class is a natural generalization of L-convex functions in discrete convex analysis (DCA). We develop a DCA-oriented algorithm (steepest descent algorithm) to compute the degree of determinants. Our algorithm works with matrix computation on \BbbK and uses a subroutine to compute a certificate vector subspace for the nc-rank, where the number of calls of the subroutine is sharply estimated. Our algorithm enhances some classical combinatorial optimization algorithms with new insights, and it is also understood as a variant of the combinatorial relaxation algorithm, which was developed earlier by Murota for computing the degree of the (ordinary) determinant.

    DOI: 10.1137/18M1190823

    Scopus

  30. Reconstructing phylogenetic tree from multipartite quartet system 査読有り

    Hiroshi Hirai, Yuni Iwamasa

    Leibniz International Proceedings in Informatics, LIPIcs   123 巻   2018年12月

     詳細を見る

    掲載種別:研究論文(国際会議プロシーディングス)  

    A phylogenetic tree is a graphical representation of an evolutionary history in a set of taxa in which the leaves correspond to taxa and the non-leaves correspond to speciations. One of important problems in phylogenetic analysis is to assemble a global phylogenetic tree from smaller pieces of phylogenetic trees, particularly, quartet trees. Quartet Compatibility is to decide whether there is a phylogenetic tree inducing a given collection of quartet trees, and to construct such a phylogenetic tree if it exists. It is known that Quartet Compatibility is NP-hard but there are only a few results known for polynomial-time solvable subclasses. In this paper, we introduce two novel classes of quartet systems, called complete multipartite quartet system and full multipartite quartet system, and present polynomial time algorithms for Quartet Compatibility for these systems. We also see that complete/full multipartite quartet systems naturally arise from a limited situation of block-restricted measurement.

    DOI: 10.4230/LIPIcs.ISAAC.2018.57

    Scopus

  31. A Dual Descent Algorithm for Node-capacitated Multiflow Problems and Its Applications 査読有り

    Hiroshi Hirai

    ACM Transactions on Algorithms   15 巻 ( 1 )   2018年12月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    In this article, we develop an O((m log k)MSF(n, m, 1))-time algorithm to find a half-integral node-capacitated multiflow of the maximum total flow-value in a network with n nodes, m edges, and k terminals, where MSF(n, m, γ ) denotes the time complexity of solving the maximum submodular flow problem in a network with n nodes, m edges, and the complexity γ of computing the exchange capacity of the submodular function describing the problem. By using Fujishige-Zhang algorithm for submodular flow, we can find a maximum half-integral multiflow in O(mn 3 log k) time. This is the first combinatorial strongly polynomial time algorithm for this problem. Our algorithm is built on a developing theory of discrete convex functions on certain graph structures. Applications include “ellipsoid-free” combinatorial implementations of a 2-approximation algorithm for the minimum node-multiway cut problem by Garg, Vazirani, and Yannakakis.

    DOI: 10.1145/3291531

    Scopus

  32. A compact representation for minimizers of k-submodular functions 査読有り

    Hiroshi Hirai, Taihei Oki

    Journal of Combinatorial Optimization   36 巻 ( 3 ) 頁: 709 - 741   2018年10月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    A k-submodular function is a generalization of submodular and bisubmodular functions. This paper establishes a compact representation for minimizers of a k-submodular function by a poset with inconsistent pairs (PIP). This is a generalization of Ando–Fujishige’s signed poset representation for minimizers of a bisubmodular function. We completely characterize the class of PIPs (elementary PIPs) arising from k-submodular functions. We give algorithms to construct the elementary PIP of minimizers of a k-submodular function f for three cases: (i) a minimizing oracle of f is available, (ii) f is network-representable, and (iii) f arises from a Potts energy function. Furthermore, we provide an efficient enumeration algorithm for all maximal minimizers of a Potts k-submodular function. Our results are applicable to obtain all maximal persistent labelings in actual computer vision problems. We present experimental results for real vision instances.

    DOI: 10.1007/s10878-017-0142-0

    Scopus

  33. Shortest (A+ B) -Path Packing Via Hafnian 査読有り

    Hiroshi Hirai, Hiroyuki Namba

    Algorithmica   80 巻 ( 8 ) 頁: 2478 - 2491   2018年8月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    Björklund and Husfeldt developed a randomized polynomial time algorithm to solve the shortest two disjoint paths problem. Their algorithm is based on computation of permanents modulo 4 and the isolation lemma. In this paper, we consider the following generalization of the shortest two disjoint paths problem, and develop a similar algebraic algorithm. The shortest perfect (A+ B) -path packing problem is: given an undirected graph G and two disjoint node subsets A, B with even cardinalities, find shortest | A| / 2 + | B| / 2 disjoint paths whose ends are both in A or both in B. Besides its NP-hardness, we prove that this problem can be solved in randomized polynomial time if | A| + | B| is fixed. Our algorithm basically follows the framework of Björklund and Husfeldt but uses a new technique: computation of hafnian modulo 2 k combined with Gallai’s reduction from T-paths to matchings. We also generalize our technique for solving other path packing problems, and discuss its limitation.

    DOI: 10.1007/s00453-017-0334-0

    Scopus

  34. Computing DM-decomposition of a partitioned matrix with rank-1 blocks 査読有り

    Hiroshi Hirai

    Linear Algebra and Its Applications   547 巻   頁: 105 - 123   2018年6月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    In this paper, we develop a polynomial time algorithm to compute a Dulmage–Mendelsohn-type decomposition of a matrix partitioned into submatrices of rank at most 1.

    DOI: 10.1016/j.laa.2018.02.008

    Scopus

  35. Beyond JWP: A tractable class of binary VCSPs via M-convex intersection 査読有り

    Hiroshi Hirai, Yuni Iwamasa, Kazuo Murota, Stanislav Živný

    Leibniz International Proceedings in Informatics, LIPIcs   96 巻   2018年2月

     詳細を見る

    掲載種別:研究論文(国際会議プロシーディングス)  

    A binary VCSP is a general framework for the minimization problem of a function represented as the sum of unary and binary cost functions. An important line of VCSP research is to investigate what functions can be solved in polynomial time. Cooper-Živný classified the tractability of binary VCSP instances according to the concept of “triangle,” and showed that the only interesting tractable case is the one induced by the joint winner property (JWP). Recently, Iwamasa-Murota-Živný made a link between VCSP and discrete convex analysis, showing that a function satisfying the JWP can be transformed into a function represented as the sum of two M-convex functions, which can be minimized in polynomial time via an M-convex intersection algorithm if the value oracle of each M-convex function is given. In this paper, we give an algorithmic answer to a natural question: What binary finite-valued CSP instances can be solved in polynomial time via an M-convex intersection algorithm? We solve this problem by devising a polynomial-time algorithm for obtaining a concrete form of the representation in the representable case. Our result presents a larger tractable class of binary finite-valued CSPs, which properly contains the JWP class.

    DOI: 10.4230/LIPIcs.STACS.2018.39

    Scopus

  36. L-convexity on graph structures 査読有り

    Hiroshi Hirai

    Journal of the Operations Research Society of Japan   61 巻 ( 1 ) 頁: 71 - 109   2018年1月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    In this paper, we study classes of discrete convex functions: submodular functions on modular semilattices and L-convex functions on oriented modular graphs. They were introduced by the author in complexity classification of minimum 0-extension problems. We clarify the relationship to other discrete convex functions, such as k-submodular functions, skew-bisubmodular functions, L-convex functions, tree submodular functions, and UJ-convex functions. We show that they actually can be viewed as submodular/L-convex functions in our sense. We also prove a sharp iteration bound of the steepest descent algorithm for minimizing our L-convex functions. The underlying structures, modular semilattices and oriented modular graphs, have rich connections to projective and polar spaces, Euclidean building, and metric spaces of global nonpositive curvature (CAT(0) spaces). By utilizing these connections, we formulate an analogue of the Lovász extension, introduce well-behaved subclasses of submodular/L-convex functions, and show that these classes can be characterized by the convexity of the Lovász extension. We demonstrate applications of our theory to combinatorial optimization problems that include multicommodity flow, multiway cut, and related labeling problems: these problems had been outside the scope of discrete convex analysis so far.

    DOI: 10.15807/jorsj.61.71

    Scopus

  37. A representation of antimatroids by Horn rules and its application to educational systems 査読有り

    Hiyori Yoshikawa, Hiroshi Hirai, Kazuhisa Makino

    Journal of Mathematical Psychology   77 巻   頁: 82 - 93   2017年4月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    We study a representation of an antimatroid by Horn rules, motivated by its recent application to computer-aided educational systems. We associate any set R of Horn rules with the unique maximal antimatroid A(R) that is contained in the union-closed family K(R) naturally determined by R. We address algorithmic and Boolean function theoretic aspects on the association R↦A(R), where R is viewed as the input. We present linear time algorithms to solve the membership problem and the inference problem for A(R). We also provide efficient algorithms for generating all members and all implicates of A(R). We show that this representation is essentially equivalent to the Korte–Lovász representation of antimatroids by rooted sets. Based on the equivalence, we provide a quadratic time algorithm to construct the uniquely-determined minimal representation. These results have potential applications to computer-aided educational systems, where an antimatroid is used as a model of the space of possible knowledge states of learners, and is constructed by giving Horn queries to a human expert.

    DOI: 10.1016/j.jmp.2016.09.002

    Scopus

  38. Discrete convexity and polynomial solvability in minimum 0-extension problems 査読有り

    Hiroshi Hirai

    Mathematical Programming   155 巻 ( 1-2 ) 頁: 1 - 55   2016年1月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    A 0-extension of graph Γ is a metric d on a set V containing the vertex set VΓ of Γ such that d extends the shortest path metric of Γ and for all x∈V there exists a vertex s in Γ with d(x,s)=0. The minimum 0-extension problem 0-Ext[Γ] on Γ is: given a set V⊇VΓ and a nonnegative cost function c defined on the set of all pairs of V, find a 0-extension d of Γ with ∑xyc(xy)d(x,y) minimum. The 0-extension problem generalizes a number of basic combinatorial optimization problems, such as minimum (s,t)-cut problem and multiway cut problem. Karzanov proved the polynomial solvability of 0-Ext[Γ] for a certain large class of modular graphs Γ, and raised the question: What are the graphs Γ for which 0-Ext[Γ] can be solved in polynomial time? He also proved that 0-Ext[Γ] is NP-hard if Γ is not modular or not orientable (in a certain sense). In this paper, we prove the converse: if Γ is orientable and modular, then 0-Ext[Γ] can be solved in polynomial time. This completes the classification of graphs Γ for which 0-Ext[Γ] is tractable. To prove our main result, we develop a theory of discrete convex functions on orientable modular graphs, analogous to discrete convex analysis by Murota, and utilize a recent result of Thapper and Živný on valued CSP.

    DOI: 10.1007/s10107-014-0824-7

    Scopus

  39. A compact representation for minimizers of k-submodular functions 査読有り

    Hiroshi Hirai, Taihei Oki

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)   9849 LNCS 巻   頁: 381 - 392   2016年

     詳細を見る

    掲載種別:研究論文(国際会議プロシーディングス)  

    k-submodular functions were introduced by Huber and Kolmogorov as a generalization of bisubmodular functions. This paper establishes a compact representation of minimizers of k-submodular functions by posets with inconsistent pairs (PIPs), and completely characterizes the class of PIPs (elementary PIPs) corresponding to minimizers of k-submodular functions. Our representation coincides with Birkhoff’s representation theorem if k = 1 and with signed-poset representation by Ando and Fujishige if k = 2.We also give algorithms to construct the elementary PIP representing the minimizers of a k-submodular function f for three cases: (i) a minimizing oracle of f is available, (ii) f is networkrepresentable, and (iii) f is the objective function of the relaxation of multiway cut problem. Furthermore, we provide an efficient algorithm to enumerate all maximal minimizers from the PIP representation. Our results are applied to obtain all maximal persistent assignments in labeling problems arising from computer vision.

    DOI: 10.1007/978-3-319-45587-7_33

    Scopus

  40. On $k$submodular relaxation 査読有り

    Hiroshi Hirai, Yuni Iwamasa

    SIAM Journal on Discrete Mathematics   30 巻 ( 3 ) 頁: 1726 - 1736   2016年

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    k-submodular functions, introduced by Huber and Kolmogorov, are functions defined on {0, 1, 2;...,k}n satisfying certain submodular-type inequalities. k-submodular functions typically arise as relaxations of NP-hard problems, and the relaxations by k-submodular functions play key roles in design of eficient, approximation, or fixed-parameter tractable algorithms. Motivated by this, we consider the following problem: Given a function f :{1,2...,k}n→ℝ∪{+∞}, determine whether f can be extended to a k-submodular function g : {0,1,2,...K,}n→ℝ∪{+∞}, where g is called a k-submodular relaxation of f, i.e., the restriction of g on {1,2,...k,}n is equal to f. We give a characterization, in terms of polymorphisms, of the functions which admit a k-submodular relaxation, and also give a combinatorial O((kn)2)-time algorithm to find a k-submodular relaxation or establish that a k-submodular relaxation does not exist. Our algorithm has interesting properties: (1) If the input function is integer valued, then our algorithm outputs a half-integral relaxation, and (2) if the input function is binary, then our algorithm outputs the unique optimal relaxation. We present applications of our algorithm to valued constraint satisfaction problems.

    DOI: 10.1137/15M101926X

    Scopus

  41. On uncrossing games for skew-supermodular functions 査読有り

    Hiroshi Hirai

    Journal of the Operations Research Society of Japan   59 巻 ( 2 ) 頁: 218 - 223   2016年

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    In this note, we consider the uncrossing game for a skew-supermodular function f, which is a two-player game with players, Red and Blue, and abstracts the uncrossing procedure in the cut-covering linear program associated with f. Extending the earlier results by Karzanov for {0, 1}-valued skew-supermodular functions, we present an improved polynomial time strategy for Red to win, and give a strongly polynomial time uncrossing procedure for dual solutions of the cut-covering LP as its consequence. We also mention its implication on the optimality of laminar solutions.

    DOI: 10.15807/jorsj.59.218

    Scopus

  42. L-extendable functions and a proximity scaling algorithm for minimum cost multiflow problem 査読有り

    Hiroshi Hirai

    Discrete Optimization   18 巻   頁: 1 - 37   2015年8月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    In this paper, we develop a theory of new classes of discrete convex functions, called L-extendable functions and alternating L-convex functions, defined on the product of trees. We establish basic properties for optimization: a local-to-global optimality criterion, the steepest descend algorithm by successive k-submodular function minimizations, the persistency property, and the proximity theorem. Our theory is motivated by minimum cost free multiflow problem. To this problem, Goldberg and Karzanov gave two combinatorial weakly polynomial time algorithms based on capacity and cost scalings, without explicit running time. As an application of our theory, we present a new simple polynomial proximity scaling algorithm to solve minimum cost free multiflow problem in O(nlog(nAC)MF(kn,km)) time, where n is the number of nodes, m is the number of edges, k is the number of terminals, A is the maximum of edge-costs, C is the total sum of edge-capacities, and MF(<sup>n′</sup>,<sup>m′</sup>) denotes the time complexity to find a maximum flow in a network of <sup>n′</sup> nodes and <sup>m′</sup> edges. Our algorithm is designed to solve, in the same time complexity, a more general class of multiflow problems, minimum cost node-demand multiflow problem, and is the first combinatorial polynomial time algorithm to this class of problems. We also give an application to network design problem.

    DOI: 10.1016/j.disopt.2015.07.001

    Scopus

  43. A combinatorial formula for principal minors of a matrix with tree-metric exponents and its applications 査読有り

    Hiroshi Hirai, Akihiro Yabe

    Journal of Combinatorial Theory. Series A   133 巻   頁: 261 - 279   2015年7月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    Let T be a tree with a vertex set {1, 2, . . ., N}. Denote by dij the distance between vertices i and j. In this paper, we present an explicit combinatorial formula of principal minors of the matrix (tdij), and its applications to tropical geometry, study of multivariate stable polynomials, and representation of valuated matroids. We also give an analogous formula for a skew-symmetric matrix associated with T.

    DOI: 10.1016/j.jcta.2015.02.005

    Scopus

  44. A Linear programming formulation for routing asynchronous power systems of the Digital Grid 査読有り

    Kyohei Shibano, Reo Kontani, Hiroshi Hirai, Mikio Hasegawa, Kazuyuki Aihara, Hisao Taoka, David McQuilkin, Rikiya Abe

    European Physical Journal: Special Topics   223 巻 ( 12 ) 頁: 2611 - 2620   2014年10月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    In recent years, practical research related to distributed power generation and networked distribution grids has been increasing. This research uses a relatively abstract model for the cost reduction in the Digital Grid Power Network. In the Digital Grid, the traditional wide-area synchronous grid is divided into smaller segmented grids which are connected asynchronously. In this paper, we demonstrate how to formulate the minimized cost of power generation by using linear programming methods, while considering the cost of electric transmission and distribution and using asynchronous power interchange among separate grids.

    DOI: 10.1140/epjst/e2014-02277-8

    Scopus

  45. On half-integrality of network synthesis problem 査読有り

    Than Nguyen Hau, Hiroshi Hirai, Nobuyuki Tsuchimura

    Journal of the Operations Research Society of Japan   57 巻 ( 2 ) 頁: 63 - 73   2014年6月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    Network synthesis problem is the problem of constructing a minimum cost network satisfying a given flow-requirement. A classical result of Gomory and Hu is that if the cost is uniform and the flow requirement is integer-valued, then there exists a half-integral optimal solution. They also gave a simple algorithm to find a half-integral optimal solution. In this paper, we show that this half-integrality and the Gomory-Hu algorithm can be extended to a class of fractional cut-covering problems defined by skew-supermodular functions. Application to approximation algorithm is also given. © The Operations Research Society of Japan.

    DOI: 10.15807/jorsj.57.63

    Scopus

  46. Optimization for centralized and decentralized cognitive radio networks 査読有り

    Mikio Hasegawa, Hiroshi Hirai, Kiyohito Nagano, Hiroshi Harada, Kazuyuki Aihara

    Proceedings of the IEEE   102 巻 ( 4 ) 頁: 574 - 584   2014年4月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    Cognitive radio technology improves radio resource usage by reconfiguring the wireless connection settings according to the optimum decisions, which are made on the basis of the collected context information. This paper focuses on optimization algorithms for decision making to optimize radio resource usage in heterogeneous cognitive wireless networks. For networks with centralized management, we proposed a novel optimization algorithm whose solution is guaranteed to be exactly optimal. In order to avoid an exponential increase of computational complexity in large-scale wireless networks, we model the target optimization problem as a minimum cost-flow problem and find the solution of the problem in polynomial time. For the networks with decentralized management, we propose a distributed algorithm using the distributed energy minimization dynamics of the Hopfield-Tank neural network. Our algorithm minimizes a given objective function without any centralized calculation. We derive the decision-making rule for each terminal to optimize the entire network. We demonstrate the validity of the proposed algorithms by several numerical simulations and the feasibility of the proposed schemes by designing and implementing them on experimental cognitive radio network systems. © 2014 IEEE.

    DOI: 10.1109/JPROC.2014.2306255

    Scopus

  47. The maximum multiflow problems with bounded fractionality 査読有り

    Hiroshi Hirai

    Mathematics of Operations Research   39 巻 ( 1 ) 頁: 60 - 104   2014年2月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    We consider the weighted maximum multiflow problem with respect to a terminal weight. We show that if the dimension of the tight span associated with the weight is at most 2, then this problem has a 1=12-integral optimal multiflow for every Eulerian supply graph. This result solves a weighted generalization of Karzanov's conjecture for classifying commodity graphs with finite fractionality. In addition, our proof technique proves the existence of an integral or half-integrality optimal multiflow for a large class of multiflow maximization problems, and it gives a polynomial time algorithm. © 2014 INFORMS.

    DOI: 10.1287/moor.2013.0600

    Scopus

  48. Tree metrics and edge-disjoint S-paths 査読有り

    Hiroshi Hirai, Gyula Pap

    Mathematical Programming   147 巻 ( 1-2 ) 頁: 81 - 123   2013年10月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    Given an undirected graph G=(V,E) with a terminal set S⊆V, a weight function [InlineEquation not available: see fulltext.] on terminal pairs, and an edge-cost a:E→Z+, the μ-weighted minimum-cost edge-disjoint S-paths problem (μ-CEDP) is to maximize ∑P∈Pμμ(sP, tP)−a(P) over all edge-disjoint sets P of S-paths, where sP, tP denote the ends of P and a(p) is the sum of edge-cost a(e) over edges e in P. Our main result is a complete characterization of terminal weights μ for which μ-CEDP is tractable and admits a combinatorial min–max theorem. We prove that if μ is a tree metric, then μ-CEDP is solvable in polynomial time and has a combinatorial min–max formula, which extends Mader’s edge-disjoint S-paths theorem and its minimum-cost generalization by Karzanov. Our min–max theorem includes the dual half-integrality, which was earlier conjectured by Karzanov for a special case. We also prove that μ-EDP, which is μ-CEDP with a=0, is NP-hard if μ is not a truncated tree metric, where a truncated tree metric is a weight function represented as pairwise distances between balls in a tree. On the other hand, μ-CEDP for a truncated tree metric μ reduces to μ′-CEDP for a tree metric μ′. Thus our result is best possible unless P = NP. As an application, we obtain a good approximation algorithm for μ-EDP with “near” tree metric μ by utilizing results from the theory of low-distortion embedding.

    DOI: 10.1007/s10107-013-0713-5

    Scopus

  49. Half-integrality of node-capacitated multiflows and tree-shaped facility locations on trees 査読有り

    Hiroshi Hirai

    Mathematical Programming   137 巻 ( 1-2 ) 頁: 503 - 530   2013年2月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    In this paper, we establish a novel duality relationship between node-capacitated multiflows and tree-shaped facility locations. We prove that the maximum value of a tree-distance-weighted maximum node-capacitated multiflow problem is equal to the minimum value of the problem of locating subtrees in a tree, and the maximum is attained by a half-integral multiflow. Utilizing this duality, we show that a half-integral optimal multiflow and an optimal location can be found in strongly polynomial time. These extend previously known results in the maximum free multiflow problems. We also show that the set of tree-distance weights is the only class having bounded fractionality in maximum node-capacitated multiflow problems. © 2011 Springer and Mathematical Optimization Society.

    DOI: 10.1007/s10107-011-0506-7

    Scopus

  50. Discrete convexity and polynomial solvability in minimum 0-extension problems 査読有り

    Hiroshi Hirai

    Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms     頁: 1770 - 1788   2013年

     詳細を見る

    掲載種別:研究論文(国際会議プロシーディングス)  

    The minimum 0-extension problem 0-Ext[Γ] on a graph Γ is: given a set V including the vertex set VΓ of Γ and a nonnegative cost function c denned on the set of all pairs of V, find a 0-extension d of the path metric dΓ of Γ with ∑xy c(xy)d(x, y) minimum, where a 0-extension is a metric d on V such that the restriction of d to VΓ coincides with d Γ and for all x ∈ V there exists a vertex s in Γ with d(x, s) = 0. 0-Ext[Γ] includes a number of basic combinatorial optimization problems, such as minimum (s, t)-cut problem and multiway cut problem. Karzanov proved the polynomial solvability for a certain large class of modular graphs, and raised the question: What are the graphs Γ for which 0-Ext[Γ] can be solved in polynomial time? He also proved that 0-Ext[Γ] is NP-hard if Γ is not modular or not orientable (in a certain sense). In this paper, we prove the converse: if Γ is orientable and modular, then 0-Ext[Γ] can be solved in polynomial time. This completes the classification of the tractable graphs for the 0-extension problem. To prove our main result, we develop a theory of discrete convex functions on orientable modular graphs, analogous to discrete convex analysis by Murota, and utilize a recent result of Thapper and Živný on Valued-CSP. Copyright © SIAM.

    Scopus

  51. On Tight Spans for Directed Distances 査読有り

    Hiroshi Hirai, Shungo Koichi

    Annals of Combinatorics   16 巻 ( 3 ) 頁: 543 - 569   2012年8月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    An extension (V, d) of a metric space (S, μ) is a metric space with S ⊆ V, and is said to be tight if there is no other extension (V, d′) of (S, μ) with d′ ≤ d. Isbell and Dress independently found that every tight extension embeds isometrically into a certain metrized polyhedral complex associated with (S, μ), called the tight span. This paper develops an analogous theory for directed metrics, which are "not necessarily symmetric" distance functions satisfying the triangle inequality. We introduce a directed version of the tight span and show that it has a universal embedding property for tight extensions. Also we introduce a new natural class of extensions, called cyclically tight extensions, and we show that there also exists a certain polyhedral complex having a universal property relative to cyclically tightness. This polyhedral complex coincides with (a fiber of) the tropical polytope spanned by the column vectors of -μ, which was earlier introduced by Develin and Sturmfels. Thus this gives a tight-span interpretation to the tropical polytope generated by a nonnegative square matrix satisfying the triangle inequality. As an application, we prove the following directed version of the tree metric theorem: A directed metric μ is a directed tree metric if and only if the tropical rank of -μ is at most two. Also we describe how tight spans and tropical polytopes are applied to the study of multicommodity flows in directed networks. © 2012 Springer Basel AG.

    DOI: 10.1007/s00026-012-0146-5

    Scopus

  52. Bounded fractionality of the multiflow feasibility problem for demand graph K <inf>3</inf>+K <inf>3</inf> and related maximization problems 査読有り

    Hiroshi Hirai

    Journal of Combinatorial Theory. Series B   102 巻 ( 4 ) 頁: 875 - 899   2012年7月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    We consider the multiflow feasibility problem whose demand graph is the vertex-disjoint union of two triangles. We show that this problem has a 1/12-integral solution whenever it is feasible and satisfies the Euler condition. This solves a conjecture raised by Karzanov, and completes the classification of the demand graphs having bounded fractionality. We reduce this problem to the multiflow maximization problem whose terminal weight is the graph metric of the complete bipartite graph, and show that it always has a 1/12-integral optimal multiflow for every inner Eulerian graph. © 2012 Elsevier Inc..

    DOI: 10.1016/j.jctb.2012.02.001

    Scopus

  53. On duality and fractionality of multicommodity flows in directed networks 査読有り

    Hiroshi Hirai, Shungo Koichi

    Discrete Optimization   8 巻 ( 3 ) 頁: 428 - 445   2011年8月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    In this paper we address a topological approach to multiflow (multicommodity flow) problems in directed networks. Given a terminal weight μ, we define a metrized polyhedral complex, called the directed tight span Tμ, and prove that the dual of the μ-weighted maximum multiflow problem reduces to a facility location problem on Tμ. Also, in case where the network is Eulerian, it further reduces to a facility location problem on the tropical polytope spanned by μ. By utilizing this duality, we establish the classifications of terminal weights admitting a combinatorial minmax relation (i) for every network and (ii) for every Eulerian network. Our result includes the LomonosovFrank theorem for directed free multiflows and IbarakiKarzanovNagamochi's directed multiflow locking theorem as special cases. © 2011 Elsevier B.V. All rights reserved.

    DOI: 10.1016/j.disopt.2011.03.001

    Scopus

  54. Folder complexes and multiflow combinatorial dualities 査読有り

    Hiroshi Hirai

    SIAM Journal on Discrete Mathematics   25 巻 ( 3 ) 頁: 1119 - 1143   2011年

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    In multiflow maximization problems, there are several combinatorial duality relations, such as the Ford-Fulkerson max-flow min-cut theorem for single commodity flows, Hu's max-biflow min-cut theorem for two-commodity flows, the Lovász-Cherkassky duality theorem for free multiflows, and so on. In this paper, we provide a unified framework for such multiflow combinatorial dualities by using the notion of a folder complex, which is a certain 2-dimensional polyhedral complex introduced by Chepoi. We show that for a nonnegative weight μ on terminal set, the μ-weighted maximum multiflow problem admits a combinatorial duality relation if and only if μ is represented by distances between certain subsets in a folder complex, and we show that the corresponding combinatorial dual problem is a discrete location problem on the graph of the folder complex. This extends a result of Karzanov in the case of metric weights. © 2011 Society for Industrial and Applied Mathematics.

    DOI: 10.1137/090767054

    Scopus

  55. A note on multiflow locking theorem 査読有り

    Hiroshi Hirai

    Journal of the Operations Research Society of Japan   53 巻 ( 2 ) 頁: 149 - 156   2010年6月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    This note addresses the undirected multiflow (multicommodity flow) theory. A multifiow in a network with terminal set T can be regarded as a single commodity (A, T\ A)-flow for any nonempty proper subset A C T by ignoring flows not connecting A and T \ A. A set system A on T is said to be lockable if for every network having T as terminal set there exists a multiflow being simultaneously a maximum (A, T \ A)-fiow for every A c A. The multiflow locking theorem, due to Karzanov and Lomonosov, says that A is lockable if and only if it is 9-cross-free. A multiflow can also be regarded as a single commodity (A, B)-flow for every partial cut (A, B) of terminals, where a partial cut is a pair of disjoint subsets (not necessarily a bipartition). Based on this observation, we study the locking property for partial cuts, and prove an analogous characterization for a lockable family of partial cuts. © 2010 The Operations Research Society of Japan.

    DOI: 10.15807/jorsj.53.149

    Scopus

  56. Metric packing for K<inf>3</inf>+K<inf>3</inf> 査読有り

    Hiroshi Hirai

    Combinatorica   30 巻 ( 3 ) 頁: 295 - 326   2010年

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    In this paper, we consider the metric packing problem for the commodity graph of disjoint two triangles K3+K3, which is dual to the multiflow feasibility problem for the commodity graph K3+K3. We prove a strengthening of Karzanov's conjecture concerning quarterintegral packings by certain bipartite metrics. © 2010 János Bolyai Mathematical Society and Springer Verlag.

    DOI: 10.1007/s00493-010-2447-9

    Scopus

  57. The maximum multiflow problems with bounded fractionality 査読有り

    Hiroshi Hirai

    Proceedings of the Annual ACM Symposium on Theory of Computing     頁: 115 - 120   2010年

     詳細を見る

    掲載種別:研究論文(国際会議プロシーディングス)  

    This paper addresses a fundamental issue in the multicommodity flow theory. For an undirected capacitated supply graph (G,c) having commodity graph H, the maximum multiflow problem is to maximize the total flow-value of multicommodity flows with respect to (G,c;H). For a commodity graph H, the fractionality of H is the least positive integer k with property that there exists a 1/k-integral optimal multiflow in the maximum multiflow problem for every integer-capacitated supply graph (G,c) having H as a commodity graph. If such a positive integer k does not exist, then the fractionality is defined to be +∞. Around 1990, Karzanov raised the problem of classifying commodity graphs with finite fractionality, gave a necessary condition (property P) for the finiteness of fractionality, and conjectured that the property P is also sufficient. Our main result affirmatively solves Karzanov's conjecture in algorithmic form: If H has property P, then there exists a 1/24-integral optimal multiflow in maximum multiflow problem for every integer-capacitated supply graph having H as a commodity graph, and there exists a strongly polynomial time algorithm to find it. Our proof is based on a special combinatorial duality relation involving a class of CAT(0) complexes, and on a fractional version of the splitting-off method for finding an optimal multiflow with a bounded denominator. © 2010 ACM.

    DOI: 10.1145/1806689.1806707

    Scopus

  58. Tight spans of distances and the dual fractionality of undirected multiflow problems 査読有り

    Hiroshi Hirai

    Journal of Combinatorial Theory. Series B   99 巻 ( 6 ) 頁: 843 - 868   2009年11月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    In this paper, we give a complete characterization of the class of weighted maximum multiflow problems whose dual polyhedra have bounded fractionality. This is a common generalization of two fundamental results of Karzanov. The first one is a characterization of commodity graphs H for which the dual of maximum multiflow problem with respect to H has bounded fractionality, and the second one is a characterization of metrics d on terminals for which the dual of metric-weighed maximum multiflow problem has bounded fractionality. A key ingredient of the present paper is a nonmetric generalization of the tight span, which was originally introduced for metrics by Isbell and Dress. A theory of nonmetric tight spans provides a unified duality framework to the weighted maximum multiflow problems, and gives a unified interpretation of combinatorial dual solutions of several known min-max theorems in the multiflow theory. © 2009 Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.jctb.2009.03.001

    Scopus

  59. Electric network classifiers for semi-supervised learning on graphs 査読有り

    Hiroshi Hirai, Kazuo Murota, Masaki Rikitoku

    Journal of the Operations Research Society of Japan   50 巻 ( 3 ) 頁: 219 - 232   2007年9月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    We propose a new classifier, named electric network classifiers, for semi-supervised learning on graphs. Our classifier is based on nonlinear electric network theory and classifies data set with respect to the sign of electric potential. Close relationships to C-SVM and graph kernel methods are revealed. Unlike other graph kernel methods, our classifier does not require heavy kernel computations but obtains the potential directly using efficient network flow algorithms. Furthermore, with flexibility of its formulation, our classifier can incorporate various edge characteristics; influence of edge direction, unsymmetric dependence and so on. Therefore, our classifier has the potential to tackle large complex real world problems. Experimental results show that the performance is fairly good compared with the diffusion kernel and other standard methods.

    DOI: 10.15807/jorsj.50.219

    Scopus

  60. A geometric atudy of the split decomposition 査読有り

    Hiroshi Hirai

    Discrete and Computational Geometry   36 巻 ( 2 ) 頁: 331 - 361   2006年9月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    This paper sheds new light on split decomposition theory and T-theory from the viewpoint of convex analysis and polyhedral geometry. By regarding finite metrics as discrete concave functions, Bandelt-Dress' split decomposition can be derived as a special case of more general decomposition of polyhedral/discrete concave functions introduced in this paper. It is shown that the combinatorics of splits discussed in connection with the split decomposition corresponds to the geometric properties of a hyperplane arrangement and a point configuration. Using our approach, the split decomposition of metrics can be naturally extended to distance functions, which may violate the triangle inequality, using partial split distances. © 2006 Springer Science+Business Media, Inc.

    DOI: 10.1007/s00454-006-1243-1

    Scopus

  61. Characterization of the distance between subtrees of a tree by the associated tight span 査読有り

    Hiroshi Hirai

    Annals of Combinatorics   10 巻 ( 1 ) 頁: 111 - 128   2006年6月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    A characterization is given to the distance between subtrees of a tree defined as the shortest path length between subtrees. This is a generalization of the four-point condition for tree metrics. For this, we use the theory of the tight span and obtain an extension of the famous result by Dress that a metric is a tree metric if and only if its tight span is a tree. © Birkhäuser Verlag, Basel, 2006.

    DOI: 10.1007/s00026-006-0277-7

    Scopus

  62. M-convex functions and tree metrics 査読有り

    Hiroshi Hirai, Kazuo Murota

    Japan Journal of Industrial and Applied Mathematics   21 巻 ( 3 ) 頁: 391 - 403   2004年10月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    We reveal a close relationship between quadratic M-convex functions and tree metrics: A quadratic function defined on the integer lattice points is M-convex if and only if it has a tree representation. Furthermore, a discrete analogue of the Hessian matrix is defined for functions on the integer points. A function is M-convex if and only if the negative of the 'discrete Hessian matrix' is a tree metric matrix at each integer point. Thus, the M-convexity of a function can be characterized by that of its local quadratic approximations.

    DOI: 10.1007/bf03167590

    Scopus

▼全件表示

MISC 4

  1. CAT(0)空間上のアルゴリズムと最適化について 招待有り

    平井広志  

    電子情報通信学会誌101 巻 ( 3 )   2018年

     詳細を見る

  2. Discrete convex functions on graphs and their algorithmic applications 招待有り 査読有り

    Hiroshi Hirai  

    Combinatorial Optimization and Graph Algorithms: Communications of NII Shonan Meetings   頁: 67 - 100   2017年10月

     詳細を見る

    The present article is an exposition of a theory of discrete convex functions on certain graph structures, developed by the author in recent years. This theory is a spin-off of discrete convex analysis by Murota, and is motivated by combinatorial dualities in multiflow problems and the complexity classification of facility location problems on graphs. We outline the theory and algorithmic applications in combinatorial optimization problems.

    DOI: 10.1007/978-981-10-6147-9_4

    Scopus

  3. グラフ上の離散凸関数とその応用 (特集 「機械学習とその周辺情報分野における離散問題と高速アルゴリズム」および一般) 招待有り

    平井 広志  

    人工知能基本問題研究会92 巻   頁: 59 - 64   2014年1月

     詳細を見る

    記述言語:日本語   出版者・発行元:人工知能学会  

    CiNii Books

  4. T_X-approaches to multiflows and metrics 招待有り 査読有り

    平井 広志  

    RIMS Kokyrurok BessatsuB23 巻   頁: 107 - 130   2010年

講演・口頭発表等 21

  1. 行列スケーリングから非正曲率空間上の測地凸最適化へ 招待有り

    平井広志

    最適化・計算機科学・代数幾何  2024年9月25日 

     詳細を見る

    開催年月日: 2024年9月

    会議種別:口頭発表(招待・特別)  

  2. 非正曲率空間のアルゴリズムと最適化について 招待有り

    平井広志

    名古屋大学多元数理科学研究科 大談話会  2023年12月20日 

     詳細を見る

    開催年月日: 2023年12月

    会議種別:口頭発表(招待・特別)  

  3. 行列スケーリングから非正曲率空間上の測地的凸最適化へ 招待有り

    平井広志

    第35回 RAMP 数理最適化シンポジウム (RAMP 2023)  2023年11月20日 

     詳細を見る

    開催年月日: 2023年11月

    会議種別:口頭発表(招待・特別)  

  4. Interior point methods on manifolds: theory and applications 招待有り 国際会議

    Hiroshi Hirai

    ICIAM2023, Mini-symposium "Advances in Optimization II", 早稲田大学  2023年8月23日 

     詳細を見る

    開催年月日: 2023年8月

    会議種別:口頭発表(招待・特別)  

  5. Finding Hall blockers by matrix scaling 招待有り 国際会議

    Hiroshi Hirai

    Fifth Conference on Optimization and Machine Learning (DOxML), 政策研究大学院大学(GRIPS)  2023年8月8日 

     詳細を見る

    開催年月日: 2023年8月

    会議種別:口頭発表(招待・特別)  

  6. 行列スケーリングから非正曲率空間上の測地的凸最適化へ 招待有り

    平井広志

    幾何セミナー,東京都立大学  2023年6月30日 

     詳細を見る

    開催年月日: 2023年6月

    会議種別:口頭発表(招待・特別)  

  7. Algebraic combinatorial optimization for noncommutative rank & determinant 招待有り

    Hiroshi Hirai

    12th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications, Budapest  2023年3月21日 

  8. 離散凸解析 beyond Z^n 招待有り

    平井広志

    ワークショップ「離散凸解析と最適化」, 京都大学数理解析研究所  2019年9月9日 

  9. 行列スケーリングから非正曲率空間上の測地的凸最適化へ 招待有り

    平井広志

    JST数学関連3領域連携WS「情報科学と拓く新しい数理科学」,北海道大学  2022年9月12日 

  10. 新しい凸性に基づくアルゴリズムと最適化理論 招待有り

    平井広志

    「つながる数学」さきがけ数理構造活用領域1期生成果報告会, JST東京本部別館  2023年1月29日 

  11. 代数的組合せ最適化 --- Edmonds問題の最近の発展について --- 招待有り

    平井広志

    RIMS共同研究「組合せ最適化セミナー」, 京都大学数理解析研究所  2019年8月7日 

  12. Optimization of Unbounded Convex Functions and its Application to Matrix Scaling 招待有り

    Hiroshi Hirai

    Theory Colloquium, The Faculty of Computer Science, Ruhr University  2023年3月28日 

  13. Metric Graph Theory in Combinatorial Optimization 招待有り

    Hiroshi Hirai

    Metric Graph Theory and Related Topics, CIRM, onlin  2021年12月7日 

  14. Euclidean buildings in combinatorial optimization 招待有り

    Hiroshi Hirai

    Buildings, Varieties and Applications, MPI-Leipzig  2019年11月12日 

  15. Discrete Convex Optimization for Left-Right Action (nc-rank & det), part II 招待有り

    Hiroshi Hirai

    GCT2022 Online Lecture Series  2021年12月17日 

  16. Discrete Convex Optimization for Left-Right Action (nc-rank & det), part I 招待有り

    Hiroshi Hirai

    GCT2022 Online Lecture Series  2021年12月14日 

  17. Computing the nc-rank via discrete convex optimization on CAT(0) spaces 招待有り

    Hiroshi Hirai

    SIAM Conference on Applied Algebraic Geometry (AG21), Online  2021年8月16日 

  18. Computing the nc-rank via discrete convex optimization on CAT(0) spaces 招待有り

    Hiroshi Hirai

    Optimization Under Symmetry, Simons Institute for the Theory of Computing,  2021年11月29日 

  19. CAT(0)空間上のアルゴリズムと最適化について 招待有り

    平井広志

    談話会,大阪大学  2021年10月25日 

  20. Algorithmic and combinatorial aspects of CAT(0) spaces 招待有り

    平井広志

    日本OR学会「超スマート社会のシステムデザインのための理論と応用」研究部会 第4回研究会, 京都大学数理解析研究所  2019年9月9日 

  21. Algorithmic and combinatorial aspects of CAT(0) complexes 招待有り

    Hiroshi Hirai

    Mathematics and CS Seminar, IST Austria  2019年11月15日 

▼全件表示

科研費 12

  1. 非正曲率空間上の次世代凸最適化

    研究課題/研究課題番号:24K21315  2024年6月 - 2030年3月

    日本学術振興会  科学研究費助成事業  挑戦的研究(開拓)

    平井 広志, 相馬 輔, 岩政 勇仁, 大城 泰平, 谷川 眞一, 早水 桃子

      詳細を見る

    担当区分:研究代表者 

    配分額:25610000円 ( 直接経費:19700000円 、 間接経費:5910000円 )

  2. 双方向市場のオークション・デザイン:離散最適化からのアプローチ

    研究課題/研究課題番号:21K19759  2021年7月 - 2024年3月

    日本学術振興会  科学研究費助成事業  挑戦的研究(萌芽)

    平井 広志, 田村 明久, 河瀬 康志

      詳細を見る

    担当区分:研究代表者  資金種別:競争的資金

    まず,双方向市場のオークションに対する最先端の研究結果であるDutting et al. (2021)やColini-Baldeschi et al. (2020)について内容を精査した.これらの論文ではエージェントの品物への評価額が確率分布にしたがっており,仲介者がその分布、もしくはその分布からの1サンプルの情報を利用できると仮定して,優れた性質を満たすメカニズムを提案している.研究代表者らはその仮定を維持もしくは緩和したうえで,これらの論文において捉えられていない重要な問題設定に対して適用することができるようなメカニズムの構築を目指して議論を行った.
    次に,イギリスの中央銀行において実際に社会実装されているKlemperer (2010)のProduct mix auctionについての更なる進展を目指して議論を行った.当該オークションでは「競争均衡」が重要なキーワードとなるが,競争均衡の存在条件に関する特徴付けを行っているBaldwin et al. (2020)やBalkanski and Paes Leme (2019)について精査を行ったうえで,予算制約を伴うようなエージェントの財の交換における競争均衡の存在条件について行列の単模性をもとに特徴づけている前者について特に重要性が高いと考え,離散凸解析やトロピカル幾何学を駆使して更なる理論面での拡張が可能かどうかについて議論を行った.
    安定マッチング理論の応用を鑑み,その基礎理論の修得につとめた.特に,安定ルームメイト問題の解空間の性質とロバストネスについて指導学生(研究協力者)とともに研究し,その成果の一部を応用数理学会研究部会連合発表会で発表した.
    協力ゲーム理論やオークション理論とも比較的相性のよいM#凸関数の新しい表現法に関する論文を発表した.

  3. 新しい凸性に基づくアルゴリズムと最適化理論

    2019年10月 - 2023年3月

    科学技術振興機構  戦略的な研究開発の推進 戦略的創造研究推進事業 さきがけ 

    平井 広志

      詳細を見る

    担当区分:研究代表者 

    従来のユークリッド空間上の凸性に基づく連続・離散最適化の枠組みを乗り越えて、CAT(0) 空間といった非正曲率距離空間の凸性に基づく新しい連続・離散最適化理論、および計算複雑度・アルゴリズム論を展開し、数学・数理科学・情報科学諸分野へと横断的に活用します。

  4. 離散最適化における新しい離散凸性の開拓とそれに基づく高性能アルゴリズム開発

    研究課題/研究課題番号:17K00029  2017年4月 - 2021年3月

    日本学術振興会  科学研究費助成事業  基盤研究(C)

    平井 広志, 岩政 勇仁

      詳細を見る

    本研究課題では,離散最適化において有用な新しいタイプの離散凸性の開拓とそれに基づくアルゴリズム開発を行った.非可換変数を含む行列のDieudonne行列式の次数計算という問題を導入し,それが,基本的な組合せ最適化問題の一般化とみなせること,そして,ユークリッド的ビルディング上での離散凸関数最小化として効率に計算されることを示した.一様セミモジュラ束という新しいクラスの束を導入し,それが離散凸関数の重要なクラスである付値マトロイドに同値となることを示した.離散凸関数の土台空間として期待される弱モジュラグラフと呼ばれるグラフクラスに対して系統的な研究を行い,非正曲率空間の関連を明らかにした.

  5. 多品種流・施設配置・ネットワークデザインに対する離散構造とアルゴリズム

    研究課題/研究課題番号:26330023  2014年4月 - 2018年3月

    日本学術振興会  科学研究費助成事業  基盤研究(C)

    平井 広志

      詳細を見る

    本研究課題において,離散最適化分野における多品種流,施設配置問題,ネットワークデザイン問題にまたがる新しい有用な離散構造論を展開した.特に,整数格子上の離散凸関数の理論であった離散凸解析をより一般的な離散構造上へと部分的に拡張することに成功した.この理論に基づいて,これまで良いアルゴリズムが知られていなかった多品種流問題のクラスに対し組合せ的多項式時間アルゴリズムの開発した.さらに,その応用として,点容量型マルチカット問題へ組合せ的2近似アルゴリズムを開発した.

  6. 離散凸解析に基づく機械学習アルゴリズム体系の構築とその応用

    研究課題/研究課題番号:26280086  2014年4月 - 2018年3月

    日本学術振興会  科学研究費助成事業  基盤研究(B)

    河原 吉伸, 永野 清仁, 岩田 具治, 平井 広志, 兼村 厚範, 石畠 正和, 竹内 孝

      詳細を見る

    多くの機械学習における問題では,問題構造を有効に利用することで組合せ最適化等で扱われる構造依存な計算体系に帰着することが可能になり,飛躍的に高速・正確な計算が可能となることが期待できる.更にこのようなアプローチをとることにより,データやタスクが持つ構造的な事前情報の利用が可能となるため,解釈性のある結果/モデル獲得へつながる.このような考えの下,本研究では,離散凸性(特に劣モジュラ性)に関連する組合せ論的方法を利用した機械学習のための基礎理論・アルゴリズム開発を行った.また,これらを複数ドメインにおいて適用・検証し,応用的知見獲得や有用性実証までを含めた研究を進めた.

  7. 劣モジュラ的な離散構造に注目した最適化基礎理論の展開と高速アルゴリズム開発

    研究課題/研究課題番号:25280004  2013年4月 - 2019年3月

    日本学術振興会  科学研究費助成事業  基盤研究(B)

    藤重 悟, 牧野 和久, 平井 広志, 高澤 兼二郎, 谷川 眞一

      詳細を見る

    劣モジュラ的な離散構造に基づいて、離散最適化・組合せ最適化の理論とアルゴリズムの基礎研究を展開し、多くの研究成果を上げている。中でも、劣モジュラ構造を基礎とする離散凸関数の新たな理論を構築し、最近世界で注目される劣モジュラ的な関数(新たに導入した横断劣モジュラ関数、歪双劣モジュラ関数等)に関連する最大・最小定理を始め、離散最適化・組合せ最適化の理論と効率的アルゴリズムの基礎となる離散構造を解明した。さらに、非分割財の経済やゲーム論的配分の問題における劣モジュラ構造の有用性を明らかにした。

  8. 多品種流・施設配置・ネットワークデザインの理論とアルゴリズム

    研究課題/研究課題番号:23740068  2011年 - 2013年

    日本学術振興会  科学研究費助成事業  若手研究(B)

    平井 広志

      詳細を見る

    本研究課題の主な成果としては,グラフ上の施設配置問題(最小ゼロ拡張問題)に対する多項式時間可解なグラフの分類を完成させたことである.また,その証明中にグラフ上の離散凸関数という新しい概念を導入し,多品種流や施設配置問題に対する「離散凸性」というこれまでになかった新しい研究の方向性を切り開いた.これは本研究課題が目的としていた多品種流,施設配置問題,ネットワークデザイン問題に対する統合的理論の構築に向けた大きな一歩である.

  9. 劣モジュラ的構造に基づく離散最適化基礎理論の展開と高速アルゴリズム開発

    研究課題/研究課題番号:20310088  2008年 - 2012年

    日本学術振興会  科学研究費助成事業  基盤研究(B)

    藤重 悟, 岩田 覚, 牧野 和久, 来嶋 秀治, 平井 広志

      詳細を見る

    大規模離散最適化問題の有する劣モジュラ的な離散構造に注目し, 効率的なアルゴリズムの構築のために有効な離散構造を研究した.個別には,ネットワーク・フロー, マッチング,多品種フロー, 施設配置問題, 資源配分問題, グラフ連結度,通信網設計,待ち行列ネットワークに関わる離散構造,双対貪欲アルゴリズムに関わる離散構造(双対貪欲多面体, ゾノトープ) ,ホーン論理関数や安定マッチングの離散凸構造,などであり,個別の劣モジュラ的な離散構造の解明に基づき,それらの知見を横断的に総合する基礎理論の構築と高速アルゴリズムの開発を行った.

  10. マルチフローとメトリック

    研究課題/研究課題番号:20740054  2008年 - 2010年

    日本学術振興会  科学研究費助成事業  若手研究(B)

    平井 広志

      詳細を見る

    本課題は,組合せ最適化におけるマルチフロー問題を研究対象とする.70年代より知られるマルチフローとメトリックの双対性を精密化したタイトスパン双対の理論を展開し,そして発展させた.その成果として当該分野における重要課題となっていた「どのような問題のクラスで組合せ的最大最小型定理とフローの離散性が成立するのか」という問題(Karzanovの問題)を解決し,マルチフロー問題における統一的理論へ向けた大きな一歩を記した.

  11. 離散凸解析と離散距離空間の研究

    研究課題/研究課題番号:17740056  2005年 - 2006年

    日本学術振興会  科学研究費助成事業  若手研究(B)

    平井 広志

      詳細を見る

    離散凸解析と離散距離空間の理論と応用に関して,本年度は以下のよう研究を行った
    1.6月と1月に韓国のPohang工科大学のJack Koolen教授を訪問し,Tight SpanやSplit分解法,正則多面体分割について有益なディスカッションを行った.特に2度目の訪問においては,私の研究すなわち,Tight SpanやSplit分解法の拡張や関連する話題のチュートリアル講演を行った.これにより,互いの研究のより良い理解が得られた.
    2.前年度に明らかになった4点条件を拡張した「木の上の部分木族間の距離の特徴付け」とTropical行列式との関連を調べた.特に「木の上のパス間の距離」が距離行列の「任意のサイズ4の主対角行列の行列式のTropical化が消える」ことによって特徴付けられることが分かった.これを踏まえて,関連するTropical幾何学に関する文献調査等を行った.また1月に開かれたRIMSの研究集会「計算可換代数と計算代数幾何」において,この結果の一部を講演した.
    3.私が提案した拡張スプリット分解法の系統学への応用に関して調査研究を行った.前年度の調査によって欠損のあるデータへの応用の可能性が見つかったのであるが,特に生物の形態学データからの系統樹構成問題において,絶滅した生物と現存する生物を混ぜて解析する場合にこのような問題が発生する.すなわち絶滅種は化石からデータを取るしかなく数多くの欠損データを含むのである.この問題を扱った論文をいくつか調査し,そこにあるデータに対し,実際に距離を構成して拡張スプリット分解を適用してみた.すると,いくつかのデータに対しては化石種が得られた系統樹内の部分木に対応させられた.これはこの手法の将来的有望性を物語るものと考えている.

  12. 大規模離散最適化問題の劣モジュラ的構造に基づく解析と高速アルゴリズム開発

    研究課題/研究課題番号:16310111  2004年 - 2007年

    日本学術振興会  科学研究費助成事業  基盤研究(B)

    藤重 悟, 田村 明久, 牧野 和久, 平井 広志

      詳細を見る

    平成16年度〜19年度に亘る本研究において,劣モジュラ的な新しい構造の発見,知見及び新しい効率的なアルゴリズムの開発などの多くの成果が得られた.主要な成果としては,以下のものが挙げられる.
    1.離散凹関数と上下限付き手付を導入することにより,安定結婚モデルや割当モデルの統一モデルを提案し,さらにはこのモデルが常に安定な解を持つことを構成的に示した.この統一モデルは既存の多くのモデルを包含するものであり,既存のモデルの有する離散構造の本質を明らかにした.
    2.木構造ネットワークにおける動的フローと施設配置問題を複合した1-センター問題の動的フロー版として考えられる問題に対して,動的に構造変更が可能な平衡2分木である区間木を用いた高速アルゴリズムを導出した.
    3.劣モジュラ関数を一般化した双劣モジュラ関数を最小化する多項式時間アルゴリズムを求め,さらに,その強多項式時間アルゴリズムを初めて構築した.
    4.木構造ネットワークに対する単調なmin-max型連結分割問題の初めての多項式時間アルゴリズムを開発した.また,単調でない場合のmin-max型連結分割問題,min-sum型連結分割問題は,NP困難であることを示した.
    5.グラフ上の半教師付き学習のための学習機械「電気回路判別器」を提案した.この判別器は非線形電気回路理論に基づいて構成され,データセットを電位の符号によって分類するものである.
    6.ネットワーク設計問題として広く研究されているソース配置問題や外部ネットワーク問題などの自然な拡張として最小横断問題を考察し,ある種の劣モジュラ的な条件の下での最小横断問題に対する多項式時間アルゴリズムを開発した.また,このアルゴリズムを用いることで無向ネットワークにおける外部ネットワーク問題も効率的に解けることを示した.

▼全件表示

 

担当経験のある科目 (本学) 2

  1. 線形代数学Ⅱ

    2023

  2. 線形代数学Ⅱ

    2023

担当経験のある科目 (本学以外) 2

  1. 線形代数学 I

    2024年4月 - 2024年9月 名古屋大学)

  2. 幾何数理工学

    2023年10月 - 2024年3月 東京大学)