Updated on 2024/03/18

写真a

 
SUGIMOTO Atsuko
 
Organization
Graduate School of Medicine Center for Research of Laboratory Animals and Medical Research Engineering Division for Advanced Medical Research Assistant Professor
Graduate School
Graduate School of Medicine
Undergraduate School
School of Medicine Department of Medicine
Title
Assistant Professor

Degree 2

  1. 博士(医学) ( 2013.3   名古屋大学 ) 

  2. 医科学修士 ( 2010.3   大阪大学 ) 

Research Interests 4

  1. ヘルペスウイルス

  2. ウイルス発癌

  3. Epstein-Barrウイルス

  4. ウイルス

Research Areas 1

  1. Life Science / Virology  / ヘルペスウイルス、EBV、ウイルス発癌

Current Research Project and SDGs 1

  1. ウイルス発癌のメカニズムに関する研究

Research History 9

  1. Nagoya University   School of Medicine Department of Medicine

    2023.5

  2. Nagoya University   Graduate School of Medicine

    2023.5

  3. Nagoya University   Graduate School of Medicine Center for Research of Laboratory Animals and Medical Research Engineering Division for Advanced Medical Research   Assistant Professor

    2023.5

  4. 藤田医科大学   医学部ウイルス学講座   日本学術振興会特別研究員

    2022.8 - 2023.4

  5. (独)国立病院機構 名古屋医療センター臨床研究センター   感染・免疫研究部   研究員

    2020.8 - 2022.7

  6. 藤田医科大学   医学部ウイルス学講座   研究員

    2019.4 - 2020.7

  7. Kyoto Pharmaceutical University   Researcher

    2016.4 - 2019.3

  8. ドイツ ヘルムホルツセンターミュンヘン   研究員

    2013.7 - 2016.3

      More details

    Country:Germany

    Notes:日本学術振興会特別研究員、上原生命科学記念財団ポストドクトラルフェロー、Alexander von Humboldt財団リサーチフェロー

  9. Nagoya University   Researcher

    2013.4 - 2013.6

▼display all

Education 3

  1. Nagoya University   Graduate School of Medicine

    2010.4 - 2013.3

  2. Osaka University   Graduate School of Medicine

    2008.4 - 2010.3

  3. Osaka University   Faculty of Medicine

    2004.4 - 2008.3

Professional Memberships 2

  1. 日本癌学会

    2016

  2. 日本ウイルス学会

    2004

 

Papers 25

  1. Growth Transformation of B Cells by Epstein-Barr Virus Requires <i>IMPDH2</i> Induction and Nucleolar Hypertrophy Reviewed International coauthorship

    Atsuko Sugimoto, Takahiro Watanabe, Kazuhiro Matsuoka, Yusuke Okuno, Yusuke Yanagi, Yohei Narita, Seiyo Mabuchi, Hiroyuki Nobusue, Eiji Sugihara, Masaya Hirayama, Tomihiko Ide, Takanori Onouchi, Yoshitaka Sato, Teru Kanda, Hideyuki Saya, Yasumasa Iwatani, Hiroshi Kimura, Takayuki Murata

    Microbiology Spectrum   Vol. 11 ( 4 ) page: e0044023   2023.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:American Society for Microbiology  

    EBV infections cause nucleolar enlargement via the induction of IMPDH2, which are essential for B cell growth transformation by EBV. Although the significance of IMPDH2 induction and nuclear hypertrophy in the tumorigenesis of glioblastoma has been reported, EBV infection brings about the change quickly by using its transcriptional cofactor, EBNA2, and MYC. Moreover, we present here, for the novel, basic evidence that an IMPDH2 inhibitor, namely, MPA or MMF, can be used for EBV-positive posttransplant lymphoproliferative disorder (PTLD).

    DOI: 10.1128/spectrum.00440-23

    Web of Science

    Scopus

    PubMed

  2. Cellular APOBEC3A deaminase drives mutations in the SARS-CoV-2 genome Reviewed

    Yoshihiro Nakata, Hirotaka Ode, Mai Kubota, Takaaki Kasahara, Kazuhiro Matsuoka, Atsuko Sugimoto, Mayumi Imahashi, Yoshiyuki Yokomaku, Yasumasa Iwatani

    Nucleic Acids Research   Vol. 51 ( 2 ) page: 783 - 795   2023.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Oxford University Press (OUP)  

    Abstract

    The number of genetic variations in the SARS-CoV-2 genome has been increasing primarily due to continuous viral mutations. Here, we report that the human APOBEC3A (A3A) cytidine deaminase plays a critical role in the induction of C-to-U substitutions in the SARS-CoV-2 genome. Bioinformatic analysis of the chronological genetic changes in a sequence database indicated that the largest UC-to-UU mutation signature, consistent with APOBEC-recognized nucleotide motifs, was predominant in single-stranded RNA regions of the viral genome. In SARS-CoV-2-infected cells, exogenous expression of A3A but not expression of other APOBEC proteins induced UC-to-UU mutations in viral RNA (vRNA). Additionally, the mutated C bases were often located at the tips in bulge or loop regions in the vRNA secondary structure. Interestingly, A3A mRNA expression was drastically increased by interferons (IFNs) and tumour necrosis factor-α (TNF-α) in epithelial cells derived from the respiratory system, a site of efficient SARS-CoV-2 replication. Moreover, the UC-to-UU mutation rate was increased in SARS-CoV-2 produced from lung epithelial cells treated with IFN-ß and TNF-α, but not from CRISPR/Cas9-based A3A knockout cells. Collectively, these findings demonstrate that A3A is a primary host factor that drives mutations in the SARS-CoV-2 RNA genome via RNA editing.

    DOI: 10.1093/nar/gkac1238

    Web of Science

    Scopus

    PubMed

  3. Nanopore Sequencing for Characterization of HIV-1 Recombinant Forms. Reviewed International journal

    Mikiko Mori, Hirotaka Ode, Mai Kubota, Yoshihiro Nakata, Takaaki Kasahara, Urara Shigemi, Reiko Okazaki, Masakazu Matsuda, Kazuhiro Matsuoka, Atsuko Sugimoto, Atsuko Hachiya, Mayumi Imahashi, Yoshiyuki Yokomaku, Yasumasa Iwatani

    Microbiology spectrum   Vol. 10 ( 4 ) page: e0150722 - e0150722   2022.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    High genetic diversity, including the emergence of recombinant forms (RFs), is one of the most prominent features of human immunodeficiency virus type 1 (HIV-1). Conventional detection of HIV-1 RFs requires pretreatments, i.e., cloning or single-genome amplification, to distinguish them from dual- or multiple-infection variants. However, these processes are time-consuming and labor-intensive. Here, we constructed a new nanopore sequencing-based platform that enables us to obtain distinctive genetic information for intersubtype RFs and dual-infection HIV-1 variants by using amplicons of HIV-1 near-full-length genomes or two overlapping half-length genome fragments. Repeated benchmark tests of HIV-1 proviral DNA revealed consensus sequence inference with a reduced error rate, allowing us to obtain sufficiently accurate sequence data. In addition, we applied the platform for sequence analyses of 9 clinical samples with suspected HIV-1 RF infection or dual infection according to Sanger sequencing-based genotyping tests for HIV-1 drug resistance. For each RF infection case, replicated analyses involving our nanopore sequencing-based platform consistently produced long consecutive analogous consensus sequences with mosaic genomic structures consisting of two different subtypes. In contrast, we detected multiple heterologous sequences in each dual-infection case. These results demonstrate that our new nanopore sequencing platform is applicable to identify the full-length HIV-1 genome structure of intersubtype RFs as well as dual-infection heterologous HIV-1. Since the genetic diversity of HIV-1 continues to gradually increase, this system will help accelerate full-length genome analysis and molecular epidemiological surveillance for HIV-1. IMPORTANCE HIV-1 is characterized by large genetic differences, including HIV-1 recombinant forms (RFs). Conventional genetic analyses require time-consuming pretreatments, i.e., cloning or single-genome amplification, to distinguish RFs from dual- or multiple-infection cases. In this study, we developed a new analytical system for HIV-1 sequence data obtained by nanopore sequencing. The error rate of this method was reduced to ~0.06%. We applied this system for sequence analyses of 9 clinical samples with suspected HIV-1 RF infection or dual infection, which were extracted from 373 cases of HIV patients based on our retrospective analysis of HIV-1 drug resistance genotyping test results. We found that our new nanopore sequencing platform is applicable to identify the full-length HIV-1 genome structure of intersubtype RFs as well as dual-infection heterologous HIV-1. Our protocol will be useful for epidemiological surveillance to examine HIV-1 transmission as well as for genotypic tests of HIV-1 drug resistance in clinical settings.

    DOI: 10.1128/spectrum.01507-22

    Web of Science

    Scopus

    PubMed

  4. Molecular epidemiological features of SARS-CoV-2 in Japan, 2020-1. Reviewed International journal

    Hirotaka Ode, Yoshihiro Nakata, Mami Nagashima, Masaki Hayashi, Takako Yamazaki, Hiroyuki Asakura, Jun Suzuki, Mai Kubota, Kazuhiro Matsuoka, Masakazu Matsuda, Mikiko Mori, Atsuko Sugimoto, Mayumi Imahashi, Yoshiyuki Yokomaku, Kenji Sadamasu, Yasumasa Iwatani

    Virus evolution   Vol. 8 ( 1 ) page: veac034 - veac034   2022.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    There were five epidemic waves of coronavirus disease 2019 in Japan between 2020 and 2021. It remains unclear how the domestic waves arose and abated. To better understand this, we analyzed the pangenomic sequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and characterized the molecular epidemiological features of the five epidemic waves in Japan. In this study, we performed deep sequencing to determine the pangenomic SARS-CoV-2 sequences of 1,286 samples collected in two cities far from each other, Tokyo Metropolis and Nagoya. Then, the spatiotemporal genetic changes of the obtained sequences were compared with the sequences available in the Global Initiative on Sharing All Influenza Data (GISAID) database. A total of 873 genotypes carrying different sets of mutations were identified in the five epidemic waves. Phylogenetic analysis demonstrated that sharp displacements of lineages and genotypes occurred between consecutive waves over the 2 years. In addition, a wide variety of genotypes were observed in the early half of each wave, whereas a few genotypes were detected across Japan during an entire wave. Phylogenetically, putative descendant genotypes observed late in each wave displayed regional clustering and evolution in Japan. The genetic diversity of SARS-CoV-2 displayed uneven dynamics during each epidemic wave in Japan. Our findings provide an important molecular epidemiological basis to aid in controlling future SARS-CoV-2 epidemics.

    DOI: 10.1093/ve/veac034

    Web of Science

    Scopus

    PubMed

  5. Replication Compartments-The Great Survival Strategy for Epstein-Barr Virus Lytic Replication Reviewed

    Atsuko Sugimoto

    Microorganisms.   Vol. 10 ( 5 ) page: 896 - 896   2022.4

     More details

    Authorship:Lead author, Last author, Corresponding author  

    DOI: 10.3390/microorganisms10050896

    Scopus

  6. SARS-CoV-2 accessory protein ORF8 is secreted extracellularly as a glycoprotein homodimer. Reviewed International journal

    Kazuhiro Matsuoka, Nobuhiko Imahashi, Miki Ohno, Hirotaka Ode, Yoshihiro Nakata, Mai Kubota, Atsuko Sugimoto, Mayumi Imahashi, Yoshiyuki Yokomaku, Yasumasa Iwatani

    The Journal of biological chemistry   Vol. 298 ( 3 ) page: 101724 - 101724   2022.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    ORF8 is an accessory protein encoded by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Consensus regarding the biological functions of ORF8 is lacking, largely because the fundamental characteristics of this protein in cells have not been determined. To clarify these features, we herein established an ORF8 expression system in 293T cells. Using this system, approximately 41% of the ORF8 expressed in 293T cells were secreted extracellularly as a glycoprotein homodimer with inter/intramolecular disulfide bonds. Intracellular ORF8 was sensitive to the glycosidase Endo H, whereas the secreted portion was Endo-H-resistant, suggesting that secretion occurs via a conventional pathway. Additionally, immunoblotting analysis showed that the total amounts of the major histocompatibility complex class Ι (MHC-I), angiotensin-converting enzyme 2 (ACE2), and SARS-CoV-2 spike (CoV-2 S) proteins coexpressed in cells were not changed by the increased ORF8 expression, although FACS analysis revealed that the expression of the cell surface MHC-I protein, but not that of ACE2 and CoV-2 S proteins, was reduced by ORF8 expression. Finally, we demonstrate by RNA-seq analysis that ORF8 had no significant stimulatory effects in human primary monocyte-derived macrophages (MDMs). Taken together, our results provide fundamental evidence that the ORF8 glycoprotein acts as a secreted homodimer, and its functions are likely associated with the intracellular transport and/or extracellular signaling in SARS-CoV-2 infection.

    DOI: 10.1016/j.jbc.2022.101724

    Web of Science

    Scopus

    PubMed

  7. Molecular Basis of Epstein-Barr Virus Latency Establishment and Lytic Reactivation. International journal

    Takayuki Murata, Atsuko Sugimoto, Tomoki Inagaki, Yusuke Yanagi, Takahiro Watanabe, Yoshitaka Sato, Hiroshi Kimura

    Viruses   Vol. 13 ( 12 )   2021.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Epstein-Barr virus (EBV) is a causative agent of infectious mononucleosis and several types of cancer. Like other herpesviruses, it establishes an asymptomatic, life-long latent infection, with occasional reactivation and shedding of progeny viruses. During latency, EBV expresses a small number of viral genes, and exists as an episome in the host-cell nucleus. Expression patterns of latency genes are dependent on the cell type, time after infection, and milieu of the cell (e.g., germinal center or peripheral blood). Upon lytic induction, expression of the viral immediate-early genes, BZLF1 and BRLF1, are induced, followed by early gene expression, viral DNA replication, late gene expression, and maturation and egress of progeny virions. Furthermore, EBV reactivation involves more than just progeny production. The EBV life cycle is regulated by signal transduction, transcription factors, promoter sequences, epigenetics, and the 3D structure of the genome. In this article, the molecular basis of EBV latency establishment and reactivation is summarized.

    DOI: 10.3390/v13122344

    Web of Science

    Scopus

    PubMed

  8. The FAT10 post-translational modification is involved in the lytic replication of Kaposi's sarcoma-associated herpesvirus. International journal

    Atsuko Sugimoto, Yuichi Abe, Tadashi Watanabe, Kohei Hosokawa, Jun Adachi, Takeshi Tomonaga, Yasumasa Iwatani, Takayuki Murata, Masahiro Fujimuro

    Journal of virology   Vol. 95 ( 10 )   2021.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    During Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication, host cell functions including protein expression and post-translational modification pathways are dysregulated by KSHV to promote virus production. Here, we attempted to identify key proteins for KSHV lytic replication by profiling protein expression in the latent and lytic phases using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Proteomic analysis, immunoblotting, and quantitative PCR demonstrated that antigen-F (HLA-F) adjacent transcript 10 (FAT10) and UBE1L2 (also known as ubiquitin-like modifier-activating enzyme 6, UBA6) were upregulated during lytic replication. FAT10 is a ubiquitin-like protein (UBL). UBE1L2 is the FAT10-activating enzyme (E1), which is essential for FAT10 modification (FAT10ylation). FAT10ylated proteins were immediately expressed after lytic induction and increased over time during lytic replication. Knockout of UBE1L2 suppressed KSHV production but not KSHV DNA synthesis. In order to isolate FAT10ylated proteins during KSHV lytic replication, we conducted immunoprecipitations using anti-FAT10 antibody and Ni-NTA chromatography of exogenously expressed His-tagged FAT10 from cells undergoing latent or lytic replication. LC-MS/MS was performed to identify FAT10ylated proteins. We identified KSHV ORF59 and ORF61 as FAT10ylation substrates. Our study revealed that the UBE1L2-FAT10 system is upregulated during KSHV lytic replication, and it contributes to viral propagation.ImportanceUbiquitin and UBL post-translational modifications, including FAT10, are utilized and dysregulated by viruses for achievement of effective infection and virion production. The UBE1L2-FAT10 system catalyzes FAT10ylation, where one or more FAT10 molecules are covalently linked to a substrate. FAT10ylation is catalyzed by the sequential actions of E1 (activation enzyme), E2 (conjugation enzyme), and E3 (ligase) enzymes. The E1 enzyme for FAT10ylation is UBE1L2, which activates FAT10 and transfers it to E2/USE1. FAT10ylation regulates the cell cycle, IFN signaling, and protein degradation; however, its primary biological function remains unknown. Here, we revealed that KSHV lytic replication induces UBE1L2 expression and production of FAT10ylated proteins including KSHV lytic proteins. Moreover, UBE1L2 knockout suppressed virus production during the lytic cycle. This is the first report demonstrating the contribution of the UBE1L2-FAT10 system to KSHV lytic replication. Our findings provide insight into the physiological function(s) of novel post-translational modifications in KSHV lytic replication.

    DOI: 10.1128/JVI.02194-20

    Scopus

    PubMed

  9. MG132 exerts anti-viral activity against HSV-1 by overcoming virus-mediated suppression of the ERK signaling pathway. International journal

    Hanako Ishimaru, Kohei Hosokawa, Atsuko Sugimoto, Riho Tanaka, Tadashi Watanabe, Masahiro Fujimuro

    Scientific reports   Vol. 10 ( 1 ) page: 6671 - 6671   2020.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Herpes simplex virus 1 (HSV-1) causes a number of clinical manifestations including cold sores, keratitis, meningitis and encephalitis. Although current drugs are available to treat HSV-1 infection, they can cause side effects such as nephrotoxicity. Moreover, owing to the emergence of drug-resistant HSV-1 strains, new anti-HSV-1 compounds are needed. Because many viruses exploit cellular host proteases and encode their own viral proteases for survival, we investigated the inhibitory effects of a panel of protease inhibitors (TLCK, TPCK, E64, bortezomib, or MG132) on HSV-1 replication and several host cell signaling pathways. We found that HSV-1 infection suppressed c-Raf-MEK1/2-ERK1/2-p90RSK signaling in host cells, which facilitated viral replication. The mechanism by which HSV-1 inhibited ERK signaling was mediated through the polyubiquitination and proteasomal degradation of Ras-guanine nucleotide-releasing factor 2 (Ras-GRF2). Importantly, the proteasome inhibitor MG132 inhibited HSV-1 replication by reversing ERK suppression in infected cells, inhibiting lytic genes (ICP5, ICP27 and UL42) expression, and overcoming the downregulation of Ras-GRF2. These results indicate that the suppression of ERK signaling via proteasomal degradation of Ras-GRF2 is necessary for HSV-1 infection and replication. Given that ERK activation by MG132 exhibits anti-HSV-1 activity, these results suggest that the proteasome inhibitor could serve as a novel therapeutic agent against HSV-1 infection.

    DOI: 10.1038/s41598-020-63438-1

    PubMed

  10. First Days in the Life of Naive Human B Lymphocytes Infected with Epstein-Barr Virus. International journal

    Dagmar Pich, Paulina Mrozek-Gorska, Mickaël Bouvet, Atsuko Sugimoto, Ezgi Akidil, Adam Grundhoff, Stephan Hamperl, Paul D Ling, Wolfgang Hammerschmidt

    mBio   Vol. 10 ( 5 )   2019.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Epstein-Barr virus (EBV) infects and activates resting human B lymphocytes, reprograms them, induces their proliferation, and establishes a latent infection in them. In established EBV-infected cell lines, many viral latent genes are expressed. Their roles in supporting the continuous proliferation of EBV-infected B cells in vitro are known, but their functions in the early, prelatent phase of infection have not been investigated systematically. In studies during the first 8 days of infection using derivatives of EBV with mutations in single genes of EBVs, we found only Epstein-Barr nuclear antigen 2 (EBNA2) to be essential for activating naive human B lymphocytes, inducing their growth in cell volume, driving them into rapid cell divisions, and preventing cell death in a subset of infected cells. EBNA-LP, latent membrane protein 2A (LMP2A), and the viral microRNAs have supportive, auxiliary functions, but mutants of LMP1, EBNA3A, EBNA3C, and the noncoding Epstein-Barr virus with small RNA (EBERs) had no discernible phenotype compared with wild-type EBV. B cells infected with a double mutant of EBNA3A and 3C had an unexpected proliferative advantage and did not regulate the DNA damage response (DDR) of the infected host cell in the prelatent phase. Even EBNA1, which has very critical long-term functions in maintaining and replicating the viral genomic DNA in established cell lines, was dispensable for the early activation of infected cells. Our findings document that the virus dose is a decisive parameter and indicate that EBNA2 governs the infected cells initially and implements a strictly controlled temporal program independent of other viral latent genes. It thus appears that EBNA2 is sufficient to control all requirements for clonal cellular expansion and to reprogram human B lymphocytes from energetically quiescent to activated cells.IMPORTANCE The preferred target of Epstein-Barr virus (EBV) is human resting B lymphocytes. We found that their infection induces a well-coordinated, time-driven program that starts with a substantial increase in cell volume, followed by cellular DNA synthesis after 3 days and subsequent rapid rounds of cell divisions on the next day accompanied by some DNA replication stress (DRS). Two to 3 days later, the cells decelerate and turn into stably proliferating lymphoblast cell lines. With the aid of 16 different recombinant EBV strains, we investigated the individual contributions of EBV's multiple latent genes during early B-cell infection and found that many do not exert a detectable phenotype or contribute little to EBV's prelatent phase. The exception is EBNA2 that is essential in governing all aspects of B-cell reprogramming. EBV relies on EBNA2 to turn the infected B lymphocytes into proliferating lymphoblasts preparing the infected host cell for the ensuing stable, latent phase of viral infection. In the early steps of B-cell reprogramming, viral latent genes other than EBNA2 are dispensable, but some, EBNA-LP, for example, support the viral program and presumably stabilize the infected cells once viral latency is established.

    DOI: 10.1128/mBio.01723-19

    PubMed

  11. Epstein-Barr virus genome packaging factors accumulate in BMRF1-cores within viral replication compartments. International journal

    Atsuko Sugimoto, Yoriko Yamashita, Teru Kanda, Takayuki Murata, Tatsuya Tsurumi

    PloS one   Vol. 14 ( 9 ) page: e0222519   2019.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Productive replication of Epstein-Barr virus (EBV) during the lytic cycle occurs in discrete sites within nuclei, termed replication compartments. We previously proposed that replication compartments consist of two subnuclear domains: "ongoing replication foci" and "BMRF1-cores". Viral genome replication takes place in ongoing replication foci, which are enriched with viral replication proteins, such as BALF5 and BALF2. Amplified DNA and BMRF1 protein accumulate in BMRF1-cores, which are surrounded by ongoing replication foci. We here determined the locations of procapsid and genome-packaging proteins of EBV via three-dimensional (3D) surface reconstruction and correlative fluorescence microscopy-electron microscopy (FM-EM). The results revealed that viral factors required for DNA packaging, such as BGLF1, BVRF1, and BFLF1 proteins, are located in the innermost subdomains of the BMRF1-cores. In contrast, capsid structural proteins, such as BBRF1, BORF1, BDLF1, and BVRF2, were found both outside and inside the BMRF1-cores. Based on these observations, we propose a model in which viral procapsids are assembled outside the BMRF1-cores and subsequently migrate therein, where viral DNA encapsidation occurs. To our knowledge, this is the first report describing capsid assembly sites in relation to EBV replication compartments.

    DOI: 10.1371/journal.pone.0222519

    Web of Science

    Scopus

    PubMed

  12. Signal Transduction Pathways Associated with KSHV-Related Tumors. International journal

    Tadashi Watanabe, Atsuko Sugimoto, Kohei Hosokawa, Masahiro Fujimuro

    Advances in experimental medicine and biology   Vol. 1045   page: 321 - 355   2018

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Signal transduction pathways play a key role in the regulation of cell growth, cell differentiation, cell survival, apoptosis, and immune responses. Bacterial and viral pathogens utilize the cell signal pathways by encoding their own proteins or noncoding RNAs to serve their survival and replication in infected cells. Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8), is classified as a rhadinovirus in the γ-herpesvirus subfamily and was the eighth human herpesvirus to be discovered from Kaposi's sarcoma specimens. KSHV is closely associated with an endothelial cell malignancy, Kaposi's sarcoma, and B-cell malignancies, primary effusion lymphoma, and multicentric Castleman's disease. Recent studies have revealed that KSHV manipulates the cellular signaling pathways to achieve persistent infection, viral replication, cell proliferation, anti-apoptosis, and evasion of immune surveillance in infected cells. This chapter summarizes recent developments in our understanding of the molecular mechanisms used by KSHV to interact with the cell signaling machinery.

    DOI: 10.1007/978-981-10-7230-7_15

    PubMed

  13. A Herpesvirus Specific Motif of Epstein-Barr Virus DNA Polymerase Is Required for the Efficient Lytic Genome Synthesis. International journal

    Yohei Narita, Atsuko Sugimoto, Daisuke Kawashima, Takahiro Watanabe, Teru Kanda, Hiroshi Kimura, Tatsuya Tsurumi, Takayuki Murata

    Scientific reports   Vol. 5   page: 11767 - 11767   2015.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Epstein-Barr virus (EBV) is associated with several malignancies, including Burkitt lymphoma and nasopharyngeal carcinoma. To overcome such disorders, understanding the molecular mechanisms of the EBV replication is important. The EBV DNA polymerase (Pol) is one of the essential factors for viral lytic DNA replication. Although it is well known that its C-terminal half, possessing DNA polymerase and 3'-5' exonuclease activity, is highly conserved among Family B Pols, the NH2-terminal half has yet to be characterized in detail. In this study, we show that a stretch of hydrophobic amino acids within the pre-NH2-terminal domain of EBV Pol plays important role. In addition, we could identify the most essential residue for replication in the motif. These findings will shed light on molecular mechanisms of viral DNA synthesis and will help to develop new herpesviruses treatments.

    DOI: 10.1038/srep11767

    Web of Science

    Scopus

    PubMed

  14. Contribution of myocyte enhancer factor 2 family transcription factors to BZLF1 expression in Epstein-Barr virus reactivation from latency. International journal

    Takayuki Murata, Yohei Narita, Atsuko Sugimoto, Daisuke Kawashima, Teru Kanda, Tatsuya Tsurumi

    Journal of virology   Vol. 87 ( 18 ) page: 10148 - 62   2013.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Reactivation of Epstein-Barr virus (EBV) from latency is dependent on expression of the viral transactivator BZLF1 protein, whose promoter (Zp) normally exhibits only low basal activity but is activated in response to chemical or biological inducers. Using a reporter assay system, we screened for factors that can activate Zp and isolated genes, including those encoding MEF2B, KLF4, and some cellular b-Zip family transcription factors. After confirming their importance and functional binding sites in reporter assays, we prepared recombinant EBV-BAC, in which the binding sites were mutated. Interestingly, the MEF2 mutant virus produced very low levels of BRLF1, another transactivator of EBV, in addition to BZLF1 in HEK293 cells. The virus failed to induce a subset of early genes, such as that encoding BALF5, upon lytic induction, and accordingly, could not replicate to produce progeny viruses in HEK293 cells, but this restriction could be completely lifted by exogenous supply of BRLF1, together with BZLF1. In B cells, induction of BZLF1 by chemical inducers was inhibited by point mutations in the ZII or the three SP1/KLF binding sites of EBV-BAC Zp, while leaky BZLF1 expression was less affected. Mutation of MEF2 sites severely impaired both spontaneous and induced expression of not only BZLF1, but also BRLF1 in comparison to wild-type or revertant virus cases. We also observed that MEF2 mutant EBV featured relatively high repressive histone methylation, such as H3K27me3, but CpG DNA methylation levels were comparable around Zp and the BRLF1 promoter (Rp). These findings shed light on BZLF1 expression and EBV reactivation from latency.

    DOI: 10.1128/JVI.01002-13

    Scopus

    PubMed

  15. Interaction between basic residues of Epstein-Barr virus EBNA1 protein and cellular chromatin mediates viral plasmid maintenance. International journal

    Teru Kanda, Naoki Horikoshi, Takayuki Murata, Daisuke Kawashima, Atsuko Sugimoto, Yohei Narita, Hitoshi Kurumizaka, Tatsuya Tsurumi

    The Journal of biological chemistry   Vol. 288 ( 33 ) page: 24189 - 99   2013.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The Epstein-Barr virus (EBV) genome is episomally maintained in latently infected cells. The viral protein EBNA1 is a bridging molecule that tethers EBV episomes to host mitotic chromosomes as well as to interphase chromatin. EBNA1 localizes to cellular chromosomes (chromatin) via its chromosome binding domains (CBDs), which are rich in glycine and arginine residues. However, the molecular mechanism by which the CBDs of EBNA1 attach to cellular chromatin is still under debate. Mutation analyses revealed that stepwise substitution of arginine residues within the CBD1 (amino acids 40-54) and CBD2 (amino acids 328-377) regions with alanines progressively impaired chromosome binding activity of EBNA1. The complete arginine-to-alanine substitutions within the CBD1 and -2 regions abolished the ability of EBNA1 to stably maintain EBV-derived oriP plasmids in dividing cells. Importantly, replacing the same arginines with lysines had minimal effect, if any, on chromosome binding of EBNA1 as well as on its ability to stably maintain oriP plasmids. Furthermore, a glycine-arginine-rich peptide derived from the CBD1 region bound to reconstituted nucleosome core particles in vitro, as did a glycine-lysine rich peptide, whereas a glycine-alanine rich peptide did not. These results support the idea that the chromosome binding of EBNA1 is mediated by electrostatic interactions between the basic amino acids within the CBDs and negatively charged cellular chromatin.

    DOI: 10.1074/jbc.M113.491167

    PubMed

  16. Different distributions of Epstein-Barr virus early and late gene transcripts within viral replication compartments. International journal

    Atsuko Sugimoto, Yoshitaka Sato, Teru Kanda, Takayuki Murata, Yohei Narita, Daisuke Kawashima, Hiroshi Kimura, Tatsuya Tsurumi

    Journal of virology   Vol. 87 ( 12 ) page: 6693 - 6699   2013.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Productive replication of the Epstein-Barr virus (EBV) occurs in discrete sites in nuclei, called replication compartments, where viral genome DNA synthesis and transcription take place. The replication compartments include subnuclear domains, designated BMRF1 cores, which are highly enriched in the BMRF1 protein. During viral lytic replication, newly synthesized viral DNA genomes are organized around and then stored inside BMRF1 cores. Here, we examined spatial distribution of viral early and late gene mRNAs within replication compartments using confocal laser scanning microscopy and three-dimensional surface reconstruction imaging. EBV early mRNAs were mainly located outside the BMRF1 cores, while viral late mRNAs were identified inside, corresponding well with the fact that late gene transcription is dependent on viral DNA replication. From these results, we speculate that sites for viral early and late gene transcription are separated with reference to BMRF1 cores.

    DOI: 10.1128/JVI.00219-13

    Web of Science

    Scopus

    PubMed

  17. Nuclear transport of Epstein-Barr virus DNA polymerase is dependent on the BMRF1 polymerase processivity factor and molecular chaperone Hsp90. International journal

    Daisuke Kawashima, Teru Kanda, Takayuki Murata, Shinichi Saito, Atsuko Sugimoto, Yohei Narita, Tatsuya Tsurumi

    Journal of virology   Vol. 87 ( 11 ) page: 6482 - 6491   2013.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Epstein-Barr virus (EBV) replication proteins are transported into the nucleus to synthesize viral genomes. We here report molecular mechanisms for nuclear transport of EBV DNA polymerase. The EBV DNA polymerase catalytic subunit BALF5 was found to accumulate in the cytoplasm when expressed alone, while the EBV DNA polymerase processivity factor BMRF1 moved into the nucleus by itself. Coexpression of both proteins, however, resulted in efficient nuclear transport of BALF5. Deletion of the nuclear localization signal of BMRF1 diminished the proteins' nuclear transport, although both proteins can still interact. These results suggest that BALF5 interacts with BMRF1 to effect transport into the nucleus. Interestingly, we found that Hsp90 inhibitors or knockdown of Hsp90β with short hairpin RNA prevented the BALF5 nuclear transport, even in the presence of BMRF1, both in transfection assays and in the context of lytic replication. Immunoprecipitation analyses suggested that the molecular chaperone Hsp90 interacts with BALF5. Treatment with Hsp90 inhibitors blocked viral DNA replication almost completely during lytic infection, and knockdown of Hsp90β reduced viral genome synthesis. Collectively, we speculate that Hsp90 interacts with BALF5 in the cytoplasm to assist complex formation with BMRF1, leading to nuclear transport. Hsp90 inhibitors may be useful for therapy for EBV-associated diseases in the future.

    DOI: 10.1128/JVI.03428-12

    Web of Science

    Scopus

    PubMed

  18. Epstein-Barr virus deubiquitinase downregulates TRAF6-mediated NF-κB signaling during productive replication. International journal

    Shinichi Saito, Takayuki Murata, Teru Kanda, Hiroki Isomura, Yohei Narita, Atsuko Sugimoto, Daisuke Kawashima, Tatsuya Tsurumi

    Journal of virology   Vol. 87 ( 7 ) page: 4060 - 4070   2013.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Epstein-Barr virus (EBV), a human oncogenic herpesvirus that establishes a lifelong latent infection in the host, occasionally enters lytic infection to produce progeny viruses. The EBV oncogene latent membrane protein 1 (LMP1), which is expressed in both latent and lytic infection, constitutively activates the canonical NF-κB (p65) pathway. Such LMP1-mediated NF-κB activation is necessary for proliferation of latently infected cells and inhibition of viral lytic cycle progression. Actually, canonical NF-κB target gene expression was suppressed upon the onset of lytic infection. TRAF6, which is activated by conjugation of polyubiquitin chains, associates with LMP1 to mediate NF-κB signal transduction. We have found that EBV-encoded BPLF1 interacts with and deubiquitinates TRAF6 to inhibit NF-κB signaling during lytic infection. HEK293 cells with BPLF1-deficient recombinant EBV exhibited poor viral DNA replication compared with the wild type. Furthermore, exogenous expression of BPLF1 or p65 knockdown in cells restored DNA replication of BPLF1-deficient viruses, indicating that EBV BPLF1 deubiquitinates TRAF6 to inhibit NF-κB signal transduction, leading to promotion of viral lytic DNA replication.

    DOI: 10.1128/JVI.02020-12

    Web of Science

    Scopus

    PubMed

  19. Pin1 interacts with the Epstein-Barr virus DNA polymerase catalytic subunit and regulates viral DNA replication. International journal

    Yohei Narita, Takayuki Murata, Akihide Ryo, Daisuke Kawashima, Atsuko Sugimoto, Teru Kanda, Hiroshi Kimura, Tatsuya Tsurumi

    Journal of virology   Vol. 87 ( 4 ) page: 2120 - 2127   2013.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) protein is known as a regulator which recognizes phosphorylated Ser/Thr-Pro motifs and increases the rate of cis and trans amide isomer interconversion, thereby altering the conformation of its substrates. We found that Pin1 knockdown using short hairpin RNA (shRNA) technology resulted in strong suppression of productive Epstein-Barr virus (EBV) DNA replication. We further identified the EBV DNA polymerase catalytic subunit, BALF5, as a Pin1 substrate in glutathione S-transferase (GST) pulldown and immunoprecipitation assays. Lambda protein phosphatase treatment abolished the binding of BALF5 to Pin1, and mutation analysis of BALF5 revealed that replacement of the Thr178 residue by Ala (BALF5 T178A) disrupted the interaction with Pin1. To further test the effects of Pin1 in the context of virus infection, we constructed a BALF5-deficient recombinant virus. Exogenous supply of wild-type BALF5 in HEK293 cells with knockout recombinant EBV allowed efficient synthesis of viral genome DNA, but BALF5 T178A could not provide support as efficiently as wild-type BALF5. In conclusion, we found that EBV DNA polymerase BALF5 subunit interacts with Pin1 through BALF5 Thr178 in a phosphorylation-dependent manner. Pin1 might modulate EBV DNA polymerase conformation for efficient, productive viral DNA replication.

    DOI: 10.1128/JVI.02634-12

    Web of Science

    Scopus

    PubMed

  20. Epigenetic histone modification of Epstein-Barr virus BZLF1 promoter during latency and reactivation in Raji cells. International journal

    Takayuki Murata, Yutaka Kondo, Atsuko Sugimoto, Daisuke Kawashima, Shinichi Saito, Hiroki Isomura, Teru Kanda, Tatsuya Tsurumi

    Journal of virology   Vol. 86 ( 9 ) page: 4752 - 61   2012.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The Epstein-Barr virus (EBV) predominantly establishes latent infection in B cells, and the reactivation of the virus from latency is dependent on the expression of the viral BZLF1 protein. The BZLF1 promoter (Zp) normally exhibits only low basal activity but is activated in response to chemical or biological inducers, such as 12-O-tetradecanoylphorbol-13-acetate (TPA), calcium ionophores, or histone deacetylase (HDAC) inhibitors. In some cell lines latently infected with EBV, an HDAC inhibitor alone can induce BZLF1 transcription, while the treatment does not enhance expression in other cell lines, such as B95-8 or Raji cells, suggesting unknown suppressive mechanisms besides histone deacetylation in those cells. Here, we found the epigenetic modification of the BZLF1 promoter in latent Raji cells by histone H3 lysine 27 trimethylation (H3K27me3), H3K9me2/me3, and H4K20me3. Levels of active markers such as histone acetylation and H3K4me3 were low in latent cells but increased upon reactivation. Treatment with 3-deazaneplanocin A (DZNep), an inhibitor of H3K27me3 and H4K20me3, significantly enhanced the BZLF1 transcription in Raji cells when in combination with an HDAC inhibitor, trichostatin A (TSA). The knockdown of Ezh2 or Suv420h1, histone methyltransferases for H3K27me3 or H4K20me3, respectively, further proved the suppression of Zp by the methylations. Taken together, the results indicate that H3K27 methylation and H4K20 methylation are involved, at least partly, in the maintenance of latency, and histone acetylation and H3K4 methylation correlate with the reactivation of the virus in Raji cells.

    DOI: 10.1128/JVI.06768-11

    PubMed

  21. Identification and characterization of CCAAT enhancer-binding protein (C/EBP) as a transcriptional activator for Epstein-Barr virus oncogene latent membrane protein 1. International journal

    Chieko Noda, Takayuki Murata, Teru Kanda, Hironori Yoshiyama, Atsuko Sugimoto, Daisuke Kawashima, Shinichi Saito, Hiroki Isomura, Tatsuya Tsurumi

    The Journal of biological chemistry   Vol. 286 ( 49 ) page: 42524 - 42533   2011.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Epstein-Barr virus LMP1, a major oncoprotein expressed in latent infection, is critical for primary B cell transformation, functioning as a TNFR family member by aggregation in the plasma membrane resulting in constitutive activation of cellular signals, such as NF-κB, MAPK, JAK/STAT, and AKT. Although transcription of LMP1 in latent type III cells is generally under the control of the viral coactivator EBNA2, little is known about EBNA2-independent LMP1 expression in type II latency. We thus screened a cDNA library for factors that can activate the LMP1 promoter in an EBNA2-independent manner, using a reporter assay system. So far, we have screened >20,000 clones, and here identified C/EBPε as a new transcriptional activator. Exogenous expression of C/EBPα, -β, or -ε efficiently augmented LMP1 mRNA and protein levels in EBV-positive cell lines, whereas other members of the C/EBP family exhibited modest or little activity. It has been demonstrated that LMP1 gene transcription depends on two promoter regions: proximal (ED-L1) and distal (TR-L1). Interestingly, although we first used the proximal promoter for screening, we found that C/EBP increased transcription from both promoters in latent EBV-positive cells. Mutagenesis in reporter assays and EMSA identified only one functional C/EBP binding site, through which activation of both proximal and distal promoters is mediated. Introduction of point mutations into the identified C/EBP site in EBV-BAC caused reduced LMP1 transcription from both LMP1 promoters in epithelial cells. In conclusion, C/EBP is a newly identified transcriptional activator of the LMP1 gene, independent of the EBNA2 coactivator.

    DOI: 10.1074/jbc.M111.271734

    Scopus

    PubMed

  22. Spatiotemporally different DNA repair systems participate in Epstein-Barr virus genome maturation. International journal

    Atsuko Sugimoto, Teru Kanda, Yoriko Yamashita, Takayuki Murata, Shinichi Saito, Daisuke Kawashima, Hiroki Isomura, Yukihiro Nishiyama, Tatsuya Tsurumi

    Journal of virology   Vol. 85 ( 13 ) page: 6127 - 6135   2011.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Productive replication of Epstein-Barr virus occurs in discrete sites in nuclei, called replication compartments, where viral DNA replication proteins and host homologous recombinational repair (HRR) and mismatch repair (MMR) factors are recruited. Three-dimensional (3D) surface reconstruction imaging clarified the spatial arrangements of these factors within the replication compartments. Subnuclear domains, designated BMRF1 cores, which were highly enriched in viral polymerase processivity factor BMRF1 could be identified inside the replication compartments. Pulse-chase experiments revealed that newly synthesized viral genomes organized around the BMRF1 cores were transferred inward. HRR factors could be demonstrated mainly outside BMRF1 cores, where de novo synthesis of viral DNA was ongoing, whereas MMR factors were found predominantly inside. These results imply that de novo synthesis of viral DNA is coupled with HRR outside the cores, followed by MMR inside cores for quality control of replicated viral genomes. Thus, our approach unveiled a viral genome manufacturing plant.

    DOI: 10.1128/JVI.00258-11

    Web of Science

    Scopus

    PubMed

  23. Involvement of Jun dimerization protein 2 (JDP2) in the maintenance of Epstein-Barr virus latency. International journal

    Takayuki Murata, Chieko Noda, Shinichi Saito, Daisuke Kawashima, Atsuko Sugimoto, Hiroki Isomura, Teru Kanda, Kazunari K Yokoyama, Tatsuya Tsurumi

    The Journal of biological chemistry   Vol. 286 ( 25 ) page: 22007 - 16   2011.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Reactivation of the Epstein-Barr virus from latency is dependent on expression of the BZLF1 viral immediate-early protein. The BZLF1 promoter (Zp) normally exhibits only low basal activity but is activated in response to chemical inducers such as 12-O-tetradecanoylphorbol-13-acetate and calcium ionophore. We found that Jun dimerization protein 2 (JDP2) plays a significant role in suppressing Zp activity. Reporter, EMSA, and ChIP assays of a Zp mutant virus revealed JDP2 association with Zp at the ZII cis-element, a binding site for CREB/ATF/AP-1. Suppression of Zp activity by JDP2 correlated with HDAC3 association and reduced levels of histone acetylation. Although introduction of point mutations into the ZII element of the viral genome did not increase the level of BZLF1 production, silencing of endogenous JDP2 gene expression by RNA interference increased the levels of viral early gene products and viral DNA replication. These results indicate that JDP2 plays a role as a repressor of Zp and that its replacement by CREB/ATF/AP-1 at ZII is crucial to triggering reactivation from latency to lytic replication.

    DOI: 10.1074/jbc.M110.199836

    PubMed

  24. Anionic polymer, poly(methyl vinyl ether-maleic anhydride)-coated beads-based capture of human influenza A and B virus (vol 17, pg 752, 2009)

    Akikazu Sakudo, Koichi Baba, Megumi Tsukamoto, Atsuko Sugimoto, Takashi Okada, Takanori Kobayashi, Norihito Kawashita, Tatsuya Takagi, Kazuyoshi Ikuta

    BIOORGANIC & MEDICINAL CHEMISTRY   Vol. 19 ( 2 ) page: 1010 - 1010   2011.1

     More details

    Language:English   Publisher:PERGAMON-ELSEVIER SCIENCE LTD  

    DOI: 10.1016/j.bmc.2010.12.018

    Web of Science

  25. Anionic polymer, poly(methyl vinyl ether-maleic anhydride)-coated beads-based capture of human influenza A and B virus. International journal

    Akikazu Sakudo, Koichi Baba, Megumi Tsukamoto, Atsuko Sugimoto, Takashi Okada, Takanori Kobayashi, Norihito Kawashita, Tatsuya Takagi, Kazuyoshi Ikuta

    Bioorganic & medicinal chemistry   Vol. 17 ( 2 ) page: 752 - 7   2009.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    An anionic magnetic beads-based method was developed for the capture of human influenza A and B viruses from nasal aspirates, allantoic fluid and culture medium. A polymer, poly(methyl vinyl ether-maleic anhydride) [poly(MVE-MA)], was used to endow magnetic beads with a negative charge and bioadhesive properties. After incubation with samples containing human influenza virus, the beads were separated from supernatants by applying a magnetic field. The adsorption [corrected] of the virus by the beads was confirmed by hemagglutinin assay, immunochromatography, Western blotting, egg infection, and cell infection. Successful capture was proved using 5 H1N1 influenza A viruses, 10 H3N2 influenza A viruses, and 6 influenza B viruses. Furthermore, the infectivity in chicken embryonated eggs and Madin-Darby canine kidney (MDCK) cells of the captured human influenza virus was similar to that of the total viral quantity of starting materials. Therefore, this method of capture using magnetic beads coated with poly(MVE-MA) can be broadly used for the recovery of infectious human influenza viruses.

    DOI: 10.1016/j.bmc.2008.11.046

    PubMed

▼display all

MISC 4

  1. プロテアソーム阻害薬MG132は単純ヘルペスウイルスによるERKシグナル抑制を阻害することで抗ウイルス活性を示す

    石丸 華子, 細川 晃平, 杉本 温子, 田中 里歩, 渡部 匡史, 藤室 雅弘

    日本薬学会年会要旨集   Vol. 140年会   page: 27F - pm11S   2020.3

     More details

    Language:Japanese   Publisher:(公社)日本薬学会  

  2. ヘルペスウイルス感染細胞から神経細胞傷害活性をもつユビキチンやα-シヌクレイン凝集物が産生される

    小久保 友絵, 中曽 一裕, 須賀 圭, 杉本 温子, 渡部 匡史, 藤室 雅弘

    日本薬学会年会要旨集   Vol. 139年会 ( 3 ) page: 114 - 114   2019.3

     More details

    Language:Japanese   Publisher:(公社)日本薬学会  

  3. B型肝炎ウイルス由来ウイルス様粒子(VLP)のDDSへの応用

    石田 真紗子, 藤田 昂志, 杉本 温子, 渡部 匡史, 上田 啓次, 藤室 雅弘

    日本薬学会年会要旨集   Vol. 137年会 ( 4 ) page: 96 - 96   2017.3

     More details

    Language:Japanese   Publisher:(公社)日本薬学会  

  4. 可視・近赤外光を用いた鼻部体温計測:インフルエンザウイルスA型・B型感染小児患者の比較

    作道章一, 馬場宏一, 小林孝徳, 上畑滋, 加藤由紀子, 杉本温子, 塚本恵美, 生田和良

    補体シンポジウム講演集   Vol. 45   page: 222 - 223   2008.7

     More details

    Language:Japanese   Publisher:(一社)日本補体学会  

    J-GLOBAL

Presentations 2

  1. EBV感染細胞におけるIMPDH2発現の意義の解析

    第70回日本ウイルス学会学術集会  2023.9.27 

     More details

    Event date: 2023.9

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:仙台  

  2. IMPDH2の関わるEBVの生活環の解析

    第36回ヘルペスウイルス研究会  2023.7.8 

     More details

    Event date: 2023.7

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:松山  

Research Project for Joint Research, Competitive Funding, etc. 4

  1. EBVの生活環に関わる核小体肥大化の意義

    2023.8 - 2028.3

    2023年度武田科学振興財団医学系研究助成(感染領域) 

      More details

    Authorship:Principal investigator 

  2. ウイルス感染後に感染細胞の核内に出現する構造体の時空間的解析

    2021.12 - 2024.3

    厚生労働科学研究費  新興・再興感染症研究基盤創生事業(多分野融合研究領域)二次公募

      More details

    Authorship:Coinvestigator(s)  Grant type:Competitive

  3. EBV関連リンパ腫における1細胞あたりのがん形成に関わる因子の探索

    2020.4 - 2021.3

    日本新薬研究助成 

      More details

    Authorship:Principal investigator 

  4. FAT10が関わるKSHV溶解感染機構の解明

    2018.4 - 2019.3

    上原記念生命科学財団研究奨励金 

      More details

    Authorship:Principal investigator  Grant type:Competitive

KAKENHI (Grants-in-Aid for Scientific Research) 7

  1. ハイスループット・ハイコンテンツイメージングを用いたEBV関連腫瘍形成の解析

    Grant number:22KJ2977  2023.3 - 2024.3

    科学研究費助成事業  特別研究員奨励費

    杉本 温子, 杉本 温子

      More details

    Authorship:Principal investigator 

    Grant amount:\3640000 ( Direct Cost: \2800000 、 Indirect Cost:\840000 )

    これまでの研究において、初代培養B細胞にEBVを感染させると、核小体が肥大化することを発見している。核小体の肥大化は非ウイルス性のがん細胞においてよくみられる現象であり、IMPDH2という分子が関わっていることが知られる。EBV感染細胞ではIMPDH2の発現が上昇していることが確認された。EBV感染細胞においてIMPDH2阻害剤を添加すると、EBVによる細胞の不死化は起こらず、核小体の肥大化も観察されなかった。これらのことから、EBVの潜伏感染成立のためにはIMPDH2が必須であることが示唆された。本研究ではIMPDH2がEBVによる発がんの中心的役割を果たす分子として着目している。
    エプスタイン・バールウイルス(EBV)は、ガンマヘルペスウイルス亜科に属するヒトヘルペスウイルスである。EBVは上咽頭癌、胃癌、バーキットリンパ腫などの悪性腫瘍との関連が指摘されているがんウイルスであり、臨床上重要なウイルスであると言える。EBV感染症及び関連がんの克服のためには潜伏感染成立までの期間(「前潜伏感染期」と呼ばれている)においてどのようなウイルス遺伝子が発現し、宿主因子が制御されているか研究することは非常に重要である。これまでの年度の研究において、EBVの前潜伏感染期で必須の遺伝子であるIMPDH2を同定している。IMPDH2は非ウイルス性のがん細胞の増殖に必須の因子として同定され、がん細胞の細胞内代謝を変化させることで増殖を亢進させ、その結果、がん細胞の核小体を肥大化させる。本研究において前潜伏感染期の細胞でIMPDH2の発現が亢進し、核小体の肥大化が起きていることを発見している。また、IMPDH2阻害剤を用いて活性を阻害した結果、前潜伏感染期の細胞増殖および不死化成立は著しく低下した。本年度の研究では、これらの発見をさらに発展させるべく、EBV感染におけるIMPDH2の意義をさらに検討した。siRNAを用いてIMPDH2をノックダウンした結果、核小体の大きさは減少しており、前潜伏感染期の初代培養細胞・細胞株いずれにおいてもIMPDH2の発現レベルと核小体の大きさに強い相関が見られた。また溶解感染において蛍光免疫染色およびRNA-seqを実施した結果、溶解感染誘導後、核小体関連タンパク質の発現は上昇していた。今後はこれらの現象と、IMPDH2の発現の相関を検討する予定である。
    また、これらの研究結果を論文にまとめ、現在投稿中である
    研究計画立案当初からの本研究の最終目標は「不均一な状態であるEBV初感染状態について、画像解析を用いることで質的・量的双方の側面から解析を行い、潜伏感染成立に必要な因子を解明することを目指す」ことである。本研究計画は、これまでの年度の研究において、IMPDH2と核小体関連タンパク質という、EBVの感染状態を示す非常に有望な宿主因子を見出すことに成功している。また、本年度は研究対象を溶解感染に広げ、IMPDH2及び核小体の挙動の解析も行なっている。次年度の研究ではIMPDH2関連タンパクに焦点を当て、溶解感染も詳細に解析することで、EBVの生活環に必須である因子の同定に繋げたいと考えている。
    本年度までの研究結果より、同定した因子であるIMPDH2は潜伏感染成立のみならず、溶解感染においても重要な因子であることが示唆された。また、IMPDH2をノックダウンしたEBV感染細胞では核小体の大きさが著しく変化しており、IMPDH2の発現レベルと核小体の大きさに強い相関関係があったが、これらがEBVの生活環にどのように関わっているのか、詳細に解析する必要がある。今後は引き続きIMPDH2と核小体関連タンパク群に焦点を当て、網羅的手法も用いつつ、EBV感染にどのように関わるか、解析を進めたい。

  2. IMPDH2の関わるEBV発がん機構に関する研究

    Grant number:22K10520  2022.4 - 2025.3

    日本学術振興会  科学研究費助成事業  基盤研究(C)

    阿部 温子

  3. EBV関連疾患治療のための、EBV溶解感染とユビキチン様タンパクの相互作用の研究

    Grant number:20K18911  2020.4 - 2022.3

    日本学術振興会  科学研究費助成事業 若手研究  若手研究

    阿部 温子

      More details

    Epstein-Barrウイルス(EBV)はγヘルペスウイルス亜科に属するヘルペスウイルスである。EBVはバーキットリンパ腫、胃がん、上咽頭癌などのがんを起こすヒトがんウイルスである。現在成人の90%以上がEBVに対する抗体陽性だと言われており、ヒトに広く感染しているため、EBV発がんを克服することが公衆衛生上重要な課題である。EBVは溶解感染と潜伏感染の二種類の生活環を持っている。溶解感染に入るとウイルスゲノムの複製が激しく起こっており、ウイルス粒子が形成される。また、溶解感染状態の細胞ではサイトカインの産生が起こっており、これががんの形成に関与していると言われている。ヘルペスウイルスは溶解感染の際に宿主因子を利用して粒子形成を行なっていると言われている。これらのことから、溶解感染機構を解明し、溶解感染に重要な役割を果たす宿主因子を見いだすことが重要である。
    本研究に先行して、EBVと同じγヘルペスウイルス亜科に属するカポジ肉腫関連ヘルペスウイルス(KSHV)の研究で、KSHVの溶解感染に深く関連する因子としてFAT10を見出している。FAT10はKSHVの粒子形成に関わる可能性があることがわかっている。また、FAT10が修飾するウイルスタンパクについて探索を行ったところ、8種類のウイルスタンパクが候補としてヒットしてきた。
    KSHVとEBVのウイルスタンパクは相同性が高いため、本年はFAT10と結合するKSHVウイルスタンパクの探索を行なった。その結果、KSHVタンパク質のうち、ORF59、ORF61でFAT10との強い結合が確認された。特にORF61はカプシドタンパクとの結合が報告されていることから、FAT10化を利用して粒子形成に貢献している可能性が高いと思われる。今後はEBVのホモログで解析を行う予定である。

  4. The ubiquitin like proteins, FAT10, is involved in KSHV viral productions

    Grant number:18K17362  2018.4 - 2020.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Early-Career Scientists  Grant-in-Aid for Early-Career Scientists

    Abe Atsuko

      More details

    After primary infection, KSHV persists lifelong as a chronic asymptomatic infection in its human host but establishes latency. Productive infection, which occurs spontaneously or can be induced artificially, lead to virus production. It is well established that herpesviruses hijack host machineries for their lytic replication but little is known which factors are involved in KSHV. Here, we performed proteomic analysis with KSHV lytic replication-induced cells to explore a new mechanism of KSHV lytic replication. E1 activating enzyme Ubiquitin-like modifier activating enzyme 6 (UBA6 or UBE1L2), which activates both ubiquitin and FAT10, were identified by proteome analysis. Knockout of UBE1L2 reduced KSHV viral productions. We also explored target proteins of FAT10ylation by immunoprecipitation-MS using FAT10 specific antibody and some viral proteins were identified. Our results suggested UBE1L2 is involved in KSHV viral productions by FAT10ylation of some viral proteins.

  5. 網羅的解析を用いた、KSHVとEBVの溶解感染機構の比較と解明

    Grant number:17J06368  2017.4 - 2021.3

    日本学術振興会  科学研究費助成事業 特別研究員奨励費  特別研究員奨励費

    杉本 温子

      More details

    KSHV溶解感染機構の解明のためにはKSHVの溶解感染に中心的役割を果たす因子を発見することが急務である。咋年度までの研究において、網羅的探索を行なった結果、潜伏感染細胞と溶解感染細胞で発現が変化する宿主タンパク質を同定し、その中でユビキチン様タンパク質FAT10がKSHV溶解感染に関わる可能性を示した。FAT10に修飾されるウイルスタンパクを探索したところ、8種類のウイルスタンパクが候補としてヒットしてきた。
    本年度は、それらのウイルスタンパク質のFAT10への結合解析を行った。特に、ウイルス粒子形成に関わるウイルスタンパクが数種類ヒットしたため、これらについて中心的に解析を行った。候補タンパク質にS-protein-tagを付加し、FAT10発現ベクターと共に293T細胞にトランスフェクションし、プルダウンを行った。その結果、KSHVタンパク質のうち、ORF59、ORF61でFAT10との強い結合が確認された。ORF11に関しては結合が確認されたが、ORF59とORF61に対して弱いと思われた。
    さらに、候補ウイルスタンパクとFAT10の局在を観察したところ、ORF59とORF61において核周辺にて一部共局在が見られたため、これらのウイルスタンパクとFAT10がウイルスの粒子形成のために相互作用している可能性が高い。また、これら以外の候補であるウイルスタンパク質について確認を行った結果、ORF47、ORF67について、免疫染色においてはウイルスタンパク質とFAT10の共局在が確認された。しかしながら、プルダウンを行なったところ、結合は確認されなかった。これらのことから、FAT10化されるウイルスタンパク質の候補として、ORF59とORF61があげられる。今後はさらにこれらのウイルスタンパクのKSHV感染においてのFAT10化の意義の解析も行っていきたいと思っている。

  6. プロテオミクス解析を用いたカポジ肉腫関連ヘルペスウイルス溶解感染機構の解明

    Grant number:16H07325  2016.8 - 2018.3

    日本学術振興会  科学研究費助成事業 研究活動スタート支援  研究活動スタート支援

    阿部 温子

      More details

    KSHVの溶解感染に関わる因子の多くは未だ同定されておらず、溶解感染機構は未だ解明されていない部分が大きい。そのため、本研究ではKSHVの溶解感染機構を解明するために、溶解感染に重要である因子を同定することを目的としている。2017年3月末までの期間において、KSHVの細胞への感染後からの潜伏感染と溶解感染の各ステージにおいて経時的に発現が変動する因子の解析を行った。その結果、プロテオミクス解析を用いた網羅的探索により、潜伏感染細胞と溶解感染細胞で発現が変化する30個のKSHV由来のウイルスタンパクを同定することに成功した。次にプロテオミクス解析の条件を最適化するために、溶解感染誘導後、経時的に回収したサンプルを用いて、KSHV全てのORFについて定量的PCR法を行い、各mRNAの発現のタイミングを解析した。その結果、KSHVのタンパク発現プロファイルを作成するには溶解感染誘導後48時間および72時間が最適であったため、今後は溶解感染誘導後48時間、72時間のサンプルを用いて解析を行う予定である。また、今回のプロテオミクス解析では30種類のウイルスタンパクが同定されたが、感度を向上させるために細胞質と核を分画して解析を行う予定である。
    また、プロテオミクス解析により、ウイルス由来因子のみならず、溶解感染誘導後発現パターンが変化する60個以上の宿主性タンパク質を同定することに成功した。発現上昇が顕著だったものに焦点を当て、ウエスタンブロット法を用いて確認を行ったところ、ユビキチン様タンパクFAT10とユビキチン活性化酵素UBE1L2の発現量の顕著な変化が認められた。定量的PCR法を用いてKSHVの溶解感染におけるユビキチン様タンパクのmRNA量の変化を確認したところ、FAT10は他のユビキチン様タンパクに比べて顕著にmRNA量が上昇していることが確認された。

  7. Epstein-Barrウイルスゲノム複製・転写・粒子形成の場の構造解析

    Grant number:12J04062  2012 - 2013

    日本学術振興会  科学研究費助成事業 特別研究員奨励費  特別研究員奨励費

    杉本 温子, 杉本 温子

      More details

    Authorship:Other 

    本研究は様々な癌との関連が指摘されているウイルスであるEBV溶解感染の機序を解明し、その全体像を理解することを目的としている。EBV溶解感染の全体像を理解することで、発癌を制御できると考えている。昨年度の研究成果で、EBV溶解感染時にはウイルス由来の複製装置であるreplication compartmentの内部にBMRF1-coreと呼ばれる構造物が形成され、それが複製されたウイルスゲノムの貯蔵、成熟の場であることを示した。
    当該年度はさらにEBV溶解感染時における転写について研究を行った。EBV溶解感染の際に転写される遺伝子はその転写の時期に応じて初期遺伝子、早期遺伝子、後期遺伝子の3種類に分けられる。EBVは転写の際に宿主細胞のRNAポリメラーゼIIを利用して転写を行うことが知られている。RNAポリメラーゼIIとBMRF1-coreの経時的局在の変化を共焦点顕微鏡と三次元再構築を組み合わせた手法により観察したところ、RNAポリメラーゼIIは溶解感染誘導後24時間後ではBMRF1-coreの外側に局在しているが、溶解感染誘導後48時間ではBMRF1-coreの内側に局在する割合が高くなることがわかった。これらのことから、EBVの早期遺伝子、後期遺伝子は転写の場が異なることが考えられた。さらにわれわれはこれを検証すべく、FISH法、共焦点顕微鏡と三次元再構築を組み合わせた手法を用いて確認を行った。その結果、早期遣伝子のmRNAはBMRF1-coreの外側に局在しているが、後期遺伝子のmRNAはBMRF1-coreの内側に局在することを明らかにした。また、蛍光染色法により、後期遺伝子の転写に重要な役割を持つウイルス蛋白であるBcRF1もBMRF1-coreの内側に局在していることが示された。このことからも後期遺伝子の転写はBMRF1-coreの内側で起こることが示唆された。後期遺伝子は構造蛋白をコードしているため、BMRF1-coreの内部に貯蔵されているエラーが少ないDNAから転写される必要があると考えている。これは昨年度得られた結果とも一致している。これらのことからBMRF1-coreは溶解感染において重要な役割を担っていると考えられ、EBV感染制御ひいては発癌制御に重要であると考えられる。

▼display all

 

Teaching Experience (On-campus) 1

  1. 生体と微生物(実習)

    2023

Teaching Experience (Off-campus) 1

  1. ウイルス学

    2024.1 Nagoya City University)

     More details

    Level:Undergraduate (specialized)