Updated on 2025/11/19

写真a

 
KOBAYASHI Masatoshi
 
Organization
Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI) Designated Assistant Professor
Title
Designated Assistant Professor
 

Papers 22

  1. The XLZD Design Book: towards the next-generation liquid xenon observatory for dark matter and neutrino physics Open Access

    Aalbers, J; Abe, K; Adrover, M; Maouloud, SA; Akerib, DS; Al Musalhi, AK; Alder, F; Althueser, L; Amaral, DWP; Amarasinghe, CS; Ames, A; Andrieu, B; Angelides, N; Angelino, E; Antunovic, B; Aprile, E; Araújo, HM; Armstrong, JE; Arthurs, M; Babicz, M; Baker, A; Balzer, M; Bang, J; Barberio, E; Bargemann, JW; Barillier, E; Basharina-Freshville, A; Baudis, L; Bauer, D; Bazyk, M; Beattie, K; Beaupere, N; Bell, NF; Bellagamba, L; Benson, T; Bhatti, A; Biesiadzinski, TP; Biondi, R; Biondi, Y; Birch, HJ; Bishop, E; Bismark, A; Boehm, C; Boese, K; Bolotnikov, A; Brás, P; Braun, R; Breskin, A; Brew, CAJ; Brommer, S; Brown, A; Bruni, G; Budnik, R; Burdin, S; Cai, C; Capelli, C; Carini, G; Carmona-Benitez, MC; Chauvin, A; Carter, M; Chawla, A; Chen, H; Cherwinka, JJ; Chin, YT; Chott, NI; Chavez, APC; Clark, K; Colijn, AP; Colling, DJ; Conrad, J; Converse, MV; Cooper, LJ; Coronel, R; Costanzo, D; Cottle, A; Cox, G; Cuenca-García, JJ; Curran, D; Cussans, D; D'Andrea, V; Garcia, LCD; Darlington, I; Dave, S; David, A; Davies, GJ; Decowski, MP; Deisting, A; Delgaudio, J; Dey, S; Di Donato, C; Di Felice, L; Di Gangi, P; Diglio, S; Ding, C; Dobson, JEY; Doerenkamp, M; Drexlin, G; Druszkiewicz, E; Dunbar, CL; Eitel, K; Elykov, A; Engel, R; Eriksen, SR; Fayer, S; Fearon, NM; Ferella, AD; Ferrari, C; Fieldhouse, N; Fischer, H; Flaecher, H; Flehmke, T; Flierman, M; Fraser, ED; Fruth, TMA; Fujikawa, K; Fulgione, W; Fuselli, C; Gaemers, P; Gaior, R; Gaitskell, RJ; Gallice, N; Galloway, M; Gao, F; Garroum, N; Geffre, A; Genovesi, J; Ghag, C; Ghosh, S; Giacomobono, R; Gibbons, R; Girard, F; Glade-Beucke, R; Glueck, F; Gokhale, S; Grandi, L; Green, J; Grigat, J; van der Grinten, MGD; Grössle, R; Guan, H; Guida, M; Gyorgy, P; Haiston, JJ; Hall, CR; Hall, T; Hammann, R; Hannen, V; Hansmann-Menzemer, S; Hargittai, N; Hartigan-O'Connor, E; Haselschwardt, SJ; Hernandez, M; Hertel, SA; Higuera, A; Hils, C; Hiraoka, K; Hoetzsch, L; Hoferichter, M; Homenides, GJ; Hood, NF; Horn, M; Huang, DQ; Hughes, S; Hunt, D; Iacovacci, M; Itow, Y; Jacquet, E; Jakob, J; James, RS; Joerg, F; Jones, S; Kaboth, AC; Kahlert, F; Kamaha, AC; Kaminaga, Y; Kara, M; Kavrigin, P; Kazama, S; Keller, M; Kemp-Russell, P; Khaitan, D; Kharbanda, P; Kilminster, B; Kim, J; Kirk, R; Kleifges, M; Klute, M; Kobayashi, M; Kodroff, D; Koke, D; Kopec, A; Korolkova, E; Kraus, H; Kravitz, S; Kreczko, L; von Krosigk, B; Kudryavtsev, VA; Kuger, F; Kurita, N; Landsman, H; Lang, RF; Lawes, C; Lee, J; Lehnert, B; Leonard, DS; Lesko, KT; Levinson, L; Li, A; Li, I; Li, S; Liang, S; Liang, Z; Lin, J; Lin, YT; Lindemann, S; Linden, S; Lindner, M; Lindote, A; Lippincott, WH; Liu, K; Loizeau, J; Lombardi, F; Lopes, JAM; Lopes, MI; Lorenzon, W; Loutit, M; Lu, C; Lucchetti, GM; Luce, T; Luitz, S; Ma, Y; Macolino, C; Mahlstedt, J; Maier, B; Majewski, PA; Manalaysay, A; Mancuso, A; Manenti, L; Mannino, RL; Marignetti, F; Marley, T; Undagoitia, TM; Martens, K; Masbou, J; Masson, E; Mastroianni, S; Maupin, C; Mazza, V; McCabe, C; McCarthy, ME; McKinsey, DN; McLaughlin, JB; Melchiorre, A; Menéndez, J; Messina, M; Miller, EH; Milosovic, B; Milutinovic, S; Miuchi, K; Miyata, R; Mizrachi, E; Molinario, A; Monteiro, CMB; Monzani, ME; Morå, K; Moriyama, S; Morrison, E; Morteau, E; Mosbacher, Y; Mount, BJ; Mueller, J; Murdy, M; Murphy, AS; Murra, M; Naylor, A; Nelson, HN; Neves, F; Newstead, JL; Nguyen, A; Ni, K; O'Dell, J; O'Hare, C; Oberlack, U; Obradovic, M; Olcina, I; Oliver-Mallory, KC; Gann, GDO; Orpwood, J; Ouahada, S; Oyulmaz, K; Paetsch, B; Palladino, KJ; Palmer, J; Pan, Y; Pandurovic, M; Pannifer, NJ; Paramesvaran, S; Patton, J; Pellegrini, Q; Penning, B; Pereira, G; Peres, R; Perry, E; Pershing, T; Piastra, F; Pienaar, J; Piepke, A; Pierre, M; Plante, G; Pollmann, TR; Pompa, F; Principe, L; Qi, J; Qiao, K; Qie, Y; Qin, J; Radeka, S; Radeka, V; Rajado, M; García, DR; Ravindran, A; Razeto, A; Reichenbacher, J; Rhyne, CA; Richards, A; Rischbieter, GRC; Riyat, HS; Rosero, R; Roy, A; Rushton, T; Rynders, D; Saakyan, R; Sanchez, L; Sanchez-Lucas, P; Santone, D; dos Santos, JMF; Sartorelli, G; Sazzad, ABMR; Scaffidi, A; Schnee, RW; Schreiner, J; Schulte, P; Eissing, HS; Schumann, M; Schwenck, A; Schwenk, A; Lavina, LS; Selvi, M; Semeria, F; Shagin, P; Sharma, S; Shaw, S; Shen, W; Sherman, L; Shi, S; Shi, SY; Shimada, T; Shutt, T; Silk, JJ; Silva, C; Simgen, H; Sinev, G; Singh, R; Siniscalco, J; Solmaz, M; Solovov, VN; Song, Z; Sorensen, P; Soria, J; Stanley, O; Steidl, M; Stenhouse, T; Stevens, A; Stifter, K; Sumner, TJ; Takeda, A; Tan, PL; Taylor, DJ; Taylor, WC; Thers, D; Thümmler, T; Tiedt, DR; Tönnies, F; Tong, Z; Toschi, F; Tovey, DR; Tranter, J; Trask, M; Trinchero, G; Tripathi, M; Tronstad, DR; Trotta, R; Tunnell, CD; Urquijo, P; Usón, A; Utoyama, M; Vaitkus, AC; Valentino, O; Valerius, K; Vecchi, S; Velan, V; Vetter, S; de Viveiros, L; Volta, G; Vorkapic, D; Wang, A; Wang, JJ; Wang, Y; Waters, D; Weerman, KM; Weinheimer, C; Weiss, M; Wenz, D; Whitis, TJ; Wild, K; Williams, M; Wilson, M; Wilson, ST; Wittweg, C; Wolf, J; Wolfs, FLH; Woodford, S; Woodward, D; Worcester, M; Wright, CJ; Wu, VHS; Wüstling, S; Wurm, M; Xia, Q; Xing, Y; Xu, D; Xu, J; Xu, Y; Xu, Z; Yamashita, M; Yang, L; Ye, J; Yeh, M; Yu, B; Zavattini, G; Zha, W; Zhong, M; Zuber, K

    EUROPEAN PHYSICAL JOURNAL C   Vol. 85 ( 10 )   2025.10

  2. The neutron veto of the XENONnT experiment: results with demineralized water Open Access

    Aprile, E; Aalbers, J; Abe, K; Maouloud, SA; Althueser, L; Andrieu, B; Angelino, E; Martin, DA; Arneodo, F; Baudis, L; Bazyk, M; Bellagamba, L; Biondi, R; Bismark, A; Boese, K; Brown, A; Bruno, G; Budnik, R; Cai, C; Capelli, C; Cardoso, JMR; Chavez, APC; Colijn, AP; Conrad, J; Cuenca-García, JJ; D'Andrea, V; Garcia, LCD; Decowski, MP; Deisting, A; Di Donato, C; Di Gangi, P; Diglio, S; Eitel, K; el Morabit, S; Elykov, A; Ferella, AD; Ferrari, C; Fischer, H; Flehmke, T; Flierman, M; Fulgione, W; Fuselli, C; Gaemers, P; Gaior, R; Galloway, M; Gao, F; Ghosh, S; Giacomobono, R; Glade-Beucke, R; Grandi, L; Grigat, J; Guan, H; Guida, M; Gyorgy, P; Hammann, R; Higuera, A; Hils, C; Hoetzsch, L; Hood, NF; Iacovacci, M; Itow, Y; Jakob, J; Joerg, F; Kaminaga, Y; Kara, M; Kavrigin, P; Kazama, S; Kobayashi, M; Koke, D; Kopec, A; Landsman, H; Lang, RF; Levinson, L; Li, I; Li, S; Liang, S; Lin, YT; Lindemann, S; Lindner, M; Liu, K; Liu, M; Loizeau, J; Lombardi, F; Long, J; Lopes, JAM; Luce, T; Ma, Y; Macolino, C; Mahlstedt, J; Mancuso, A; Manenti, L; Marignetti, F; Undagoitia, TM; Martens, K; Masbou, J; Masson, E; Mastroianni, S; Melchiorre, A; Merz, J; Messina, M; Michael, A; Miuchi, K; Molinario, A; Moriyama, S; Morå, K; Mosbacher, Y; Murra, M; Müller, J; Ni, K; Oberlack, U; Paetsch, B; Pan, Y; Pellegrini, Q; Peres, R; Peters, C; Pienaar, J; Pierre, M; Plante, G; Pollmann, TR; Principe, L; Qi, J; Qin, J; García, DR; Rajado, M; Singh, R; Sanchez, L; dos Santos, JMF; Sarnoff, I; Sartorelli, G; Schreiner, J; Schulte, P; Eissing, HS; Schumann, M; Lavina, LS; Selvi, M; Semeria, F; Shagin, P; Shi, S; Shi, J; Silva, M; Simgen, H; Szyszka, C; Takeda, A; Takeuchi, Y; Tan, PL; Thers, D; Toschi, F; Trinchero, G; Tunnell, CD; Tönnies, F; Valerius, K; Vecchi, S; Vetter, S; Solar, FIV; Volta, G; Weinheimer, C; Weiss, M; Wenz, D; Wittweg, C; Wu, VHS; Xing, Y; Xu, D; Xu, Z; Yamashita, M; Yang, L; Ye, J; Yuan, L; Zavattini, G; Zhong, M

    EUROPEAN PHYSICAL JOURNAL C   Vol. 85 ( 6 )   2025.6

     More details

    Publisher:European Physical Journal C  

    Radiogenic neutrons emitted by detector materials are one of the most challenging backgrounds for the direct search of dark matter in the form of weakly interacting massive particles (WIMPs). To mitigate this background, the XENONnT experiment is equipped with a novel gadolinium-doped water Cherenkov detector, which encloses the xenon dual-phase time projection chamber (TPC). The neutron veto (NV) can tag neutrons via their capture on gadolinium or hydrogen, which release γ-rays that are subsequently detected as Cherenkov light. In this work, we present the first results of the XENONnT NV when operated with demineralized water only, before the insertion of gadolinium. Its efficiency for detecting neutrons is (82±1)%, the highest neutron detection efficiency achieved in a water Cherenkov detector. This enables a high efficiency of (53±3)% for the tagging of WIMP-like neutron signals, inside a tagging time window of 250μs between TPC and NV, leading to a livetime loss of 1.6% during the first science run of XENONnT.

    DOI: 10.1140/epjc/s10052-025-14105-0

    Open Access

    Web of Science

    Scopus

  3. Measurement of the Quantum Efficiency of Electrode Materials for Vacuum Ultraviolet Photons in Liquid Xenon Open Access

    Kazama, S; Aoyama, N; Itow, Y; Kobayashi, M

    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS   Vol. 2025 ( 6 )   2025.6

     More details

    Publisher:Progress of Theoretical and Experimental Physics  

    Light dark matter searches using ionization signals in dual-phase liquid xenon (LXe) time projection chambers are limited by low-energy ionization backgrounds, including those from the photoelectric effect on the electrodes. To address this, we measured the quantum efficiency (QE) of various electrode materials for vacuum ultraviolet photons in LXe, including platinum (Pt), stainless steel (SUS304), and magnesium fluoride (MgF2)-coated aluminum (Al). Our results show that MgF2-coated Al exhibits the lowest QE among the tested materials. The QE for vacuum ultraviolet photons with a mean wavelength of 179.5 nm was measured to be (7.2 ± 2.3) × 10-5, corresponding to a reduction in QE by a factor of 4.4 compared to SUS304, a commonly used electrode material in direct dark matter experiments with LXe. These findings suggest that employing low-QE electrodes may help mitigate photoelectric-induced backgrounds, potentially improving the sensitivity of LXe time projection chambers in light dark matter searches.

    DOI: 10.1093/ptep/ptaf078

    Open Access

    Web of Science

    Scopus

  4. XENONnT WIMP search: Signal and background modeling and statistical inference Open Access

    Aprile, E; Aalbers, J; Abe, K; Maouloud, SA; Althueser, L; Andrieu, B; Angelino, E; Martin, DA; Arneodo, F; Baudis, L; Bazyk, M; Bellagamba, L; Biondi, R; Bismark, A; Boese, K; Brown, A; Bruno, G; Budnik, R; Cardoso, JMR; Chávez, APC; Colijn, AP; Conrad, J; Cuenca-García, JJ; D'Andrea, V; Garcia, LCD; Decowski, MP; Di Donato, C; Di Gangi, P; Diglio, S; Eitel, K; Elykov, A; Ferella, AD; Ferrari, C; Fischer, H; Flehmke, T; Flierman, M; Fulgione, W; Fuselli, C; Gaemers, P; Gaior, R; Galloway, M; Gao, F; Ghosh, S; Giacomobono, R; Glade-Beucke, R; Grandi, L; Grigat, J; Guan, H; Guida, M; Gyorgy, P; Hammann, R; Higuera, A; Hils, C; Hoetzsch, L; Hood, NF; Iacovacci, M; Itow, Y; Jakob, J; Joerg, F; Kaminaga, Y; Kara, M; Kavrigin, P; Kazama, S; Kobayashi, M; Kopec, A; Kuger, F; Landsman, H; Lang, RF; Levinson, L; Li, I; Li, S; Liang, S; Lin, YT; Lindemann, S; Lindner, M; Liu, K; Loizeau, J; Lombardi, F; Long, J; Lopes, JAM; Luce, T; Ma, Y; Macolino, C; Mahlstedt, J; Mancuso, A; Manenti, L; Marignetti, F; Undagoitia, TM; Martens, K; Masbou, J; Masson, E; Mastroianni, S; Melchiorre, A; Messina, M; Michael, A; Miuchi, K; Molinario, A; Moriyama, S; Morå, K; Mosbacher, Y; Murra, M; Müller, J; Ni, K; Oberlack, U; Paetsch, B; Pan, Y; Pellegrini, Q; Peres, R; Peters, C; Pienaar, J; Pierre, M; Plante, G; Pollmann, TR; Principe, L; Qi, J; Qin, J; García, DR; Rajado, M; Singh, R; Sanchez, L; dos Santos, JMF; Sarnoff, I; Sartorelli, G; Schreiner, J; Schulte, D; Schulte, P; Eissing, HS; Schumann, M; Lavina, LS; Selvi, M; Semeria, F; Shagin, P; Shi, S; Shi, J; Silva, M; Simgen, H; Takeda, A; Tan, PL; Terliuk, A; Thers, D; Toschi, F; Trinchero, G; Tunnell, CD; Tönnies, F; Valerius, K; Vecchi, S; Vetter, S; Solar, FIV; Volta, G; Weinheimer, C; Weiss, M; Wenz, D; Wittweg, C; Wu, VHS; Xing, Y; Xu, D; Xu, Z; Yamashita, M; Yang, L; Ye, J; Yuan, L; Zavattini, G; Zhong, M

    PHYSICAL REVIEW D   Vol. 111 ( 10 )   2025.5

     More details

    Publisher:Physical Review D  

    The XENONnT experiment searches for weakly interacting massive particle (WIMP) dark matter scattering off a xenon nucleus. In particular, XENONnT uses a dual-phase time projection chamber with a 5.9-ton liquid xenon target, detecting both scintillation and ionization signals to reconstruct the energy, position, and type of recoil. A blind search for nuclear recoil WIMPs with an exposure of 1.1 ton-years (4.18 t fiducial mass) yielded no signal excess over background expectations, from which competitive exclusion limits were derived on WIMP-nucleon elastic scatter cross sections, for WIMP masses ranging from 6 GeV/c2 up to the TeV/c2 scale. This work details the modeling and statistical methods employed in this search. By means of calibration data, we model the detector response, which is then used to derive background and signal models. The construction and validation of these models is discussed, alongside additional purely data-driven backgrounds. We also describe the statistical inference framework, including the definition of the likelihood function and the construction of confidence intervals.

    DOI: 10.1103/PhysRevD.111.103040

    Open Access

    Web of Science

    Scopus

  5. Neutrinoless double beta decay sensitivity of the XLZD rare event observatory Open Access

    Aalbers, J; Abe, K; Adrover, M; Maouloud, SA; Akerib, DS; Al Musalhi, AK; Alder, F; Althueser, L; Amaral, DWP; Amarasinghe, CS; Ames, A; Andrieu, B; Angelides, N; Angelino, E; Antunovic, B; Aprile, E; Araújo, HM; Armstrong, JE; Arthurs, M; Babicz, M; Baker, A; Balzer, M; Bang, J; Barberio, E; Bargemann, JW; Barillier, E; Basharina-Freshville, A; Baudis, L; Bauer, D; Bazyk, M; Beattie, K; Beaupere, N; Bell, NF; Bellagamba, L; Benson, T; Bhatti, A; Biesiadzinski, TP; Biondi, R; Biondi, Y; Birch, HJ; Bishop, E; Bismark, A; Boehm, C; Boese, K; Bolotnikov, A; Brás, P; Braun, R; Breskin, A; Brew, CAJ; Brommer, S; Brown, A; Bruni, G; Budnik, R; Burdin, S; Cai, C; Capelli, C; Carini, G; Carmona-Benitez, MC; Carter, M; Chauvin, A; Chawla, A; Chen, H; Cherwinka, JJ; Chin, YT; Chott, NI; Chavez, APC; Clark, K; Colijn, AP; Colling, DJ; Conrad, J; Converse, MV; Coronel, R; Costanzo, D; Cottle, A; Cox, G; Cuenca-García, JJ; Curran, D; Cussans, D; D'Andrea, V; Daniel Garcia, LC; Darlington, I; Dave, S; David, A; Davies, GJ; Decowski, MP; Deisting, A; Delgaudio, J; Dey, S; Di Donato, C; Di Felice, L; Di Gangi, P; Diglio, S; Ding, C; Dobson, JEY; Doerenkamp, M; Drexlin, G; Druszkiewicz, E; Dunbar, CL; Eitel, K; Elykov, A; Engel, R; Eriksen, SR; Fayer, S; Fearon, NM; Ferella, AD; Ferrari, C; Fieldhouse, N; Fischer, H; Flaecher, H; Flehmke, T; Flierman, M; Fraser, ED; Fruth, TMA; Fujikawa, K; Fulgione, W; Fuselli, C; Gaemers, P; Gaior, R; Gaitskell, RJ; Gallice, N; Galloway, M; Gao, F; Garroum, N; Geffre, A; Genovesi, J; Ghag, C; Ghosh, S; Giacomobono, R; Gibbons, R; Girard, F; Glade-Beucke, R; Glück, F; Gokhale, S; Grandi, L; Green, J; Grigat, J; van der Grinten, MGD; Grössle, R; Guan, H; Guida, M; Gyorgy, P; Haiston, JJ; Hall, CR; Hall, T; Hammann, R; Hannen, V; Hansmann-Menzemer, S; Hargittai, N; Hartigan-O'Connor, E; Haselschwardt, SJ; Hernandez, M; Hertel, SA; Higuera, A; Hils, C; Hiraoka, K; Hoetzsch, L; Hoferichter, M; Homenides, GJ; Hood, NF; Horn, M; Huang, DQ; Hughes, S; Hunt, D; Iacovacci, M; Itow, Y; Jacquet, E; Jakob, J; James, RS; Joerg, F; Jones, S; Kaboth, AC; Kahlert, F; Kamaha, AC; Kaminaga, Y; Kara, M; Kavrigin, P; Kazama, S; Keller, M; Kemp-Russell, P; Khaitan, D; Kharbanda, P; Kilminster, B; Kim, J; Kirk, R; Kleifges, M; Klute, M; Kobayashi, M; Kodroff, D; Koke, D; Kopec, A; Korolkova, EV; Kraus, H; Kravitz, S; Kreczko, L; von Krosigk, B; Kudryavtsev, VA; Kuger, F; Kurita, N; Landsman, H; Lang, RF; Lawes, C; Lee, J; Lehnert, B; Leonard, DS; Lesko, KT; Levinson, L; Li, A; Li, I; Li, S; Liang, S; Liang, Z; Lin, J; Lin, YT; Lindemann, S; Linden, S; Lindner, M; Lindote, A; Lippincott, WH; Liu, K; Loizeau, J; Lombardi, F; Lopes, JAM; Lopes, MI; Lorenzon, W; Loutit, M; Lu, C; Lucchetti, GM; Luce, T; Luitz, S; Ma, Y; Macolino, C; Mahlstedt, J; Maier, B; Majewski, PA; Manalaysay, A; Mancuso, A; Manenti, L; Mannino, RL; Marignetti, F; Marley, T; Marrodán Undagoitia, T; Martens, K; Masbou, J; Masson, E; Mastroianni, S; Maupin, C; McCabe, C; McCarthy, ME; McKinsey, DN; Mclaughlin, JB; Melchiorre, A; Menéndez, J; Messina, M; Miller, EH; Milosovic, B; Milutinovic, S; Miuchi, K; Miyata, R; Mizrachi, E; Molinario, A; Monteiro, CMB; Monzani, ME; Morå, K; Moriyama, S; Morrison, E; Morteau, E; Mosbacher, Y; Mount, BJ; Müller, J; Murdy, M; Murphy, ASJ; Murra, M; Naylor, A; Nelson, HN; Neves, F; Newstead, JL; Nguyen, A; Ni, K; O'Hare, C; Oberlack, U; Obradovic, M; Olcina, I; Oliver-Mallory, KC; Orebi Gann, GD; Orpwood, J; Ouahada, S; Oyulmaz, K; Paetsch, B; Palladino, KJ; Palmer, J; Pan, Y; Pandurovic, M; Pannifer, NJ; Paramesvaran, S; Patton, SJ; Pellegrini, Q; Penning, B; Pereira, G; Peres, R; Perry, E; Pershing, T; Piastra, F; Pienaar, J; Piepke, A; Pierre, M; Plante, G; Pollmann, TR; Principe, L; Qi, J; Qiao, K; Qie, Y; Qin, J; Radeka, S; Radeka, V; Rajado, M; García, DR; Ravindran, A; Razeto, A; Reichenbacher, J; Rhyne, CA; Richards, A; Rischbieter, GRC; Riyat, HS; Rosero, R; Roy, A; Rushton, T; Rynders, D; Saakyan, R; Sanchez, L; Sanchez-Lucas, P; Santone, D; dos Santos, JMF; Sartorelli, G; Sazzad, ABMR; Scaffidi, A; Schnee, RW; Schreiner, J; Schulte, P; Schulze Eissing, H; Schumann, M; Schwenck, A; Schwenk, A; Lavina, LS; Selvi, M; Semeria, F; Shagin, P; Sharma, S; Shaw, S; Shen, W; Sherman, L; Shi, S; Shi, SY; Shimada, T; Shutt, T; Silk, JJ; Silva, C; Simgen, H; Sinev, G; Singh, R; Siniscalco, J; Solmaz, M; Solovov, VN; Song, Z; Sorensen, P; Soria, J; Stanley, O; Steidl, M; Stenhouse, T; Stevens, A; Stifter, K; Sumner, TJ; Takeda, A; Tan, PL; Taylor, DJ; Taylor, WC; Thers, D; Thümmler, T; Tiedt, DR; Tönnies, F; Tong, Z; Toschi, F; Tovey, DR; Tranter, J; Trask, M; Trinchero, G; Tripathi, M; Tronstad, DR; Trotta, R; Tunnell, CD; Urquijo, P; Usón, A; Utoyama, M; Vaitkus, AC; Valentino, O; Valerius, K; Vecchi, S; Velan, V; Vetter, S; de Viveiros, L; Volta, G; Vorkapic, D; Wang, A; Wang, JJ; Wang, Y; Waters, D; Weerman, KM; Weinheimer, C; Weiss, M; Wenz, D; Whitis, TJ; Wild, K; Williams, M; Wilson, M; Wilson, ST; Wittweg, C; Wolf, J; Wolfs, FLH; Woodford, S; Woodward, D; Worcester, M; Wright, CJ; Wu, VHS; Wüstling, S; Wurm, M; Xia, Q; Xing, Y; Xu, D; Xu, J; Xu, Y; Xu, Z; Yamashita, M; Yang, L; Ye, J; Yeh, M; Yu, B; Zavattini, G; Zha, W; Zhong, M; Zuber, K

    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS   Vol. 52 ( 4 )   2025.4

     More details

    Publisher:Journal of Physics G Nuclear and Particle Physics  

    The XLZD collaboration is developing a two-phase xenon time projection chamber with an active mass of 60-80 t capable of probing the remaining weakly interacting massive particle-nucleon interaction parameter space down to the so-called neutrino fog. In this work we show that, based on the performance of currently operating detectors using the same technology and a realistic reduction of radioactivity in detector materials, such an experiment will also be able to competitively search for neutrinoless double beta decay in <sup>136</sup>Xe using a natural-abundance xenon target. XLZD can reach a 3σ discovery potential half-life of 5.7 × 10<sup>27</sup> years (and a 90% CL exclusion of 1.3 × 10<sup>28</sup> years) with 10 years of data taking, corresponding to a Majorana mass range of 7.3-31.3 meV (4.8-20.5 meV). XLZD will thus exclude the inverted neutrino mass ordering parameter space and will start to probe the normal ordering region for most of the nuclear matrix elements commonly considered by the community.

    DOI: 10.1088/1361-6471/adb900

    Open Access

    Web of Science

    Scopus

  6. Search for Light Dark Matter in Low-Energy Ionization Signals from XENONnT Open Access

    Aprile, E; Aalbers, J; Abe, K; Maouloud, SA; Althueser, L; Andrieu, B; Angelino, E; Martin, DA; Arneodo, F; Baudis, L; Bazyk, M; Bellagamba, L; Biondi, R; Bismark, A; Boese, K; Brown, A; Bruno, G; Budnik, R; Cai, C; Capelli, C; Cardoso, JMR; Chavez, APC; Colijn, AP; Conrad, J; Cuenca-García, JJ; D'Andrea, V; Garcia, LCD; Decowski, MP; Deisting, A; Di Donato, C; Di Gangi, P; Diglio, S; Eitel, K; el Morabit, S; Elykov, A; Ferella, AD; Ferrari, C; Fischer, H; Flehmke, T; Flierman, M; Fulgione, W; Fuselli, C; Gaemers, P; Gaior, R; Galloway, M; Gao, F; Ghosh, S; Giacomobono, R; Glade-Beucke, R; Grandi, L; Grigat, J; Guan, H; Guida, M; Gyorgy, P; Hammann, R; Higuera, A; Hils, C; Hoetzsch, L; Hood, NF; Iacovacci, M; Itow, Y; Jakob, J; Joerg, F; Kaminaga, Y; Kara, M; Kavrigin, P; Kazama, S; Kobayashi, M; Koke, D; Kopec, A; Landsman, H; Lang, RF; Levinson, L; Li, I; Li, S; Liang, S; Lin, YT; Lindemann, S; Lindner, M; Liu, K; Liu, M; Loizeau, J; Lombardi, F; Long, J; Lopes, JAM; Luce, T; Ma, Y; Macolino, C; Mahlstedt, J; Mancuso, A; Manenti, L; Marignetti, F; Undagoitia, TM; Martens, K; Masbou, J; Masson, E; Mastroianni, S; Melchiorre, A; Merz, J; Messina, M; Michael, A; Miuchi, K; Molinario, A; Moriyama, S; Mora, K; Mosbacher, Y; Murra, M; Müller, J; Ni, K; Oberlack, U; Paetsch, B; Pan, Y; Pellegrini, Q; Peres, R; Peters, C; Pienaar, J; Pierre, M; Plante, G; Pollmann, TR; Principe, L; Qi, J; Qin, J; García, DR; Rajado, M; Singh, R; Sanchez, L; dos Santos, JMF; Sarnoff, I; Sartorelli, G; Schreiner, J; Schulte, P; Eissing, HS; Schumann, M; Lavina, LS; Selvi, M; Semeria, F; Shagin, P; Shi, S; Shi, J; Silva, M; Simgen, H; Szyszka, C; Takeda, A; Tan, PL; Thers, D; Toschi, F; Trinchero, G; Tunnell, CD; Tönnies, F; Valerius, K; Vecchi, S; Vetter, S; Solar, FIV; Volta, G; Weinheimer, C; Weiss, M; Wenz, D; Wittweg, C; Wu, VHS; Xing, Y; Xu, D; Xu, Z; Yamashita, M; Yang, L; Ye, J; Yuan, L; Zavattini, G; Zhong, M

    PHYSICAL REVIEW LETTERS   Vol. 134 ( 16 ) page: 161004   2025.4

     More details

    Language:English   Publisher:Physical Review Letters  

    We report on a blinded search for dark matter with single- and few-electron signals in the first science run of XENONnT relying on a novel detector response framework that is physics model dependent. We derive 90% confidence upper limits for dark matter-electron interactions. Heavy and light mediator cases are considered for the standard halo model and dark matter up-scattered in the Sun. We set stringent new limits on dark matter-electron scattering via a heavy mediator with a mass within 10-20 MeV/c2 and electron absorption of axionlike particles and dark photons for mχ below 0.03 keV/c2.

    DOI: 10.1103/PhysRevLett.134.161004

    Open Access

    Web of Science

    Scopus

    PubMed

  7. First Search for Light Dark Matter in the Neutrino Fog with XENONnT Open Access

    Aprile, E; Aalbers, J; Abe, K; Maouloud, SA; Althueser, L; Andrieu, B; Angelino, E; Martin, DA; Arneodo, F; Baudis, L; Bazyk, M; Bellagamba, L; Biondi, R; Bismark, A; Boese, K; Brown, A; Bruno, G; Budnik, R; Cai, C; Capelli, C; Cardoso, JMR; Chávez, APC; Colijn, AP; Conrad, J; Cuenca-García, JJ; D'Andrea, V; Garcia, LCD; Decowski, MP; Deisting, A; Di Donato, C; Di Gangi, P; Diglio, S; Eitel, K; el Morabit, S; Elykov, A; Ferella, AD; Ferrari, C; Fischer, H; Flehmke, T; Flierman, M; Fulgione, W; Fuselli, C; Gaemers, P; Gaior, R; Galloway, M; Gao, F; Ghosh, S; Giacomobono, R; Glade-Beucke, R; Grandi, L; Grigat, J; Guan, H; Guida, M; Gyorgy, P; Hammann, R; Higuera, A; Hils, C; Hoetzsch, L; Hood, NF; Iacovacci, M; Itow, Y; Jakob, J; Joerg, F; Kaminaga, Y; Kara, M; Kavrigin, P; Kazama, S; Kobayashi, M; Koke, D; Kopec, A; Landsman, H; Lang, RF; Levinson, L; Li, I; Li, S; Liang, S; Lin, YT; Lindemann, S; Lindner, M; Liu, K; Liu, M; Loizeau, J; Lombardi, F; Long, J; Lopes, JAM; Luce, T; Ma, Y; Macolino, C; Mahlstedt, J; Mancuso, A; Manenti, L; Marignetti, F; Undagoitia, TM; Martens, K; Masbou, J; Masson, E; Mastroianni, S; Melchiorre, A; Merz, J; Messina, M; Michael, A; Miuchi, K; Molinario, A; Moriyama, S; Morå, K; Mosbacher, Y; Murra, M; Müller, J; Ni, K; Oberlack, U; Paetsch, B; Pan, Y; Pellegrini, Q; Peres, R; Peters, C; Pienaar, J; Pierre, M; Plante, G; Pollmann, TR; Principe, L; Qi, J; Qin, J; García, DR; Rajado, M; Singh, R; Sanchez, L; dos Santos, JMF; Sarnoff, I; Sartorelli, G; Schreiner, J; Schulte, P; Eissing, HS; Schumann, M; Lavina, LS; Selvi, M; Semeria, F; Shagin, P; Shi, S; Shi, J; Silva, M; Simgen, H; Szyszka, C; Takeda, A; Tan, PL; Thers, D; Toschi, F; Trinchero, G; Tunnell, CD; Tönnies, F; Valerius, K; Vecchi, S; Vetter, S; Solar, FIV; Volta, G; Weinheimer, C; Weiss, M; Wenz, D; Wittweg, C; Wu, VHS; Xing, Y; Xu, D; Xu, Z; Yamashita, M; Yang, L; Ye, J; Yuan, L; Zavattini, G; Zhong, M

    PHYSICAL REVIEW LETTERS   Vol. 134 ( 11 ) page: 111802   2025.3

     More details

    Language:English   Publisher:Physical Review Letters  

    We search for dark matter (DM) with a mass [3,12] GeV/c2 using an exposure of 3.51 tonne year with the XENONnT experiment. We consider spin-independent DM-nucleon interactions mediated by a heavy or light mediator, spin-dependent DM-neutron interactions, momentum-dependent DM scattering, and mirror DM. Using a lowered energy threshold compared to the previous weakly interacting massive particle search, a blind analysis of [0.5, 5.0] keV nuclear recoil events reveals no significant signal excess over the background. XENONnT excludes spin-independent DM-nucleon cross sections >2.5×10-45 cm2 at 90% confidence level for 6 GeV/c2 DM. In the considered mass range, the DM sensitivity approaches the "neutrino fog,"the limitation where neutrinos produce a signal that is indistinguishable from that of light DM-xenon nucleus scattering.

    DOI: 10.1103/PhysRevLett.134.111802

    Open Access

    Web of Science

    Scopus

    PubMed

  8. XENONnT analysis: Signal reconstruction, calibration, and event selection Open Access

    Aprile E., Aalbers J., Abe K., Ahmed Maouloud S., Althueser L., Andrieu B., Angelino E., Angevaare J.R., Antón Martin D., Arneodo F., Baudis L., Bazyk M., Bellagamba L., Biondi R., Bismark A., Boese K., Brown A., Bruno G., Budnik R., Cardoso J.M.R., Cimental Chávez A.P., Colijn A.P., Conrad J., Cuenca-García J.J., D'Andrea V., Daniel Garcia L.C., Decowski M.P., Deisting A., Di Donato C., Di Gangi P., Diglio S., Eitel K., Elykov A., Ferella A.D., Ferrari C., Fischer H., Flehmke T., Flierman M., Fulgione W., Fuselli C., Gaemers P., Gaior R., Galloway M., Gao F., Ghosh S., Giacomobono R., Glade-Beucke R., Grandi L., Grigat J., Guan H., Guida M., Gyorgy P., Hammann R., Higuera A., Hils C., Hoetzsch L., Hood N.F., Iacovacci M., Itow Y., Jakob J., Joerg F., Kaminaga Y., Kara M., Kavrigin P., Kazama S., Kobayashi M., Koke D., Kopec A., Kuger F., Landsman H., Lang R.F., Levinson L., Li I., Li S., Liang S., Lin Y.T., Lindemann S., Lindner M., Liu K., Loizeau J., Lombardi F., Long J., Lopes J.A.M., Luce T., Ma Y., Macolino C., Mahlstedt J., Mancuso A., Manenti L., Marignetti F., Marrodán Undagoitia T., Martens K., Masbou J., Masson E., Mastroianni S., Melchiorre A., Merz J., Messina M., Michael A., Miuchi K.

    Physical Review D   Vol. 111 ( 6 )   2025.3

     More details

    Publisher:Physical Review D  

    The XENONnT experiment, located at the INFN Laboratori Nazionali del Gran Sasso, Italy, features a 5.9 tonne liquid xenon time projection chamber surrounded by an instrumented neutron veto, all of which is housed within a muon veto water tank. Because of extensive shielding and advanced purification to mitigate natural radioactivity, an exceptionally low background level of (15.8±1.3) events/(tonne·year·keV) in the (1,30) keV region is reached in the inner part of the time projection chamber. XENONnT is, thus, sensitive to a wide range of rare phenomena related to dark matter and neutrino interactions, both within and beyond the Standard Model of particle physics, with a focus on the direct detection of dark matter in the form of weakly interacting massive particles. From May 2021 to December 2021, XENONnT accumulated data in rare-event search mode with a total exposure of one tonne·year. This paper provides a detailed description of the signal reconstruction methods, event selection procedure, and detector response calibration, as well as an overview of the detector performance in this time frame. This work establishes the foundational framework for the "blind analysis"methodology we are using when reporting XENONnT physics results.

    DOI: 10.1103/PhysRevD.111.062006

    Open Access

    Scopus

  9. First Indication of Solar <SUP>8</SUP>B Neutrinos via Coherent Elastic Neutrino-Nucleus Scattering with XENONnT Open Access

    Aprile, E; Aalbers, J; Abe, K; Maouloud, SA; Althueser, L; Andrieu, B; Angelino, E; Martin, DA; Arneodo, F; Baudis, L; Bazyk, M; Bellagamba, L; Biondi, R; Bismark, A; Boese, K; Brown, A; Bruno, G; Budnik, R; Cai, C; Capelli, C; Cardoso, JMR; Chávez, APC; Colijn, AP; Conrad, J; Cuenca-García, JJ; D'Andrea, V; Garcia, LCD; Decowski, MP; Deisting, A; Di Donato, C; Di Gangi, P; Diglio, S; Eitel, K; Elykov, A; Ferella, AD; Ferrari, C; Fischer, H; Flehmke, T; Flierman, M; Fulgione, W; Fuselli, C; Gaemers, P; Gaior, R; Galloway, M; Gao, F; Ghosh, S; Giacomobono, R; Glade-Beucke, R; Grandi, L; Grigat, J; Guan, H; Guida, M; Gyorgy, P; Hammann, R; Higuera, A; Hils, C; Hoetzsch, L; Hood, NF; Iacovacci, M; Itow, Y; Jakob, J; Joerg, F; Kaminaga, Y; Kara, M; Kavrigin, P; Kazama, S; Kobayashi, M; Koke, D; Kopec, A; Kuger, F; Landsman, H; Lang, RF; Levinson, L; Li, I; Li, S; Liang, S; Lin, YT; Lindemann, S; Lindner, M; Liu, K; Liu, M; Loizeau, J; Lombardi, F; Long, J; Lopes, JAM; Luce, T; Ma, Y; Macolino, C; Mahlstedt, J; Mancuso, A; Manenti, L; Marignetti, F; Undagoitia, TM; Martens, K; Masbou, J; Masson, E; Mastroianni, S; Melchiorre, A; Merz, J; Messina, M; Michael, A; Miuchi, K; Molinario, A; Moriyama, S; Morå, K; Mosbacher, Y; Murra, M; Müller, J; Ni, K; Oberlack, U; Paetsch, B; Pan, Y; Pellegrini, Q; Peres, R; Peters, C; Pienaar, J; Pierre, M; Plante, G; Pollmann, TR; Principe, L; Qi, J; Qin, J; García, DR; Rajado, M; Singh, R; Sanchez, L; dos Santos, JMF; Sarnoff, I; Sartorelli, G; Schreiner, J; Schulte, P; Eissing, HS; Schumann, M; Lavina, LS; Selvi, M; Semeria, F; Shagin, P; Shi, S; Shi, J; Silva, M; Simgen, H; Takeda, A; Tan, PL; Thers, D; Toschi, F; Trinchero, G; Tunnell, CD; Tönnies, F; Valerius, K; Vecchi, S; Vetter, S; Solar, FIV; Volta, G; Weinheimer, C; Weiss, M; Wenz, D; Wittweg, C; Wu, VHS; Xing, Y; Xu, D; Xu, Z; Yamashita, M; Yang, L; Ye, J; Yuan, L; Zavattini, G; Zhong, M

    PHYSICAL REVIEW LETTERS   Vol. 133 ( 19 ) page: 191002   2024.11

     More details

    Language:English   Publisher:Physical Review Letters  

    We present the first measurement of nuclear recoils from solar B8 neutrinos via coherent elastic neutrino-nucleus scattering with the XENONnT dark matter experiment. The central detector of XENONnT is a low-background, two-phase time projection chamber with a 5.9 t sensitive liquid xenon target. A blind analysis with an exposure of 3.51 t×yr resulted in 37 observed events above 0.5 keV, with (26.4-1.3+1.4) events expected from backgrounds. The background-only hypothesis is rejected with a statistical significance of 2.73σ. The measured B8 solar neutrino flux of (4.7-2.3+3.6)×106 cm-2 s-1 is consistent with results from the Sudbury Neutrino Observatory. The measured neutrino flux-weighted CEνNS cross section on Xe of (1.1-0.5+0.8)×10-39 cm2 is consistent with the Standard Model prediction. This is the first direct measurement of nuclear recoils from solar neutrinos with a dark matter detector.

    DOI: 10.1103/PhysRevLett.133.191002

    Open Access

    Web of Science

    Scopus

    PubMed

  10. Development of a low-noise SiPM for the DARWIN experiment

    Sakamoto S., Hasegawa T., Itow Y., Kazama S., Kobayashi M., Yamashita M.

    Proceedings of Science   Vol. 444   2024.9

     More details

    Publisher:Proceedings of Science  

    The DARWIN is a future direct dark matter search experiment with 50 tons of liquid xenon (LXe) aiming to discover Weakly Interacting Massive Particles (WIMPs) by detecting scintillation photons generated by the interaction between WIMPs and xenon nuclei. SiPMs (Silicon PhotoMultipliers) have low radioactivity and good photo-detection efficiency for vacuum ultraviolet light. Therefore, SiPMs offer a potential alternative to photomultiplier tubes (PMTs) presently utilized in dark matter experiments with LXe. Nevertheless, SiPMs currently suffer from a dark count rate (DCR) at LXe temperatures that is approximately O(10) times higher than that of PMTs. In this study, we developed a new VUV-sensitive SiPM with lowered electric field for avalanche amplification, and demonstrated that the new SiPMs have 6.5–8.6 times lower DCR at LXe temperatures than that of the conventional SiPMs, achieving a DCR of 0.035–0.069 Hz/mm<sup>2</sup> depending on over-voltages.

    Scopus

  11. The XENONnT dark matter experiment Open Access

    Aprile, E; Aalbers, J; Abe, K; Maouloud, SA; Althueser, L; Andrieu, B; Angelino, E; Angevaare, JR; Antochi, VC; Martin, DA; Arneodo, F; Balata, M; Baudis, L; Baxter, AL; Bazyk, M; Bellagamba, L; Biondi, R; Bismark, A; Brookes, EJ; Brown, A; Bruenner, S; Bruno, G; Budnik, R; Bui, TK; Cai, C; Cardoso, JMR; Cassese, F; Chiarini, A; Cichon, D; Chavez, APC; Colijn, AP; Conrad, J; Corrieri, R; Cuenca-Garcia, JJ; Cussonneau, JP; Dadoun, O; D'Andrea, V; Decowski, MP; De Fazio, B; Gangi, PD; Diglio, S; Disdier, JM; Douillet, D; Eitel, K; Elykov, A; Farrell, S; Ferella, AD; Ferrari, C; Fischer, H; Flierman, M; Form, S; Front, D; Fulgione, W; Fuselli, C; Gaemers, P; Gaior, R; Rosso, AG; Galloway, M; Gao, F; Gardner, R; Garroum, N; Glade-Beucke, R; Grandi, L; Grigat, J; Guan, H; Guerzoni, M; Guida, M; Hammann, R; Higuera, A; Hils, C; Hoetzsch, L; Hood, NF; Howlett, J; Huhmann, C; Iacovacci, M; Iaquaniello, G; Iven, L; Itow, Y; Jakob, J; Joerg, F; Joy, A; Kara, M; Kavrigin, P; Kazama, S; Kobayashi, M; Koltman, G; Kopec, A; Kuger, F; Landsman, H; Lang, RF; Levinson, L; Li, I; Li, S; Liang, S; Lindemann, S; Lindner, M; Liu, K; Loizeau, J; Lombardi, F; Long, J; Lopes, JAM; Ma, Y; Macolino, C; Mahlstedt, J; Mancuso, A; Manenti, L; Marignetti, F; Undagoitia, TM; Martella, P; Martens, K; Masbou, J; Masson, D; Masson, E; Mastroianni, S; Mele, E; Messina, M; Michinelli, R; Miuchi, K; Molinario, A; Moriyama, S; Mora, K; Mosbacher, Y; Murra, M; Mueller, J; Ni, K; Nisi, S; Oberlack, U; Orlandi, D; Othegraven, R; Paetsch, B; Palacio, J; Parlati, S; Paschos, P; Pellegrini, Q; Peres, R; Peters, C; Pienaar, J; Pierre, M; Plante, G; Pollmann, TR; Qi, J; Qin, J; Garcia, DR; Rynge, M; Shi, J; Singh, R; Sanchez, L; dos Santos, JMF; Sarnoff, I; Sartorelli, G; Schreiner, J; Schulte, D; Schulte, P; Eissing, HS; Schumann, M; Lavina, LS; Selvi, M; Semeria, F; Shagin, P; Shi, S; Shockley, E; Silva, M; Simgen, H; Stephen, J; Stern, M; Stillwell, BK; Takeda, A; Tan, PL; Tatananni, D; Terliuk, A; Thers, D; Toschi, F; Trinchero, G; Tunnell, C; Tönnies, F; Valerius, K; Volta, G; Weinheimer, C; Weiss, M; Wenz, D; Westermann, J; Wittweg, C; Wolf, T; Wu, VHS; Xing, Y; Xu, D; Xu, Z; Yamashita, M; Yang, L; Ye, J; Yuan, L; Zavattini, G; Zhong, M; Zhu, T

    EUROPEAN PHYSICAL JOURNAL C   Vol. 84 ( 8 ) page: 784   2024.8

     More details

    Language:English   Publisher:European Physical Journal C  

    The multi-staged XENON program at INFN Laboratori Nazionali del Gran Sasso aims to detect dark matter with two-phase liquid xenon time projection chambers of increasing size and sensitivity. The XENONnT experiment is the latest detector in the program, planned to be an upgrade of its predecessor XENON1T. It features an active target of 5.9 tonnes of cryogenic liquid xenon (8.5 tonnes total mass in cryostat). The experiment is expected to extend the sensitivity to WIMP dark matter by more than an order of magnitude compared to XENON1T, thanks to the larger active mass and the significantly reduced background, improved by novel systems such as a radon removal plant and a neutron veto. This article describes the XENONnT experiment and its sub-systems in detail and reports on the detector performance during the first science run.

    DOI: 10.1140/epjc/s10052-024-12982-5

    Open Access

    Web of Science

    Scopus

    PubMed

  12. Offline tagging of radon-induced backgrounds in XENON1T and applicability to other liquid xenon time projection chambers Open Access

    Aprile, E; Aalbers, J; Abe, K; Maouloud, SA; Althueser, L; Andrieu, B; Angelino, E; Angevaare, JR; Martin, DA; Arneodo, F; Baudis, L; Baxter, AL; Bazyk, M; Bellagamba, L; Biondi, R; Bismark, A; Brookes, EJ; Brown, A; Bruno, G; Budnik, R; Bui, TK; Cardoso, JMR; Chavez, APC; Colijn, AP; Conrad, J; Cuenca-García, JJ; D'Andrea, V; Garcia, LCD; Decowski, MP; Di Donato, C; Di Gangi, P; Diglio, S; Eitel, K; Elykov, A; Ferella, AD; Ferrari, C; Fischer, H; Flehmke, T; Flierman, M; Fulgione, W; Fuselli, C; Gaemers, P; Gaior, R; Galloway, M; Gao, F; Ghosh, S; Glade-Beucke, R; Grandi, L; Grigat, J; Guan, H; Guida, M; Hammann, R; Higuera, A; Hils, C; Hoetzsch, L; Hood, NF; Iacovacci, M; Itow, Y; Jakob, J; Joerg, F; Joy, A; Kaminaga, Y; Kara, M; Kavrigin, P; Kazama, S; Kobayashi, M; Kopec, A; Kuger, F; Landsman, H; Lang, RF; Levinson, L; Li, I; Li, S; Liang, S; Lin, YT; Lindemann, S; Lindner, M; Liu, K; Loizeau, J; Lombardi, F; Long, J; Lopes, JAM; Luce, T; Ma, Y; Macolino, C; Mahlstedt, J; Mancuso, A; Manenti, L; Marignetti, F; Undagoitia, TM; Martens, K; Masbou, J; Masson, E; Mastroianni, S; Melchiorre, A; Messina, M; Michael, A; Miuchi, K; Molinario, A; Moriyama, S; Morå, K; Mosbacher, Y; Murra, M; Müller, J; Ni, K; Oberlack, U; Paetsch, B; Palacio, J; Pan, Y; Pellegrini, Q; Peres, R; Peters, C; Pienaar, J; Pierre, M; Plante, G; Pollmann, TR; Principe, L; Qi, J; Qin, J; García, DR; Rajado, M; Shi, J; Singh, R; Sanchez, L; dos Santos, JMF; Sarnoff, I; Sartorelli, G; Schreiner, J; Schulte, D; Schulte, P; Eissing, HS; Schumann, M; Lavina, LS; Selvi, M; Semeria, F; Shagin, P; Shi, S; Silva, M; Simgen, H; Takeda, A; Tan, PL; Terliuk, A; Thers, D; Toschi, F; Trinchero, G; Tunnell, C; Tönnies, F; Valerius, K; Vecchi, S; Vetter, S; Volta, G; Weinheimer, C; Weiss, M; Wenz, D; Wittweg, C; Wolf, T; Wu, VHS; Xing, Y; Xu, D; Xu, Z; Yamashita, M; Yang, L; Ye, J; Yuan, L; Zavattini, G; Zhong, M; Zhu, T

    PHYSICAL REVIEW D   Vol. 110 ( 1 )   2024.7

     More details

    Publisher:Physical Review D  

    This paper details the first application of a software tagging algorithm to reduce radon-induced backgrounds in liquid noble element time projection chambers, such as XENON1T and XENONnT. The convection velocity field in XENON1T was mapped out using Rn222 and Po218 events, and the rms convection speed was measured to be 0.30±0.01 cm/s. Given this velocity field, Pb214 background events can be tagged when they are followed by Bi214 and Po214 decays, or preceded by Po218 decays. This was achieved by evolving a point cloud in the direction of a measured convection velocity field, and searching for Bi214 and Po214 decays or Po218 decays within a volume defined by the point cloud. In XENON1T, this tagging system achieved a Pb214 background reduction of 6.2-0.9+0.4% with an exposure loss of 1.8±0.2%, despite the timescales of convection being smaller than the relevant decay times. We show that the performance can be improved in XENONnT, and that the performance of such a software-tagging approach can be expected to be further improved in a diffusion-limited scenario. Finally, a similar method might be useful to tag the cosmogenic Xe137 background, which is relevant to the search for neutrinoless double-beta decay.

    DOI: 10.1103/PhysRevD.110.012011

    Open Access

    Web of Science

    Scopus

  13. Effective field theory and inelastic dark matter results from XENON1T Open Access

    Aprile, E; Abe, K; Agostini, F; Maouloud, SA; Althueser, L; Andrieu, B; Angelino, E; Angevaare, JR; Antochi, VC; Martin, DA; Arneodo, F; Baudis, L; Baxter, AL; Bellagamba, L; Biondi, R; Bismark, A; Brown, A; Bruenner, S; Bruno, G; Budnik, R; Cai, C; Capelli, C; Cardoso, JMR; Cichon, D; Clark, M; Colijn, AP; Conrad, J; Cuenca-García, JJ; Cussonneau, JP; D'Andrea, V; Decowski, MP; Di Gangi, P; Di Pede, S; Di Giovanni, A; Di Stefano, R; Diglio, S; Eitel, K; Elykov, A; Farrell, S; Ferella, AD; Fischer, H; Fulgione, W; Gaemers, P; Gaior, R; Rosso, AG; Galloway, M; Gao, F; Glade-Beucke, R; Grandi, L; Grigat, J; Guida, M; Hammann, R; Higuera, A; Hils, C; Hoetzsch, L; Howlett, J; Iacovacci, M; Itow, Y; Jakob, J; Joerg, F; Joy, A; Kato, N; Kara, M; Kavrigin, P; Kazama, S; Kobayashi, M; Koltman, G; Kopec, A; Landsman, H; Lang, RF; Levinson, L; Li, I; Li, S; Liang, S; Lindemann, S; Lindner, M; Liu, K; Loizeau, J; Lombardi, F; Long, J; Lopes, JAM; Ma, Y; Macolino, C; Mahlstedt, J; Mancuso, A; Manenti, L; Manfredini, A; Marignetti, F; Undagoitia, TM; Martens, K; Masbou, J; Masson, D; Masson, E; Mastroianni, S; Messina, M; Miuchi, K; Mizukoshi, K; Molinario, A; Moriyama, S; Morå, K; Mosbacher, Y; Murra, M; Müller, J; Ni, K; Oberlack, U; Paetsch, B; Palacio, J; Peres, R; Pienaar, J; Pierre, M; Pizzella, V; Plante, G; Qi, J; Qin, J; García, DR; Reichard, S; Rocchetti, A; Rupp, N; Sanchez, L; dos Santos, JMF; Sarnoff, I; Sartorelli, G; Schreiner, J; Schulte, D; Schulte, P; Eissing, HS; Schumann, M; Lavina, LS; Selvi, M; Semeria, F; Shagin, P; Shi, S; Shockley, E; Silva, M; Simgen, H; Takeda, A; Tan, PL; Terliuk, A; Thers, D; Toschi, F; Trinchero, G; Tunnell, C; Tönnies, F; Valerius, K; Volta, G; Wei, Y; Weinheimer, C; Weiss, M; Wenz, D; Wittweg, C; Wolf, T; Xu, D; Xu, Z; Yamashita, M; Yang, L; Ye, J; Yuan, L; Zavattini, G; Zhong, M; Zhu, T

    PHYSICAL REVIEW D   Vol. 109 ( 11 )   2024.6

     More details

    Publisher:Physical Review D  

    In this work, we expand on the XENON1T nuclear recoil searches to study the individual signals of dark matter interactions from operators up to dimension eight in a chiral effective field theory (ChEFT) and a model of inelastic dark matter (iDM). We analyze data from two science runs of the XENON1T detector totaling 1 t×yr exposure. For these analyses, we extended the region of interest from [4.9,40.9] keVNR to [4.9,54.4] keVNR to enhance our sensitivity for signals that peak at nonzero energies. We show that the data are consistent with the background-only hypothesis, with a small background overfluctuation observed peaking between 20 and 50 keVNR, resulting in a maximum local discovery significance of 1.7σ for the Vector - Vectorstrange ChEFT channel for a dark matter particle of 70 GeV/c2 and 1.8σ for an iDM particle of 50 GeV/c2 with a mass splitting of 100 keV/c2. For each model, we report 90% confidence level upper limits. We also report upper limits on three benchmark models of dark matter interaction using ChEFT where we investigate the effect of isospin-breaking interactions. We observe rate-driven cancellations in regions of the isospin-breaking couplings, leading to up to 6 orders of magnitude weaker upper limits with respect to the isospin-conserving case.

    DOI: 10.1103/PhysRevD.109.112017

    Open Access

    Web of Science

    Scopus

  14. Design and performance of the field cage for the XENONnT experiment Open Access

    Aprile, E; Abe, K; Maouloud, SA; Althueser, L; Andrieu, B; Angelino, E; Angevaare, JR; Antochi, VC; Martin, DA; Arneodo, F; Baudis, L; Baxter, AL; Bazyk, M; Bellagamba, L; Biondi, R; Bismark, A; Brookes, EJ; Brown, A; Bruenner, S; Bruno, G; Budnik, R; Bui, TK; Cai, C; Cardoso, JMR; Cichon, D; Chávez, APC; Colijn, AP; Conrad, J; Cuenca-Garcia, JJ; Cussonneau, JP; D'Andrea, V; Decowski, MP; Di Gangi, P; Diglio, S; Eitel, K; Elykov, A; Farrell, S; Ferella, AD; Ferrari, C; Fischer, H; Flierman, M; Fulgione, W; Fuselli, C; Gaemers, P; Gaior, R; Rosso, AG; Galloway, M; Gao, F; Glade-Beucke, R; Grandi, L; Grigat, J; Guan, H; Guida, M; Hammann, R; Higuera, A; Hils, C; Hoetzsch, L; Hood, NF; Howlett, J; Iacovacci, M; Itow, Y; Jakob, J; Joerg, F; Joy, A; Kara, M; Kavrigin, P; Kazama, S; Kobayashi, M; Koltman, G; Kopec, A; Kuger, F; Landsman, H; Lang, RF; Levinson, L; Li, I; Li, S; Liang, S; Lindemann, S; Lindner, M; Liu, K; Loizeau, J; Lombardi, F; Long, J; Lopes, JAM; Ma, Y; Macolino, C; Mahlstedt, J; Mancuso, A; Manenti, L; Marignetti, F; Undagoitia, TM; Martens, K; Masbou, J; Masson, D; Masson, E; Mastroianni, S; Messina, M; Miuchi, K; Molinario, A; Moriyama, S; Mora, K; Mosbacher, Y; Murra, M; Müller, J; Ni, K; Oberlack, U; Paetsch, B; Palacio, J; Pellegrini, Q; Peres, R; Peters, C; Pienaar, J; Pierre, M; Plante, G; Pollmann, TR; Qi, J; Qin, J; Garcia, DR; Sarcevic, N; Shi, J; Singh, R; Sanchez, L; dos Santos, JMF; Sarnoff, I; Sartorelli, G; Schreiner, J; Schulte, D; Schulte, P; Eissing, HS; Schumann, M; Lavina, LS; Selvi, M; Semeria, F; Shagin, P; Shi, S; Shockley, E; Silva, M; Simgen, H; Takeda, A; Tan, PL; Terliuk, A; Thers, D; Toschi, F; Trinchero, G; Tunnell, C; Tönnies, F; Valerius, K; Volta, G; Weinheimer, C; Weiss, M; Wenz, D; Wittweg, C; Wolf, T; Wu, VHS; Xing, Y; Xu, D; Xu, Z; Yamashita, M; Yang, L; Ye, J; Yuan, L; Zavattini, G; Zhong, M; Zhu, T

    EUROPEAN PHYSICAL JOURNAL C   Vol. 84 ( 2 )   2024.2

     More details

    Publisher:European Physical Journal C  

    The precision in reconstructing events detected in a dual-phase time projection chamber depends on an homogeneous and well understood electric field within the liquid target. In the XENONnT TPC the field homogeneity is achieved through a double-array field cage, consisting of two nested arrays of field shaping rings connected by an easily accessible resistor chain. Rather than being connected to the gate electrode, the topmost field shaping ring is independently biased, adding a degree of freedom to tune the electric field during operation. Two-dimensional finite element simulations were used to optimize the field cage, as well as its operation. Simulation results were compared to <sup>83m</sup>Krcalibration data. This comparison indicates an accumulation of charge on the panels of the TPC which is constant over time, as no evolution of the reconstructed position distribution of events is observed. The simulated electric field was then used to correct the charge signal for the field dependence of the charge yield. This correction resolves the inconsistent measurement of the drift electron lifetime when using different calibrations sources and different field cage tuning voltages.

    DOI: 10.1140/epjc/s10052-023-12296-y

    Open Access

    Web of Science

    Scopus

  15. Cosmogenic background simulations for neutrinoless double beta decay with the DARWIN observatory at various underground sites Open Access

    Adrover, M; Althueser, L; Andrieu, B; Angelino, E; Angevaare, JR; Antunovic, B; Aprile, E; Babicz, M; Bajpai, D; Barberio, E; Baudis, L; Bazyk, M; Bell, N; Bellagamba, L; Biondi, R; Biondi, Y; Bismark, A; Boehm, C; Breskin, A; Brookes, EJ; Brown, A; Bruno, G; Budnik, R; Capelli, C; Cardoso, JMR; Chauvin, A; Chavez, APC; Colijn, AP; Conrad, J; Cuenca-García, JJ; D'Andrea, V; Decowski, MP; Deisting, A; Di Gangi, P; Diglio, S; Doerenkamp, M; Drexlin, G; Eitel, K; Elykov, A; Engel, R; Farrell, S; Ferella, AD; Ferrari, C; Fischer, H; Flierman, M; Fulgione, W; Gaemers, P; Gaior, R; Galloway, M; Garroum, N; Ghosh, S; Girard, F; Glade-Beucke, R; Glück, F; Grandi, L; Grigat, J; Grössle, R; Guan, H; Guida, M; Hammann, R; Hannen, V; Hansmann-Menzemer, S; Hargittai, N; Hasegawa, T; Hils, C; Higuera, A; Hiraoka, K; Hoetzsch, L; Iacovacci, M; Itow, Y; Jakob, J; Jörg, F; Kara, M; Kavrigin, P; Kazama, S; Keller, M; Kilminster, B; Kleifges, M; Kobayashi, M; Kopec, A; von Krosigk, B; Kuger, F; Landsman, H; Lang, RF; Li, I; Li, S; Liang, S; Lindemann, S; Lindner, M; Lombardi, F; Loizeau, J; Luce, T; Ma, Y; Macolino, C; Mahlstedt, J; Mancuso, A; Undagoitia, TM; Lopes, JAM; Marignetti, F; Martens, K; Masbou, J; Mastroianni, S; Milutinovic, S; Miuchi, K; Miyata, R; Molinario, A; Monteiro, CMB; Morå, K; Morteau, E; Mosbacher, Y; Müller, J; Murra, M; Newstead, JL; Ni, K; Oberlack, UG; Ostrovskiy, I; Paetsch, B; Pandurovic, M; Pellegrini, Q; Peres, R; Pienaar, J; Pierre, M; Piotter, M; Plante, G; Pollmann, TR; Principe, L; Qi, J; Qin, J; Silva, MR; García, DR; Razeto, A; Sakamoto, S; Sanchez, L; Sanchez-Lucas, P; dos Santos, JMF; Sartorelli, G; Scaffidi, A; Schulte, P; Schultz-Coulon, HC; Eissing, HS; Schumann, M; Lavina, LS; Selvi, M; Semeria, F; Shagin, P; Sharma, S; Shen, W; Silva, M; Simgen, H; Singh, R; Solmaz, M; Stanley, O; Steidl, M; Tan, PL; Terliuk, A; Thers, D; Thuemmler, T; Toennies, F; Toschi, F; Trinchero, G; Trotta, R; Tunnell, C; Urquijo, P; Valerius, K; Vecchi, S; Vetter, S; Volta, G; Vorkapic, D; Wang, W; Weerman, KM; Weinheimer, C; Weiss, M; Wenz, D; Wittweg, C; Wolf, J; Wolf, T; Wu, VHS; Wurm, M; Xing, Y; Yamashita, M; Ye, J; Zavattini, G; Zuber, K

    EUROPEAN PHYSICAL JOURNAL C   Vol. 84 ( 1 )   2024.1

     More details

    Publisher:European Physical Journal C  

    Xenon dual-phase time projections chambers (TPCs) have proven to be a successful technology in studying physical phenomena that require low-background conditions. With 40t of liquid xenon (LXe) in the TPC baseline design, DARWIN will have a high sensitivity for the detection of particle dark matter, neutrinoless double beta decay (0 ν β β), and axion-like particles (ALPs). Although cosmic muons are a source of background that cannot be entirely eliminated, they may be greatly diminished by placing the detector deep underground. In this study, we used Monte Carlo simulations to model the cosmogenic background expected for the DARWIN observatory at four underground laboratories: Laboratori Nazionali del Gran Sasso (LNGS), Sanford Underground Research Facility (SURF), Laboratoire Souterrain de Modane (LSM) and SNOLAB. We present here the results of simulations performed to determine the production rate of <sup>137</sup> Xe, the most crucial isotope in the search for 0 ν β β of <sup>136</sup> Xe. Additionally, we explore the contribution that other muon-induced spallation products, such as other unstable xenon isotopes and tritium, may have on the cosmogenic background.

    DOI: 10.1140/epjc/s10052-023-12298-w

    Open Access

    Web of Science

    Scopus

  16. Search for events in XENON1T associated with gravitational waves Open Access

    Aprile, E; Abe, K; Maouloud, SA; Althueser, L; Andrieu, B; Angelino, E; Angevaare, JR; Antochi, VC; Martin, DA; Arneodo, F; Baudis, L; Baxter, AL; Bazyk, M; Bellagamba, L; Biondi, R; Bismark, A; Brookes, EJ; Brown, A; Bruenner, S; Bruno, G; Budnik, R; Bui, TK; Cai, C; Cardoso, JMR; Chavez, APC; Colijn, AP; Conrad, J; Cuenca-García, JJ; D'Andrea, V; Decowski, MP; Di Gangi, P; Diglio, S; Eitel, K; Elykov, A; Farrell, S; Ferella, AD; Ferrari, C; Fischer, H; Flierman, M; Fulgione, W; Fuselli, C; Gaemers, P; Gaior, R; Rosso, AG; Galloway, M; Gao, F; Glade-Beucke, R; Grandi, L; Grigat, J; Guan, H; Guida, M; Hammann, R; Higuera, A; Hils, C; Hoetzsch, L; Hood, NF; Howlett, J; Iacovacci, M; Itow, Y; Jakob, J; Joerg, F; Joy, A; Kara, M; Kavrigin, P; Kazama, S; Kobayashi, M; Koltman, G; Kopec, A; Kuger, F; Landsman, H; Lang, RF; Carlos, DGL; Levinson, L; Li, I; Li, S; Liang, S; Lindemann, S; Lindner, M; Liu, K; Loizeau, J; Lombardi, F; Long, J; Lopes, JAM; Ma, Y; Macolino, C; Mahlstedt, J; Mancuso, A; Manenti, L; Marignetti, F; Undagoitia, TM; Martens, K; Masbou, J; Masson, D; Masson, E; Mastroianni, S; Messina, M; Miuchi, K; Molinario, A; Moriyama, S; Morå, K; Mosbacher, Y; Murra, M; Müller, J; Ni, K; Oberlack, U; Paetsch, B; Palacio, J; Pellegrini, Q; Peres, R; Peters, C; Pienaar, J; Pierre, M; Plante, G; Pollmann, TR; Qi, J; Qin, J; García, DR; Shi, J; Singh, R; Sanchez, L; dos Santos, JMF; Sarnoff, I; Sartorelli, G; Schreiner, J; Schulte, D; Schulte, P; Eissing, HS; Schumann, M; Lavina, LS; Selvi, M; Semeria, F; Shagin, P; Shi, S; Shockley, E; Silva, M; Simgen, H; Takeda, A; Tan, PL; Terliuk, A; Thers, D; Toschi, F; Trinchero, G; Tunnell, C; Tönnies, F; Valerius, K; Volta, G; Weinheimer, C; Weiss, M; Wenz, D; Wittweg, C; Wolf, T; Wu, VHS; Xing, Y; Xu, D; Xu, Z; Yamashita, M; Yang, L; Ye, J; Yuan, L; Zavattini, G; Zhong, M; Zhu, T

    PHYSICAL REVIEW D   Vol. 108 ( 7 )   2023.10

     More details

    Publisher:Physical Review D  

    We perform a blind search for particle signals in the XENON1T dark matter detector that occur close in time to gravitational-wave signals in the LIGO and Virgo observatories. No particle signal is observed in the nuclear recoil and electronic recoil channels within ±500 seconds of observations of the gravitational-wave signals GW170104, GW170729, GW170817, GW170818, and GW170823. We use this null result to constrain monoenergetic neutrinos and axion-like particles emitted in the closest coalescence GW170817, a binary neutron star merger. We set new upper limits on the fluence (time-integrated flux) of coincident neutrinos down to 17 keV at the 90% confidence level. Furthermore, we constrain the product of the coincident fluence and cross section of axion-like particles to be less than 10-29 cm2/cm2 in the [5.5-210] keV energy range at the 90% confidence level.

    DOI: 10.1103/PhysRevD.108.072015

    Open Access

    Web of Science

    Scopus

  17. First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment Open Access

    Aprile, E; Abe, K; Agostini, F; Maouloud, SA; Althueser, L; Andrieu, B; Angelino, E; Angevaare, JR; Antochi, VC; Martin, DA; Arneodo, F; Baudis, L; Baxter, AL; Bazyk, M; Bellagamba, L; Biondi, R; Bismark, A; Brookes, EJ; Brown, A; Bruenner, S; Bruno, G; Budnik, R; Bui, TK; Cai, C; Cardoso, JMR; Cichon, D; Chavez, APC; Colijn, AP; Conrad, J; Cuenca-Garcia, JJ; Cussonneau, JP; D'Andrea, ; Decowski, MP; Di Gangi, P; Di Pede, S; Diglio, S; Eitel, K; Elykov, A; Farrell, S; Ferella, AD; Ferrari, C; Fischer, H; Flierman, M; Fulgione, W; Fuselli, C; Gaemers, P; Gaior, R; Rosso, AG; Galloway, M; Gao, F; Glade-Beucke, R; Grandi, L; Grigat, J; Guan, H; Guida, M; Hammann, R; Higuera, A; Hils, C; Hoetzsch, L; Hood, NF; Howlett, J; Iacovacci, M; Itow, Y; Jakob, J; Joerg, F; Joy, A; Kato, N; Kara, M; Kavrigin, P; Kazama, S; Kobayashi, M; Koltman, G; Kopec, A; Kuger, F; Landsman, H; Lang, RF; Levinson, L; Li, I; Li, S; Liang, S; Lindemann, S; Lindner, M; Liu, K; Loizeau, J; Lombardi, F; Long, J; Lopes, JAM; Ma, Y; Macolino, C; Mahlstedt, J; Mancuso, A; Manenti, L; Marignetti, F; Undagoitia, TM; Martens, K; Masbou, J; Masson, D; Masson, E; Mastroianni, S; Messina, M; Miuchi, K; Mizukoshi, K; Molinario, A; Moriyama, S; Morå, K; Mosbacher, Y; Murra, M; Mueller, J; Ni, K; Oberlack, U; Paetsch, B; Palacio, J; Peres, R; Peters, C; Pienaar, J; Pierre, M; Pizzella, V; Plante, G; Qi, J; Qin, J; Garcí, DR; Singh, R; Sanchez, L; dos Santos, JMF; Sarnoff, I; Sartorelli, G; Schreiner, J; Schulte, D; Schulte, P; Eissing, HS; Schumann, M; Lavina, LS; Selvi, M; Semeria, F; Shagin, P; Shi, S; Shockley, E; Silva, M; Simgen, H; Takeda, A; Tan, PL; Terliuk, A; Thers, D; Toschi, F; Trinchero, G; Tunnell, C; Toennies, F; Valerius, K; Volta, G; Weinheimer, C; Weiss, M; Wenz, D; Wittweg, C; Wolf, T; Wu, VHS; Xing, Y; Xu, D; Xu, Z; Yamashita, M; Yang, L; Ye, J; Yuan, L; Zavattini, G; Zhong, M; Zhu, T

    PHYSICAL REVIEW LETTERS   Vol. 131 ( 4 ) page: 041003   2023.7

     More details

    Language:English   Publisher:Physical Review Letters  

    We report on the first search for nuclear recoils from dark matter in the form of weakly interacting massive particles (WIMPs) with the XENONnT experiment, which is based on a two-phase time projection chamber with a sensitive liquid xenon mass of 5.9 ton. During the (1.09±0.03) ton yr exposure used for this search, the intrinsic Kr85 and Rn222 concentrations in the liquid target are reduced to unprecedentedly low levels, giving an electronic recoil background rate of (15.8±1.3) events/ton yr keV in the region of interest. A blind analysis of nuclear recoil events with energies between 3.3 and 60.5 keV finds no significant excess. This leads to a minimum upper limit on the spin-independent WIMP-nucleon cross section of 2.58×1047 cm2 for a WIMP mass of 28 GeV/c2 at 90% confidence level. Limits for spin-dependent interactions are also provided. Both the limit and the sensitivity for the full range of WIMP masses analyzed here improve on previous results obtained with the XENON1T experiment for the same exposure.

    DOI: 10.1103/PhysRevLett.131.041003

    Open Access

    Web of Science

    Scopus

    PubMed

  18. Detector signal characterization with a Bayesian network in XENONnT Open Access

    Aprile, E; Abe, K; Maouloud, SA; Althueser, L; Andrieu, B; Angelino, E; Angevaare, JR; Antochi, VC; Martin, DA; Arneodo, F; Baudis, L; Baxter, AL; Bazyk, M; Bellagamba, L; Biondi, R; Bismark, A; Brookes, EJ; Brown, A; Bruenner, S; Bruno, G; Budnik, R; Bui, TK; Cai, C; Cardoso, JMR; Cichon, D; Chavez, APC; Colijn, AP; Conrad, J; Cuenca-García, JJ; Cussonneau, JP; D'Andrea, V; Decowski, MP; Di Gangi, P; Di Pede, S; Diglio, S; Eitel, K; Elykov, A; Farrell, S; Ferella, AD; Ferrari, C; Fischer, H; Flierman, M; Fulgione, W; Fuselli, C; Gaemers, P; Gaior, R; Rosso, AG; Galloway, M; Gao, F; Glade-Beucke, R; Grandi, L; Grigat, J; Guan, H; Guida, M; Hammann, R; Higuera, A; Hils, C; Hoetzsch, L; Hood, NF; Howlett, J; Iacovacci, M; Itow, Y; Jakob, J; Joerg, F; Joy, A; Kato, N; Kara, M; Kavrigin, P; Kazama, S; Kobayashi, M; Koltman, G; Kopec, A; Kuger, F; Landsman, H; Lang, RF; Levinson, L; Li, I; Li, S; Liang, S; Lindemann, S; Lindner, M; Liu, K; Loizeau, J; Lombardi, F; Long, J; Lopes, JAM; Ma, Y; Macolino, C; Mahlstedt, J; Mancuso, A; Manenti, L; Marignetti, F; Undagoitia, TM; Martens, K; Masbou, J; Masson, D; Masson, E; Mastroianni, S; Messina, M; Miuchi, K; Mizukoshi, K; Molinario, A; Moriyama, S; Morå, K; Mosbacher, Y; Murra, M; Müller, J; Ni, K; Oberlack, U; Paetsch, B; Palacio, J; Pellegrini, Q; Peres, R; Peters, C; Pienaar, J; Pierre, M; Pizzella, V; Plante, G; Pollmann, TR; Qi, J; Qin, J; García, DR; Singh, R; Sanchez, L; dos Santos, JMF; Sarnoff, I; Sartorelli, G; Schreiner, J; Schulte, D; Schulte, P; Eissing, HS; Schumann, M; Lavina, LS; Selvi, M; Semeria, F; Shagin, P; Shi, PS; Shockley, E; Silva, M; Simgen, H; Takeda, A; Tan, PL; Terliuk, A; Thers, D; Toschi, F; Trinchero, G; Tunnell, C; Tönnies, F; Valerius, K; Volta, G; Weinheimer, C; Weiss, M; Wenz, D; Wittweg, C; Wolf, T; Wu, VHS; Xing, Y; Xu, D; Xu, Z; Yamashita, M; Yang, L; Ye, J; Yuan, L; Zavattini, G; Zhong, M; Zhu, T

    PHYSICAL REVIEW D   Vol. 108 ( 1 )   2023.7

     More details

    Publisher:Physical Review D  

    We developed a detector signal characterization model based on a Bayesian network trained on the waveform attributes generated by a dual-phase xenon time projection chamber. By performing inference on the model, we produced a quantitative metric of signal characterization and demonstrate that this metric can be used to determine whether a detector signal is sourced from a scintillation or an ionization process. We describe the method and its performance on electronic-recoil (ER) data taken during the first science run of the XENONnT dark matter experiment. We demonstrate the first use of a Bayesian network in a waveform-based analysis of detector signals. This method resulted in a 3% increase in ER event-selection efficiency with a simultaneously effective rejection of events outside of the region of interest. The findings of this analysis are consistent with the previous analysis from XENONnT, namely a background-only fit of the ER data.

    DOI: 10.1103/PhysRevD.108.012016

    Open Access

    Web of Science

    Scopus

  19. The triggerless data acquisition system of the XENONnT experiment Open Access

    Aprile, E; Aalbers, J; Abe, K; Agostini, F; Maouloud, SA; Althueser, L; Andrieu, B; Angelino, E; Angevaare, JR; Antochi, VC; Martin, DA; Arneodo, F; Baudis, L; Baxter, AL; Bellagamba, L; Biondi, R; Bismark, A; Brookes, EJ; Brown, A; Bruenner, S; Bruno, G; Budnik, R; Bui, TK; Cai, C; Cardoso, JMR; Cichon, D; Chavez, APC; Coderre, D; Colijn, AP; Conrad, J; Cuenca-García, JJ; Cussonneau, JP; D'Andrea, V; Decowski, MP; Di Gangi, P; Di Pede, S; Diglio, S; Eitel, K; Elykov, A; Farrell, S; Ferella, AD; Ferrari, C; Fischer, H; Flierman, M; Fulgione, W; Fuselli, C; Gaemers, P; Gaior, R; Rosso, AG; Galloway, M; Gao, F; Glade-Beucke, R; Grandi, L; Grigat, J; Guida, M; Hammann, R; Higuera, A; Hils, C; Hoetzsch, L; Hood, NF; Howlett, J; Iacovacci, M; Itow, Y; Jakob, J; Joerg, F; Joy, A; Kato, N; Kara, M; Kavrigin, P; Kazama, S; Kobayashi, M; Koltman, G; Kopec, A; Kuger, F; Landsman, H; Lang, RF; Levinson, L; Li, I; Li, S; Liang, S; Lindemann, S; Lindner, M; Liu, K; Loizeau, J; Lombardi, F; Long, J; Lopes, JAM; Ma, Y; Macolino, C; Mahlstedt, J; Mancuso, A; Manenti, L; Marignetti, F; Undagoitia, TM; Martens, K; Masbou, J; Masson, D; Masson, E; Mastroianni, S; Messina, M; Miuchi, K; Mizukoshi, K; Molinario, A; Moriyama, S; Morå, K; Mosbacher, Y; Murra, M; Müller, J; Ni, K; Oberlack, U; Paetsch, B; Palacio, J; Peres, R; Peters, C; Pienaar, J; Pierre, M; Pizzella, V; Plante, G; Qi, J; Qin, J; García, DR; Rocchetti, A; Sanchez, L; Sanchez-Lucas, P; dos Santos, JMF; Sarnoff, I; Sartorelli, G; Schreiner, J; Schulte, D; Schulte, P; Eissing, HS; Schumann, M; Lavina, LS; Selvi, M; Semeria, F; Shagin, P; Shi, S; Shockley, E; Silva, M; Simgen, H; Takeda, A; Tan, PL; Terliuk, A; Thers, D; Toschi, F; Trinchero, G; Tunnell, C; Tönnies, F; Valerius, K; Volta, G; Weinheimer, C; Weiss, M; Wenz, D; Wittweg, C; Wolf, T; Xu, D; Xu, Z; Yamashita, M; Yang, L; Ye, J; Yuan, L; Zavattini, G; Zerbo, S; Zhong, M; Zhu, T

    JOURNAL OF INSTRUMENTATION   Vol. 18 ( 7 )   2023.7

     More details

    Publisher:Journal of Instrumentation  

    The XENONnT detector uses the latest and largest liquid xenon-based time projection chamber (TPC) operated by the XENON Collaboration, aimed at detecting Weakly Interacting Massive Particles and conducting other rare event searches. The XENONnT data acquisition (DAQ) system constitutes an upgraded and expanded version of the XENON1T DAQ system. For its operation, it relies predominantly on commercially available hardware accompanied by open-source and custom-developed software. The three constituent subsystems of the XENONnT detector, the TPC (main detector), muon veto, and the newly introduced neutron veto, are integrated into a single DAQ, and can be operated both independently and as a unified system. In total, the DAQ digitizes the signals of 698 photomultiplier tubes (PMTs), of which 253 from the top PMT array of the TPC are digitized twice, at ×10 and ×0.5 gain. The DAQ for the most part is a triggerless system, reading out and storing every signal that exceeds the digitization thresholds. Custom-developed software is used to process the acquired data, making it available within ∼30 s for live data quality monitoring and online analyses. The entire system with all the three subsystems was successfully commissioned and has been operating continuously, comfortably withstanding readout rates that exceed ∼500 MB/s during calibration. Livetime during normal operation exceeds 99% and is ∼90% during most high-rate calibrations. The combined DAQ system has collected more than 2 PB of both calibration and science data during the commissioning of XENONnT and the first science run.

    DOI: 10.1088/1748-0221/18/07/P07054

    Open Access

    Web of Science

    Scopus

  20. Searching for Heavy Dark Matter near the Planck Mass with XENON1T Open Access

    Aprile E., Abe K., Ahmed Maouloud S., Althueser L., Andrieu B., Angelino E., Angevaare J.R., Antochi V.C., Antón Martin D., Arneodo F., Baudis L., Baxter A.L., Bazyk M., Bellagamba L., Biondi R., Bismark A., Brookes E.J., Brown A., Bruenner S., Bruno G., Budnik R., Bui T.K., Cai C., Cardoso J.M.R., Cichon D., Cimental Chavez A.P., Clark M., Colijn A.P., Conrad J., Cuenca-García J.J., Cussonneau J.P., D'Andrea V., Decowski M.P., Di Gangi P., Di Pede S., Diglio S., Eitel K., Elykov A., Farrell S., Ferella A.D., Ferrari C., Fischer H., Flierman M., Fulgione W., Fuselli C., Gaemers P., Gaior R., Gallo Rosso A., Galloway M., Gao F., Glade-Beucke R., Grandi L., Grigat J., Guan H., Guida M., Hammann R., Higuera A., Hils C., Hoetzsch L., Hood N.F., Howlett J., Iacovacci M., Itow Y., Jakob J., Joerg F., Joy A., Kato N., Kara M., Kavrigin P., Kazama S., Kobayashi M., Koltman G., Kopec A., Kuger F., Landsman H., Lang R.F., Levinson L., Li I., Li S., Liang S., Lindemann S., Lindner M., Liu K., Loizeau J., Lombardi F., Long J., Lopes J.A.M., Ma Y., Macolino C., Mahlstedt J., Mancuso A., Manenti L., Marignetti F., Marrodán Undagoitia T., Martens K., Masbou J., Masson D., Masson E., Mastroianni S., Messina M.

    Physical Review Letters   Vol. 130 ( 26 ) page: 261002   2023.6

     More details

    Language:English   Publisher:Physical Review Letters  

    Multiple viable theoretical models predict heavy dark matter particles with a mass close to the Planck mass, a range relatively unexplored by current experimental measurements. We use 219.4 days of data collected with the XENON1T experiment to conduct a blind search for signals from multiply interacting massive particles (MIMPs). Their unique track signature allows a targeted analysis with only 0.05 expected background events from muons. Following unblinding, we observe no signal candidate events. This Letter places strong constraints on spin-independent interactions of dark matter particles with a mass between 1×1012 and 2×1017 GeV/c2. In addition, we present the first exclusion limits on spin-dependent MIMP-neutron and MIMP-proton cross sections for dark matter particles with masses close to the Planck scale.

    DOI: 10.1103/PhysRevLett.130.261002

    Open Access

    Scopus

    PubMed

  21. Low-energy calibration of XENON1T with an internal <SUP>37</SUP>Ar source Open Access

    Aprile, E; Abe, K; Agostini, F; Ahmed Maouloud, S; Alfonsi, M; Althueser, L; Andrieu, B; Angelino, E; Angevaare, JR; Antochi, VC; Antón Martin, D; Arneodo, F; Baudis, L; Baxter, AL; Bellagamba, L; Biondi, R; Bismark, A; Brown, A; Bruenner, S; Bruno, G; Budnik, R; Bui, TK; Cai, C; Capelli, C; Cardoso, JMR; Cichon, D; Colijn, AP; Conrad, J; Cuenca-García, JJ; Cussonneau, JP; D'Andrea, V; Decowski, MP; Di Gangi, P; Di Pede, S; Diglio, S; Eitel, K; Elykov, A; Farrell, S; Ferella, AD; Ferrari, C; Fischer, H; Fulgione, W; Gaemers, P; Gaior, R; Rosso, AG; Galloway, M; Gao, F; Glade-Beucke, R; Grandi, L; Grigat, J; Guida, M; Hammann, R; Higuera, A; Hils, C; Hoetzsch, L; Howlett, J; Iacovacci, M; Itow, Y; Jakob, J; Joerg, F; Joy, A; Kato, N; Kara, M; Kavrigin, P; Kazama, S; Kobayashi, M; Koltman, G; Kopec, A; Kuger, F; Landsman, H; Lang, RF; Levinson, L; Li, I; Li, S; Liang, S; Lindemann, S; Lindner, M; Liu, K; Loizeau, J; Lombardi, F; Long, J; Lopes, JAM; Ma, Y; Macolino, C; Mahlstedt, J; Mancuso, A; Manenti, L; Marignetti, F; Undagoitia, TM; Martens, K; Masbou, J; Masson, D; Masson, E; Mastroianni, S; Messina, M; Miuchi, K; Mizukoshi, K; Molinario, A; Moriyama, S; Morå, K; Mosbacher, Y; Murra, M; Müller, J; Ni, K; Oberlack, U; Paetsch, B; Palacio, J; Peres, R; Peters, C; Pienaar, J; Pierre, M; Pizzella, V; Plante, G; Qi, J; Qin, J; Garcia, DR; Reichard, S; Rocchetti, A; Rupp, N; Sanchez, L; Sanchez-Lucas, P; dos Santos, JMF; Sarnoff, I; Sartorelli, G; Schreiner, J; Schulte, D; Schulte, P; Eissng, HS; Schumann, M; Lavina, LS; Selvi, M; Semeria, F; Shagin, P; Shi, S; Shockley, E; Silva, M; Simgen, H; Takeda, A; Tan, PL; Terliuk, A; Thers, D; Toschi, F; Trinchero, G; Tunnell, C; Tönnies, F; Valerius, K; Volta, G; Weinheimer, C; Weiss, M; Wenz, D; Wittweg, C; Wolf, T; Xu, D; Xu, Z; Yamashita, M; Yang, L; Ye, J; Yuan, L; Zavattini, G; Zerbo, S; Zhong, M; Zhu, T; Geppert, C; Riemer, J

    EUROPEAN PHYSICAL JOURNAL C   Vol. 83 ( 6 )   2023.6

     More details

    Publisher:European Physical Journal C  

    A low-energy electronic recoil calibration of XENON1T, a dual-phase xenon time projection chamber, with an internal <sup>37</sup> Ar source was performed. This calibration source features a 35-day half-life and provides two mono-energetic lines at 2.82 keV and 0.27 keV. The photon yield and electron yield at 2.82 keV are measured to be (32.3±0.3) photons/keV and (40.6±0.5) electrons/keV, respectively, in agreement with other measurements and with NEST predictions. The electron yield at 0.27 keV is also measured and it is (68.0-3.7+6.3) electrons/keV. The <sup>37</sup> Ar calibration confirms that the detector is well-understood in the energy region close to the detection threshold, with the 2.82 keV line reconstructed at (2.83±0.02) keV, which further validates the model used to interpret the low-energy electronic recoil excess previously reported by XENON1T. The ability to efficiently remove argon with cryogenic distillation after the calibration proves that <sup>37</sup> Ar can be considered as a regular calibration source for multi-tonne xenon detectors.

    DOI: 10.1140/epjc/s10052-023-11512-z

    Open Access

    Web of Science

    Scopus

  22. A next-generation liquid xenon observatory for dark matter and neutrino physics Open Access

    Aalbers, J; AbdusSalam, SS; Abe, K; Aerne, ; Agostini, F; Maouloud, SA; Akerib, DS; Akimov, DY; Akshat, J; Al Musalhi, AK; Alder, F; Alsum, SK; Althueser, L; Amarasinghe, CS; Amaro, FD; Ames, A; Anderson, TJ; Andrieu, B; Angelides, N; Angelino, E; Angevaare, J; Antochi, VC; Martin, DA; Antunovic, B; Aprile, E; Araújo, HM; Armstrong, JE; Arneodo, F; Arthurs, M; Asadi, P; Baek, S; Bai, X; Bajpai, D; Baker, A; Balajthy, J; Balashov, S; Balzer, M; Bandyopadhyay, A; Bang, J; Barberio, E; Bargemann, JW; Baudis, L; Bauer, D; Baur, D; Baxter, A; Baxter, AL; Bazyk, M; Beattie, K; Behrens, J; Bell, NF; Bellagamba, L; Beltrame, P; Benabderrahmane, M; Bernard, EP; Bertone, GF; Bhattacharjee, P; Bhatti, A; Biekert, A; Biesiadzinski, TP; Binau, AR; Biondi, R; Biondi, Y; Birch, HJ; Bishara, F; Bismark, A; Blanco, C; Blockinger, GM; Bodnia, E; Boehm, C; Bolozdynya, A; Bolton, PD; Bottaro, S; Bourgeois, C; Boxer, B; Brás, P; Breskin, A; Breur, PA; Brew, CAJ; Brod, J; Brookes, E; Brown, A; Brown, E; Bruenner, S; Bruno, G; Budnik, R; Bui, TK; Burdin, S; Buse, S; Busenitz, JK; Buttazzo, D; Buuck, M; Buzulutskov, A; Cabrita, R; Cai, C; Cai, D; Capelli, C; Cardoso, JMR; Carmona-Benitez, MC; Cascella, M; Catena, R; Chakraborty, S; Chan, C; Chang, S; Chauvin, A; Chawla, A; Chen, H; Chepel, ; Chott, N; Cichon, D; Chavez, AC; Cimmino, B; Clark, M; Co, RT; Colijn, AP; Conrad, J; Converse, M; Costa, M; Cottle, A; Cox, G; Creaner, O; Garcia, JJC; Cussonneau, JP; Cutter, JE; Dahl, CE; D'Andrea, V; David, A; Decowski, MP; Dent, JB; Deppisch, FF; de Viveiros, L; Di Gangi, P; Di Giovanni, A; Di Pede, S; Dierle, J; Diglio, S; Dobson, JEY; Doerenkamp, M; Douillet, D; Drexlin, G; Druszkiewicz, E; Dunsky, D; Eitel, K; Elykov, A; Emken, T; Engel, R; Eriksen, SR; Fairbairn, M; Fan, A; Fan, JJ; Farrell, SJ; Fayer, S; Fearon, NM; Ferella, A; Ferrari, C; Fieguth, A; Fieguth, A; Fiorucci, S; Fischer, H; Flaecher, H; Flierman, M; Florek, T; Foot, R; Fox, PJ; Franceschini, R; Fraser, ED; Frenk, CS; Frohlich, S; Fruth, T; Fulgione, W; Fuselli, C; Gaemers, P; Gaior, R; Gaitskell, RJ; Galloway, M; Gao, F; Garcia, IG; Genovesi, J; Ghag, C; Ghosh, S; Gibson, E; Gil, W; Giovagnoli, D; Girard, F; Glade-Beucke, R; Glück, F; Gokhale, S; de Gouvêa, A; Gráf, L; Grandi, L; Grigat, J; Grinstein, B; van der Grinten, MGD; Grössle, R; Guan, H; Guida, M; Gumbsheimer, R; Gwilliam, CB; Hall, CR; Hall, LJ; Hammann, R; Han, K; Hannen, ; Hansmann-Menzemer, S; Harata, R; Hardin, SP; Hardy, E; Hardy, CA; Harigaya, K; Harnik, R; Haselschwardt, SJ; Hernandez, M; Hertel, SA; Higuera, A; Hils, C; Hochrein, S; Hoetzsch, L; Hoferichter, M; Hood, N; Hooper, D; Horn, M; Howlett, J; Huang, DQ; Huang, Y; Hunt, D; Iacovacci, M; Iaquaniello, G; Ide, R; Ignarra, CM; Iloglu, G; Itow, Y; Jacquet, E; Jahangir, O; Jakob, J; James, RS; Jansen, A; Ji, W; Ji, X; Joerg, F; Johnson, J; Joy, A; Kaboth, AC; Kalhor, L; Kamaha, AC; Kanezaki, K; Kar, K; Kara, M; Kato, N; Kavrigin, P; Kazama, S; Keaveney, AW; Kellerer, J; Khaitan, D; Khazov, A; Khundzakishvili, G; Khurana, ; Kilminster, B; Kleifges, M; Ko, P; Kobayashi, M; Kodroff, D; Koltmann, G; Kopec, A; Kopmann, A; Kopp, J; Korley, L; Kornoukhov, VN; Korolkova, E; Kraus, H; Krauss, LM; Kravitz, S; Kreczko, L; Kudryavtsev, VA; Kuger, F; Kumar, J; Paredes, BL; LaCascio, L; Laha, R; Laine, Q; Landsman, H; Lang, RF; Leason, EA; Lee, J; Leonard, DS; Lesko, KT; Levinson, L; Levy, C; Li, ; Li, SC; Li, T; Liang, S; Liebenthal, CS; Lin, J; Lin, Q; Lindemann, S; Lindner, M; Lindote, A; Linehan, R; Lippincott, WH; Liu, X; Liu, K; Liu, J; Loizeau, J; Lombardi, F; Long, J; Lopes, M; Asamar, EL; Lorenzon, W; Lu, C; Luitz, S; Ma, Y; Machado, PAN; Macolino, C; Maeda, T; Mahlstedt, J; Majewski, PA; Manalaysay, A; Mancuso, A; Manenti, L; Manfredini, A; Mannino, RL; Marangou, N; March-Russell, J; Marignetti, F; Undagoitia, TM; Martens, K; Martin, R; Martinez-Soler, ; Masbou, J; Masson, D; Masson, E; Mastroianni, S; Mastronardi, M; Matias-Lopes, JA; McCarthy, ME; McFadden, N; McGinness, E; McKinsey, DN; McLaughlin, J; McMichael, K; Meinhardt, P; Menéndez, J; Meng, Y; Messina, M; Midha, R; Milisavljevic, D; Miller, EH; Milosevic, B; Milutinovic, S; Mitra, SA; Miuchi, K; Mizrachi, E; Mizukoshi, K; Molinario, A; Monte, A; Monteiro, CMB; Monzani, ME; Moore, JS; Morå, K; Morad, JA; Mendoza, JDM; Moriyama, S; Morrison, E; Morteau, E; Mosbacher, Y; Mount, BJ; Mueller, J; Murphy, AS; Murra, M; Naim, D; Nakamura, S; Nash, E; Navaieelavasani, N; Naylor, A; Nedlik, C; Nelson, HN; Neves, F; Newstead, JL; Ni, K; Nikoleyczik, JA; Niro, ; Oberlack, UG; Obradovic, M; Odgers, K; Oikonomou, P; Olcina, ; Oliver-Mallory, K; Oranday, A; Orpwood, J; Ostrovskiy, ; Ozaki, K; Paetsch, B; Pal, S; Palacio, J; Palladino, KJ; Palmer, J; Panci, P; Pandurovic, M; Parlati, A; Parveen, N; Patton, SJ; Pec, ; Pellegrini, Q; Penning, B; Pereira, G; Peres, R; Perez-Gonzalez, Y; Perry, E; Pershing, T; Petrossian-Byrne, R; Pienaar, J; Piepke, A; Pieramico, G; Pierre, M; Piotter, M; Pizzella, ; Plante, G; Pollmann, T; Porzio, D; Qi, J; Qie, Y; Qin, J; Quevedo, F; Raj, N; Silva, MR; Ramanathan, K; García, DR; Ravanis, J; Redard-Jacot, L; Redigolo, D; Reichard, S; Reichenbacher, J; Rhyne, CA; Richards, A; Riffard, Q; Rischbieter, GRC; Rocchetti, A; Rosenfeld, SL; Rosero, R; Rupp, N; Rushton, T; Saha, S; Salucci, P; Sanchez, L; Sanchez-Lucas, P; Santone, D; dos Santos, JMF; Sarnoff, ; Sartorelli, G; Sazzad, ABMR; Scheibelhut, M; Schnee, RW; Schrank, M; Schreiner, J; Schulte, P; Schulte, D; Eissing, HS; Schumann, M; Schwemberger, T; Schwenk, A; Schwetz, T; Lavina, LS; Scovell, PR; Sekiya, H; Selvi, M; Semenov, E; Semeria, F; Shagin, P; Shaw, S; Shi, S; Shockley, E; Shutt, TA; Si-Ahmed, R; Silk, JJ; Silva, C; Silva, MC; Simgen, H; Simkovic, F; Sinev, G; Singh, R; Skulski, W; Smirnov, J; Smith, R; Solmaz, M; Solovov, VN; Sorensen, P; Soria, J; Sparmann, TJ; Stancu, ; Steidl, M; Stevens, A; Stifter, K; Strigari, LE; Subotic, D; Suerfu, B; Suliga, AM; Sumner, TJ; Szabo, P; Szydagis, M; Takeda, A; Takeuchi, Y; Tan, PL; Taricco, C; Taylor, WC; Temples, DJ; Terliuk, A; Terman, PA; Thers, D; Thieme, K; Thümmler, T; Tiedt, DR; Timalsina, M; To, WH; Toennies, F; Tong, Z; Toschi, F; Tovey, DR; Tranter, J; Trask, M; Trinchero, GC; Tripathi, M; Tronstad, DR; Trotta, R; Tsai, YD; Tunnell, CD; Turner, WG; Ueno, R; Urquijo, P; Utku, U; Vaitkus, A; Valerius, K; Vassilev, E; Vecchi, S; Velan, V; Vetter, S; Vincent, AC; Vittorio, L; Volta, G; von Krosigk, B; von Piechowski, M; Vorkapic, D; Wagner, CEM; Wang, AM; Wang, B; Wang, Y; Wang, W; Wang, JJ; Wang, LT; Wang, M; Wang, Y; Watson, JR; Wei, Y; Weinheimer, C; Weisman, E; Weiss, M; Wenz, D; West, SM; Whitis, TJ; Williams, M; Wilson, MJ; Winkler, D; Wittweg, C; Wolf, J; Wolf, T; Wolfs, FLH; Woodford, S; Woodward, D; Wright, CJ; Wu, VHS; Wu, P; Wüstling, S; Wurm, M; Xia, Q; Xiang, X; Xing, Y; Xu, J; Xu, Z; Xu, D; Yamashita, M; Yamazaki, R; Yan, H; Yang, L; Yang, Y; Ye, J; Yeh, M; Young, ; Yu, HB; Yu, TT; Yuan, L; Zavattini, G; Zerbo, S; Zhang, Y; Zhong, M; Zhou, N; Zhou, X; Zhu, T; Zhu, Y; Zhuang, Y; Zopounidis, JP; Zuber, K; Zupan, J

    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS   Vol. 50 ( 1 )   2023.1

     More details

    Publisher:Journal of Physics G Nuclear and Particle Physics  

    The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector.

    DOI: 10.1088/1361-6471/ac841a

    Open Access

    Web of Science

    Scopus

▼display all

KAKENHI (Grants-in-Aid for Scientific Research) 9

  1. Pd膜を用いた希ガス中の微量水素測定による暗黒物質探索の高感度化

    Grant number:25K17411  2025.4 - 2028.3

    科学研究費助成事業  若手研究

    小林 雅俊

      More details

    Authorship:Principal investigator 

    Grant amount:\4680000 ( Direct Cost: \3600000 、 Indirect Cost:\1080000 )

    我々の宇宙には暗黒物質と呼ばれる未知の質量が存在しており、その正体を明らかにするための"直接探索実験"では、キセノンなどの物質と暗黒物質が極稀に衝突する現象の観測を目指している。高感度な探索には検出器内の放射性不純物の除去と評価が不可欠で、本研究では特にトリチウムに関して評価を行う。微量なトリチウムの評価のため、パラジウム膜を用いてキセノン中からトリチウムを含む水素のみを取り出し分析する装置の開発に取り組む。

  2. Revealing the nature of the the dark matter by international direct search experiments

    Grant number:24KK0067  2024.9 - 2028.3

    Grants-in-Aid for Scientific Research  Fund for the Promotion of Joint International Research (International Collaborative Research)

      More details

    Authorship:Coinvestigator(s) 

  3. Exploring the nature of dark matter with the large liquid xenon detector

    Grant number:24H02240  2024.4 - 2029.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Transformative Research Areas (A)

      More details

    Authorship:Coinvestigator(s) 

  4. Dark matter search iin XENONnT and studies towarding a next generation large liquid xenon experiment.

    Grant number:24H00223  2024.4 - 2028.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (A)

      More details

    Authorship:Coinvestigator(s) 

  5. Development of New Liquid Xenon Detectors with Thin Film Electrodes

    Grant number:24K00659  2024.4 - 2027.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

      More details

    Authorship:Coinvestigator(s) 

  6. XENONnT検出器を用いた低エネルギー電子反跳事象に対する高感度観測

    Grant number:23K13121  2023.4 - 2025.3

    科学研究費助成事業  若手研究

    小林 雅俊

      More details

    Authorship:Principal investigator 

    Grant amount:\2600000 ( Direct Cost: \2000000 、 Indirect Cost:\600000 )

    イタリア・グランサッソで行われる暗黒物質探索実験XENONnTは、2022年の初期成果でkeV領域においてこれまでにない低放射能バックグラウンド環境を実現したことを示した。本研究ではこの極低放射データを用い、解析によってバックグラウンドの不定性を削減することでこれまで観測されたことのない数keV領域における太陽ニュートリノの反跳信号の観測を目指す。
    本研究は、イタリア・グランサッソ国立研究所で現在進行中の国際共同実験XENONnTにより、低エネルギー太陽ニュートリノの観測を行うことを目的としている。XENONnT検出器は8.5トンのキセノンを用いたタイムプロジェクションチェンバーで、特に数keV-数10keVの低エネルギー領域での観測に関して世界で最も低い放射性バックグラウンドレベルを達成している。XENONnT実験の主目的は暗黒物質の直接探索であるが、同検出器の達成した世界一の極低放射能環境により、数10keV領域における太陽ニュートリノ反跳事象に関して世界初の観測を行うことが期待できる。
    本観測における最も重要な課題となるのが、放射性バックグラウンドの一つであるラドンに由来の事象に付随する系統誤差である。2022年に報告者らによって発表されたXENONnTにおける初期観測データの解析結果では、ラドン由来の事象レートには40%程度の大きな不定性が存在した。ラドン由来の事象の作るスペクトル形状は太陽ニュートリノのものと似ていることから、太陽ニュートリノによる反跳事象を3シグマで観測するためには、この系統誤差を5%程度まで削減することが不可欠となる。
    本年度はドイツ・MPIKグループと共同で実施した、ラドン線源によるキャリブレーションのデータの解析を進め、線源導入後の検出器内におけるラドンの拡散や崩壊後の娘核との存在比の推定を行うことで系統誤差を評価した。解析の状況と結果に関しては、XENON実験のコラボレーションミーティングで報告を行うとともに日本物理学会での発表を行った。
    低エネルギー太陽ニュートリノの初観測のためにはラドン事象に付随する系統誤差の削減が不可欠となっている。そのため、当初の予定通りラドン線源を用いたキャリブレーションの実施およびそのデータ解析を進めている。また、ラドン事象の系統誤差が削減されたのちに問題となるクリプトン事象の系統誤差に関してもMPIKグループ、および東京大学グループと共同で検出器内の放射性クリプトンの存在量に関するモニタリングを実施している。
    ラドン事象の系統誤差に関して、現在の40%程度から5%程度までの削減を行う。またその次に問題となる、放射性クリプトンの存在量、検出器部材に含まれる放射性不純物からのガンマ線事象についても系統誤差の推定を行い、最終的に数10keV領域で初めてとなる太陽ニュートリノ事象の3シグマでの観測を目指す。

  7. 大型液体キセノン検出器XENONnTを用いた暗黒物質の直接探索

    Grant number:22KJ1516  2023.3 - 2024.3

    科学研究費助成事業  特別研究員奨励費

    小林 雅俊

      More details

    Authorship:Principal investigator 

    Grant amount:\4810000 ( Direct Cost: \3700000 、 Indirect Cost:\1110000 )

    本研究では大型液体キセノン検出器XENONnTを用い、我々の宇宙に存在する未知の質量である暗黒物質を発見することを目指す。XENONnT実験は2022年度に初期観測データを用いた解析結果を公表した後、更なるバックグラウンド低減を経て観測が継続されており、本データを解析して暗黒物質探索を行う。また更なる将来実験へ向けたR&Dにも取り組んでいく。
    様々な天文観測から、我々の宇宙には暗黒物質と呼ばれる未知の物質が通常の物質の5倍以上存在すると言われている。その中でも有力な候補が未発見の素粒子で、質量が重く弱い相互作用程度のスケールで核子と相互作用するWIMPや、電子と弱く相互作用するアクシオン様粒子(ALP)などが挙げられてきた。
    本研究では、イタリアで行われる国際実験XENONnT実験により、キセノンと暗黒物質のごく稀な相互作用を通して暗黒物質探索を行った。研究期間全体を通して主に、XENONnT実験の検出器に関するコミッショニング、物理データ取得およびその解析に取り組んだ。XENONnT実験は2021年度から初期観測を開始しており、報告者はイタリアに長期滞在、現地の運転責任者としてクリプトンや中性子を用いたキャリブレーションデータの取得や、検出器にかける電圧の最適化など、安定的なデータの取得のための取り組みを指揮した。また得られたデータの解析として、特に検出器中のキセノン純度の影響を明らかにし、2022年度には太陽アクシオンやALPなどに関して世界最高感度の探索結果を発表している。2023年度には、同データを用い最も重要なモデルであるWIMPに関しても前身実験の感度を約2倍更新する探索を行うとともに、太陽から飛来するニュートリノ事象の探索など暗黒物質にとどまらない物理・天文現象の観測にも取り組んだ。
    また並行して、名古屋大学における小型装置を用いたXENONnT実験の将来計画に関するR&Dにも取り組んだ。キセノン純度のさらなる向上のため、ラドンやトリチウムといったキセノン中の放射性不純物を削減するとともに、微量な不純物を定量的に測定するための技術開発に取り組み、日本物理学会などで発表を行なっている。

  8. Dark Matter and new particle searches with a large liqud xenon detector

    Grant number:22H00127  2022.4 - 2026.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (A)

      More details

    Authorship:Coinvestigator(s) 

  9. Study of new physics with electron-recoil events in the XENONnt and further breakthrough with a hermetic liquid xenon TPC

    Grant number:21H04466  2021.4 - 2025.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (A)

      More details

    Authorship:Coinvestigator(s) 

▼display all