Updated on 2025/03/23

写真a

 
YAJIMA Takeshi
 
Organization
Graduate School of Engineering Materials Design Innovation Engineering 3 Associate professor
Graduate School
Graduate School of Engineering
Undergraduate School
School of Engineering Materials Science and Engineering
Title
Associate professor
Contact information
メールアドレス
External link

Degree 1

  1. Doctor of Science ( 2010.3   The University of Tokyo ) 

Research Areas 1

  1. Nanotechnology/Materials / Inorganic compounds and inorganic materials chemistry

Research History 5

  1. Nagoya University   Graduate School of Engineering Materials Design Innovation Engineering 3   Associate professor

    2023.4

  2. Nagoya University   School of Engineering Materials Science and Engineering   Associate professor

    2023.4

  3. The University of Tokyo   ISSP, Materials Design and Characterization Laboratory   Assistant Professor

    2013.7 - 2023.3

  4. Kyoto University

    2012.12 - 2013.6

  5. Kyoto University

    2010.4 - 2012.11

Education 3

  1. The University of Tokyo

    - 2010.3

  2. The University of Tokyo

    - 2007.3

  3. The University of Tokyo

    - 2005.3

Professional Memberships 4

  1. 電気化学会

  2. 日本物理学会

  3. 応用物理学会

  4. 日本セラミックス協会

Committee Memberships 2

  1. 電気化学会   第91回大会 現地実行委員  

    2023.4 - 2024.3   

      More details

    Committee type:Academic society

  2. 日本物理学会   領域8 運営委員  

    2018.4 - 2019.3   

      More details

    Committee type:Academic society

 

Papers 91

  1. Structural and Li-Ion Conduction Properties of Ti-and W-Substituted LiTa<inf>2</inf>PO<inf>8</inf>

    Shima S., Yajima T., Ishigaki N., Iriyama Y.

    Chemistry of Materials   Vol. 37 ( 3 ) page: 1215 - 1220   2025.2

     More details

    Publisher:Chemistry of Materials  

    Li+-conductive oxide solid electrolytes (SEs) are chemically stable and could potentially lead to safer all-solid-state batteries. However, practical applications of oxide SEs are limited in the current stage, and one of the crucial problems arises from 1 or 2 orders lower ionic conductivity of oxide SEs than sulfide and chloride SEs. Among the various oxide SEs, LiTa2PO8 exhibits a high Li+ conductivity of 2.5 × 10-1 mS cm-1 at room temperature. Because most high Li+ conductive oxide SEs such as Li7-xLa3Zr2-xNbxO12 and Li1+xAlxTi2-x(PO4)3 have been achieved by chemical substitutions from parent compounds (Li7La3Zr2O12 and LiTi2(PO4)3), chemical substitutions for LiTa2PO8 will be an effective way for further increasing Li+ conductivity. Here, we synthesized single-phase Ti-and W-substituted LiTa2PO8 and investigated their Li+ conductivities. Both of these substitutions decreased unit cell volume. Ti-substitutions decreased activation energy for Li+ conduction in the bulk (Ea) and almost doubled both the total Li+ conductivity (σtotal) and bulk Li+ conductivity (σbulk) W-substitutions also decreased Ea, but both the σtotal and the σbulk slightly decreased. The calculated Ea of σbulk by bond valence energy assuming single-ion hopping increased in both substitutions due to their smaller unit cell volume. On the other hand, experimentally obtained Ea decreased for both substitutions. This discrepancy may arise from the ionic correlation of the Li+ ion in LiTa2PO8, providing further insight into enhancing the ionic conductivity.

    DOI: 10.1021/acs.chemmater.4c03139

    Scopus

  2. Electrochemical lithium-ion insertion/extraction reactions of multilayered graphene with random twist angles Open Access

    Yamamoto S., Sakakibara R., Shima S., Matsuura S., Yajima T., Motoyama M., Norimatsu W., Kimura Y., Amezawa K., Iriyama Y.

    Chemical Communications   Vol. 60 ( 99 ) page: 14790 - 14793   2024.11

     More details

    Language:English   Publisher:Chemical Communications  

    A multilayer graphene film with random twist angles between layers (TAGr) on SiC(0001̄) shows six pairs of redox peaks for Li+ insertion/extraction reaction. The distributed twisted angle in TAGr regulates Li+ insertion sites, and smaller c-axis expansion (3%) is realized by Li+ insertion.

    DOI: 10.1039/d4cc04441j

    Open Access

    Scopus

    PubMed

  3. Origin of O2 Generation in Sulfide-Based All-Solid-State Batteries and its Impact on High Energy Density

    Yoshikawa K., Kato T., Suzuki Y., Shiota A., Ohnishi T., Amezawa K., Nakao A., Yajima T., Iriyama Y.

    Advanced Science   Vol. 11 ( 34 ) page: e2402528   2024.9

     More details

    Language:English   Publisher:Advanced Science  

    The cathode surface of sulfide-based all-solid-state batteries (SBs) is commonly coated with amorphous-LiNbO3 in order to stabilize charge–discharge reactions. However, high-voltage charging diminishes the advantages, which is caused by problems with the amorphous-LiNbO3 coating layer. This study has investigated the degradation of amorphous-LiNbO3 coating layer directly during the high-voltage charging of SBs. O2 generation via Li extraction from the amorphous-LiNbO3 coating layer is observed using electrochemical gas analysis and electrochemical X-ray photoelectron spectroscopy. This O2 leads to the formation of an oxidative solid electrolyte (SE) around the coating layer and degrades the battery performance. On the other hand, elemental substitution (i.e., amorphous-LiNbxP1-xO3) reduces O2 release, leading to stable high-voltage charge–discharge reactions of SBs. The results have emphasized that the suppression of O2 generation is a key factor in improving the energy density of SBs.

    DOI: 10.1002/advs.202402528

    Scopus

    PubMed

  4. Geometric frustration and Dzyaloshinskii-Moriya interactions in a quantum star lattice hybrid copper sulfate Reviewed International coauthorship

    Hajime Ishikawa, Yuto Ishii, Takeshi Yajima, Yasuhiro H Matsuda, Koichi Kindo, Yusei Shimizu, Ioannis Rousochatzakis, Ulrich K Rößler, Oleg Janson

    Physical Review B   Vol. 109 ( 18 ) page: L180401   2024.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: https://doi.org/10.1103/PhysRevB.109.L180401

  5. Li concentration change around Cu/LiPON interface measured by TOF-ERDA

    Kurihara K., Nakamizo S., Yamamoto S., Yasuda K., Majima T., Yajima T., Iriyama Y.

    Journal of Solid State Electrochemistry     2024

     More details

    Publisher:Journal of Solid State Electrochemistry  

    Lithium metal is a promising anode material for the development of advanced all-solid-state batteries (ASSBs) with high energy density. Among the various solid electrolytes, lithium phosphorus oxynitride glass electrolyte (LiPON) is notable for facilitating stable Li plating-stripping reactions in ASSBs employing Li metal. The aim of this study is to examine the Li/LiPON interface, with a specific emphasis on the reductive decomposition of LiPON near this interface. We employed time-of-flight elastic recoil detection analysis (TOF-ERDA) to assess changes in Li concentration around the Cu/LiPON interface immediately prior to the Li plating reaction. Our electrochemical measurements indicate that critical decomposition of LiPON occurs when the voltage at the Cu electrode is reduced to 0.1 V vs. Li/Li+ at 25 °C, resulting in the in situ formation of Li3P operating at 0.7 V vs. Li/Li+ as an anode material. The TOF-ERDA findings reveal that this decomposition reaction results in a layer with partial decomposition (ranging from 5 to 25% on average) extending up to approximately 30 nm from the Cu/LiPON interface. This insight is vital for enhancing the design and performance of ASSBs. Graphical abstract: (Figure presented.)

    DOI: 10.1007/s10008-024-05865-y

    Scopus

▼display all

Presentations 36

  1. 固体電解質LiTa2PO8のイオン伝導特性に対する遷移金属元素置換効果

    島 颯一, 矢島 健, 石垣 範和, 入山 恭寿

    GteX酸化物TM全体会議 

     More details

    Event date: 2025.3

    Presentation type:Poster presentation  

  2. 超イオン伝導におけるイオン相関現象 Invited

    矢島 健

    ARG講演会/第102回若手講演会/第5回研究会(複合開催) 

     More details

    Event date: 2025.1

    Presentation type:Oral presentation (invited, special)  

  3. 分子アニオンを含有するLiイオン伝導体の探索

    山下 拓真, 矢島 健, 越田 耕平, 入山 恭寿

    ARG講演会/第102回若手講演会/第5回研究会(複合開催) 

     More details

    Event date: 2025.1

    Presentation type:Poster presentation  

  4. LiBH4アニオン置換体のイオン伝導特性に対するアニオンサイズ依存性

    市田 輝, 矢島 健, 越田 耕平, 入山 恭寿

    ARG講演会/第102回若手講演会/第5回研究会(複合開催) 

     More details

    Event date: 2025.1

    Presentation type:Poster presentation  

  5. 高イオン電導性を示す酸ハロゲン化物固体電解質の探索

    松浦 信介, 矢島 健, 入山 恭寿

    ARG講演会/第102回若手講演会/第5回研究会(複合開催) 

     More details

    Event date: 2025.1

    Presentation type:Poster presentation  

▼display all

KAKENHI (Grants-in-Aid for Scientific Research) 6

  1. Creation of Novel Materials and Functions based on Ion Jamology

    Grant number:24H02204  2024.4 - 2029.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Transformative Research Areas (A)

      More details

    Authorship:Coinvestigator(s) 

  2. 反強磁性巨大磁歪材料の創製

    Grant number:23H01831  2023.4 - 2026.3

    科学研究費助成事業  基盤研究(B)

    岡本 佳比古, 矢島 健

      More details

    Authorship:Coinvestigator(s) 

  3. 反強磁性巨大磁歪材料の創製

    Grant number:23K26524  2023.4 - 2026.3

    科学研究費助成事業  基盤研究(B)

    岡本 佳比古, 矢島 健

      More details

    Authorship:Coinvestigator(s) 

    反強磁性体に着目した新材料探索により、巨大な磁場誘起歪を示す新材料を開発する。磁場中で物体の形状や大きさが変化する現象は磁歪(磁場誘起歪)と呼ばれる。その開拓には長い歴史があるが、一方、現状では反強磁性体における磁場誘起歪現象はほとんど未開拓といえる。室温付近で磁気秩序を示すクロム化合物反強磁性体や強いスピン軌道結合が働く幾何学的フラストレート磁性体に着目し網羅的な材料探索を行うことで、巨大な磁場誘起歪を示す新材料の開拓に挑む。これにより、磁歪材料=強磁性体という常識を覆し材料探索の幅を広げ、磁歪のより広範な実用に繋がる次世代の実用材料候補を提示することを目指す。

  4. Elucidation of ionic correlation in superionic conductors using single crystals

    Grant number:21K04636  2021.4 - 2024.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Authorship:Principal investigator 

    Grant amount:\4290000 ( Direct Cost: \3300000 、 Indirect Cost:\990000 )

  5. Exploring Novel Mixed Anion Compounds Based on Hydride Chemistry

    Grant number:18K04693  2018.4 - 2021.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    Yajima Takeshi

      More details

    Authorship:Principal investigator 

    Grant amount:\4290000 ( Direct Cost: \3300000 、 Indirect Cost:\990000 )

▼display all

 

Teaching Experience (On-campus) 13

  1. First Year Seminar

    2023

  2. Seminars on Nanostructure Design 2E

    2023

  3. Seminars on Nanostructure Design 2C

    2023

  4. Seminars on Nanostructure Design 2A

    2023

  5. Advanced Experiments and Exercises on Nanostructure Design 2

    2023

▼display all