2025/09/04 更新

写真a

タナカ ケンジロウ
田中 健二郎
TANAKA Kenjiro
所属
大学院創薬科学研究科 基盤創薬学専攻 創薬生物科学 助教
学部担当
工学部 化学生命工学科
職名
助教

学位 1

  1. 修士(創薬科学) ( 2022年3月   名古屋大学 ) 

研究分野 1

  1. ライフサイエンス / 細胞生物学  / 細胞製造, 品質評価, 画像解析

委員歴 1

  1. 日本生物工学会バイオDX研究部会   運営委員  

    2025年8月 - 現在   

受賞 2

  1. 第23回日本再生医療学会総会 優秀演題賞

    2024年3月   日本再生医療学会   細胞凝集塊を対象とした微小領域分析装置の開発

    田中 健二郎、小口 寿明、酒井 蓮、櫻田 伸一、田中 伸明、塩野 博文、加藤 竜司

     詳細を見る

    受賞区分:国内学会・会議・シンポジウム等の賞 

  2. 第23回日本再生医療学会総会 優秀演題賞

    2024年3月   日本再生医療学会   iPS細胞由来心筋細胞拍動データを用いた安定なAI心毒性予測解析

    田中 健二郎、出水 遂志、坂 将成、岩下 賢士郎、清水 聡史、柳田 翔太、川岸 裕幸、諫田 泰成、黒川 洵子、加藤 竜司

     詳細を見る

    受賞区分:国内学会・会議・シンポジウム等の賞 

 

論文 4

  1. Label-free morphology-based phenotypic analysis of spinal and bulbar muscular atrophy muscle cell models Open Access

    Sakakibara, K; Tanaka, K; Iida, M; Imai, Y; Okada, M; Sahashi, K; Hirunagi, T; Maeda, K; Kato, R; Katsuno, M

    DISEASE MODELS & MECHANISMS   18 巻 ( 6 )   2025年6月

     詳細を見る

    記述言語:英語   出版者・発行元:Dmm Disease Models and Mechanisms  

    Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disorder caused by CAG trinucleotide expansion in the androgen receptor (AR) gene. To improve the quality of in vitro cell-based assays for the evaluation of potential drug candidates for SBMA, we developed a morphology-based phenotypic analysis for a muscle cell model of SBMA that involves multiparametric morphological profiling to quantitatively assess the therapeutic effects of drugs on muscle cell phenotype. The analysis was validated using dihydrotestosterone and pioglitazone, which have been shown to exacerbate and ameliorate the pathophysiology of SBMA, respectively. Gene expression analysis revealed activation of the JNK pathway in the SBMA cells compared to the control cells. Phenotypic analysis revealed the effect of naratriptan, a JNK inhibitor, on the phenotypic changes of SBMA cells, and the results were confirmed by LDH assays. We then trained a predictive machine learning model to classify the drug responses, and it successfully discriminated between pioglitazone-type and naratriptan-type morphological profiles based on their morphological characteristics. Our morphology-based phenotypic analysis provides a noninvasive and efficient screening method to accelerate the development of therapeutics for SBMA.

    DOI: 10.1242/dmm.052220

    Open Access

    Web of Science

    Scopus

    PubMed

  2. Determination and validation of design space for mesenchymal stem cell cultivation processes using prediction intervals Open Access

    Hirono, K; Hayashi, Y; Udugama, IA; Gaddem, MR; Tanaka, K; Takemoto, Y; Kato, R; Kino-oka, M; Sugiyama, H

    COMMUNICATIONS BIOLOGY   8 巻 ( 1 ) 頁: 657   2025年5月

     詳細を見る

    記述言語:英語   出版者・発行元:Communications Biology  

    In regenerative medicine, mesenchymal stem cells (MSCs) constitute a promising therapeutic route for many diseases. The current quality-by-design guidelines do not clearly define a framework for MSC production. Here, we suggest and experimentally validate a model-based method to determine design spaces (DSs) for MSC cultivation. A kinetic model used in previous work was employed; part of the experimental data was used to re-estimate the maximum specific growth rate in the kinetic model and then calculate the prediction intervals of this parameter. Subsequently, regions of seeding density and harvesting time where both the upper and lower limits of growth predictions met the acceptable number of cells and confluency with given risk levels were defined as DSs. Finally, the established DS was validated with the remaining data; it allowed better predictions of the cell numbers and confluency under specific cultivation conditions and improved the overall robustness of MSC cultivation processes. (Figure presented.)

    DOI: 10.1038/s42003-025-08063-2

    Open Access

    Web of Science

    Scopus

    PubMed

  3. Importance of dataset design in developing robust U-Net models for label-free cell morphology evaluation

    Shiina, T; Kimura, K; Takemoto, Y; Tanaka, K; Kato, R

    JOURNAL OF BIOSCIENCE AND BIOENGINEERING   139 巻 ( 4 ) 頁: 329 - 339   2025年4月

     詳細を見る

    記述言語:英語   出版者・発行元:Journal of Bioscience and Bioengineering  

    Advances in regenerative medicine highlighted the need for label-free cell image analysis to replace conventional microscopic observation for non-invasive cell quality evaluation. Image-based evaluation provides an efficient, quantitative, and automated approach to cell analysis, but segmentation remains a critical and challenging step. In this study, we investigated how training dataset design influenced the robustness of U-Net models for cell segmentation, focusing on challenges posed by limited data availability in cell culture. Using 2592 image pairs from four cell types representing key morphological categories, we constructed 42 investigation patterns to evaluate the effects of dataset size, dataset content, and morphological diversity on model performance. Our results showed that robust segmentation models could be developed with approximately 10 raw images captured using a 4× objective lens, a much smaller dataset than typically assumed. The dataset content was found to be crucial: training dataset images that captured commonly observed cell patterns yielded more robust models compared to those capturing rare or irregular cell patterns, which often impaired model performance with large deviations. Additionally, including both spindle and round cell morphologies in the training datasets improved model robustness when tested across all four cell types, while datasets restricted to a single morphology type could not achieve robust models. These findings highlight the importance of curating datasets that capture representative yet diverse cell morphologies. By addressing critical questions about dataset design, this study provides actionable guidance for the effective use of deep learning-based cell segmentation models in manufacturing and research applications.

    DOI: 10.1016/j.jbiosc.2025.01.004

    Web of Science

    Scopus

    PubMed

  4. Collection of Data Variation Using a High-Throughput Image-Based Assay Platform Facilitates Data-Driven Understanding of TRPA1 Agonist Diversity 査読有り Open Access

    Yuko Terada, Kenjiro Tanaka 2,Minami Matsuyama, Masaya Fujitani,Masatoshi Shibuya,Yoshihiko Yamamoto,Ryuji Kato, Keisuke Ito

    Applied Sciences   12 巻 ( 3 ) 頁: 1622 - 1632   2022年2月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)  

    DOI: https://doi.org/10.3390/app12031622

    Open Access

MISC 2

  1. Vision Transformerを用いた熟練者知識の定量化

    田中 健二郎  

    生物工学会誌103 巻 ( 3 ) 頁: 125 - 125   2025年3月

     詳細を見る

    記述言語:日本語   出版者・発行元:公益社団法人 日本生物工学会  

    DOI: 10.34565/seibutsukogaku.103.3_125

    CiNii Research

  2. 細胞産業における AI技術の応用と課題

    田中 健二郎, 加藤 竜司  

    人工知能40 巻 ( 2 ) 頁: 141 - 147   2025年3月

     詳細を見る

    記述言語:日本語   出版者・発行元:一般社団法人 人工知能学会  

    DOI: 10.11517/jjsai.40.2_141

    CiNii Research

講演・口頭発表等 14

  1. iPS細胞由来心筋細胞拍動解析における心毒性評価法の安定化

    田中健二郎, 出水遂志, 坂将成, 岩下賢士郎, 今井祐太, 蟹江慧, 清水聡史, 佐藤里菜, 柳田翔太, 川岸裕幸, 諫田泰成, 黒川洵子, 加藤竜司

    第23回日本再生医療学会総会  2024年3月22日 

     詳細を見る

    開催年月日: 2024年3月

    会議種別:ポスター発表  

  2. 3次元培養組織の内部解析を可能とする微細細胞操作装置の開発

    田中健二郎, 小口寿明, 酒井蓮, 古谷太樹, 河崎美哉, 櫻田伸一, 田中伸明, 加藤竜司

    第23回日本再生医療学会総会  2024年3月23日 

     詳細を見る

    開催年月日: 2024年3月

    会議種別:ポスター発表  

  3. Morphological analysis of senescent cells for label-free monitoring in mesenchymal stem cells 国際会議

    Kenjiro Tanaka, Yuto Okumura, Kei Kanie, Ryuji Kato

    TERMIS-AP 2023 Conference  2023年10月17日 

     詳細を見る

    開催年月日: 2023年10月

    会議種別:口頭発表(一般)  

  4. Development of non-destructive and rapid deviation detection techniques in three-dimensional cell culture

    Kenjiro Tanaka, Miya Kawasaki, Keigo Nakano, Yoko Igarashi, Hiroshi Suganuma, Ryuji Kato

    2023年9月3日 

     詳細を見る

    開催年月日: 2023年9月

    会議種別:口頭発表(一般)  

  5. 培養細胞の安定供給を目指した画像解析による細胞老化検出技術の開発

    田中健二郎, 奥村祐斗 , 蟹江慧, 加藤竜司

    生物工学会若手会夏のセミナー2023  2023年6月24日 

     詳細を見る

    開催年月日: 2023年6月

    記述言語:日本語   会議種別:ポスター発表  

  6. In vitro 心筋細胞拍動データを用いた AI 心毒性予測モデル 構築に向けた指標安定性の理解

    田中健二郎, 出水遂志, 坂将成, 岩下賢士郎, 今井祐太, 蟹江慧, 清水聡史, 佐藤里菜, 柳田翔太, 川岸裕幸, 諫田泰成, 黒川洵子, 加藤竜司

    化学工学会 第89年会/IChES2024  2024年3月19日 

     詳細を見る

    開催年月日: 2023年4月

    会議種別:口頭発表(一般)  

  7. TRPA1アゴニストにおける構造多様性のデータ駆動型理解

    田中健二郎、寺田祐子、松山南、藤谷将也、澁谷正俊、山本芳彦、伊藤圭祐、加藤竜

    日本薬学会 第143年会  2023年3月27日 

     詳細を見る

    開催年月日: 2023年3月

    会議種別:口頭発表(一般)  

  8. 間葉系幹細胞製造におけるインプロセスモニタリングを指向した老化細胞の形態解析

    田中健二郎, 奥村祐斗, 蟹江慧, 加藤竜司

    第22回日本再生医療学会総会  2023年3月23日 

     詳細を見る

    開催年月日: 2023年3月

    会議種別:口頭発表(一般)  

  9. 形態情報を用いた薬剤応答サブポピュレーション評価技術の開発

    田中健二郎, 今井裕太, 奥村祐斗, 蟹江慧, 勝野雅央, 加藤竜司

    化学工学会第88年会  2023年3月17日 

     詳細を見る

    開催年月日: 2023年3月

    会議種別:口頭発表(一般)  

  10. Near Infrared Imaging for novel understanding of spheroid culture 国際会議

    TANAKA Kenjiro, NAGAI Miki, HAYASHI Saki, IGARASHI Yoko, SUGANUMA Hiroshi, KATO Ryuji

    27th Symposium of YABEC  2022年12月9日 

     詳細を見る

    開催年月日: 2022年12月

    会議種別:口頭発表(一般)  

  11. 3次元培養組織による再生医療の実現に向けた品質管理技術の開発

    田中健二郎,林咲希,永井美希,蟹江慧,五十嵐陽子,菅沼寛,加藤竜司

    日本再生医療学会第2回科学シンポジウム  2022年12月2日 

     詳細を見る

    開催年月日: 2022年12月

    会議種別:ポスター発表  

  12. Data-Driven Understanding of TRPA1 Agonist Diversity

    Kenjiro TANAKA, Yuko TEARADA, Minami MATSUYAMA, Masaya FUJITANI, Masatoshi SHIBUYA, Yoshihiko YAMAMOTO, Keisuke ITO, Ryuji KATO

    2022年10月26日 

     詳細を見る

    開催年月日: 2022年10月

    記述言語:日本語   会議種別:口頭発表(一般)  

  13. ケモインフォマティクスによるTRPA1アゴニストにおける多様性の理解

    田中 健二郎, 寺田 祐子, 松山 南, 藤谷 将也, 澁谷 正俊, 山本 芳彦, 伊藤 圭祐, 加藤 竜司

    第74回 日本生物工学会 大会  2022年10月18日 

     詳細を見る

    開催年月日: 2022年10月

    会議種別:口頭発表(一般)  

  14. Data integration importance for enabling region-free image-based cell quality control 国際会議

    Kenjiro Tanaka, Yuto Takemoto, Kei Kanie, Ryuji Kato

    TERMIS-EU 2022  2022年6月30日 

     詳細を見る

    開催年月日: 2022年6月 - 2022年7月

    会議種別:ポスター発表  

▼全件表示

 

担当経験のある科目 (本学) 1

  1. 化学生命工学実験3

    2022