Updated on 2025/03/18

写真a

 
KURITA Kazuhiro
 
Organization
Graduate School of Informatics Department of Mathematical Informatics 2 Assistant Professor
Graduate School
Graduate School of Informatics
Undergraduate School
School of Informatics Department of Natural Informatics
Title
Assistant Professor

Degree 1

  1. 博士(情報科学) ( 2020.3   北海道大学 ) 

Research Interests 1

  1. Subgraph Enumeration, K-best Enumeration, Approximation Algorithms, Combinatorial Optimization, Fixed-Parameter Tractability

Research Areas 1

  1. Informatics / Mathematical informatics  / Subgraph Enumeration, K-best Enumeration, Approximation Algorithms, Combinatorial Optimization, Fixed-Parameter Tractability

 

Papers 24

  1. Polynomial-delay enumeration of large maximal common independent sets in two matroids and beyond ☆ Open Access

    Kobayashi, Y; Kurita, K; Wasa, K

    INFORMATION AND COMPUTATION   Vol. 304   2025.5

     More details

    Publisher:Information and Computation  

    Finding a maximum cardinality common independent set in two matroids (also known as MATROID INTERSECTION) is a classical combinatorial optimization problem, which generalizes several well-known problems, such as finding a maximum bipartite matching, a maximum colorful forest, and an arborescence in directed graphs. Enumerating all maximal common independent sets in two (or more) matroids is a classical enumeration problem. In this paper, we address an “intersection” of these problems: Given two matroids and a threshold τ, the goal is to enumerate all maximal common independent sets in the matroids with cardinality at least τ. We show that this problem can be solved in polynomial delay and polynomial space. Moreover, our technique can be extended to a more general problem, which is relevant to MATROID MATCHING. We give a polynomial-delay and polynomial-space algorithm for enumerating all maximal “matchings” with cardinality at least τ, assuming that the optimization counterpart is “tractable” in a certain sense. This extension allows us to enumerate small minimal connected vertex covers in subcubic graphs. We also discuss a framework to convert enumeration with cardinality constraints into ranked enumeration.

    DOI: 10.1016/j.ic.2025.105282

    Web of Science

    Scopus

  2. Space-Efficient FPT Algorithms for Degeneracy Open Access

    MATSUMOTO Naohito, KURITA Kazuhiro, KIYOMI Masashi

    IEICE Transactions on Information and Systems   Vol. E108.D ( 3 ) page: 208 - 213   2025.3

     More details

    Language:English   Publisher:The Institute of Electronics, Information and Communication Engineers  

    <p>The degeneracy of a graph <i>G</i> is defined as the smallest value <i>k</i> such that every subgraph of <i>G</i> has a vertex with a degree of at most <i>k</i>. Given a graph <i>G</i>, its degeneracy can be easily calculated provided sufficient memory is available. In this paper, we focus on scenarios where only o(<i>n</i>) bits of additional read-write memory are available, apart from the input stored in read-only memory. Within this context, we introduce two FPT algorithms for degeneracy, parameterized by neighborhood diversity and the cluster vertex deletion number.</p>

    DOI: 10.1587/transinf.2024fcp0005

    Open Access

    Scopus

    CiNii Research

  3. Dichotomies for tree minor containment with structural parameters

    Gima, T; Kumabe, S; Kurita, K; Okada, Y; Otachi, Y

    THEORETICAL COMPUTER SCIENCE   Vol. 1026   2025.2

     More details

    Publisher:Theoretical Computer Science  

    The problem of determining whether a graph G contains another graph H as a minor, referred to as the minor containment problem, is a fundamental problem in the field of graph algorithms. While the problem is NP-complete in general, it can be tractable on some restricted graph classes. This study focuses on the case where both G and H are trees, known as the tree minor containment problem. Even in this case, the problem is known to be NP-complete. In contrast, polynomial-time algorithms are known for the case when both trees are caterpillars or when the maximum degree of H is a constant. Our research aims to clarify the boundary of tractability and intractability for the tree minor containment problem. Specifically, we provide complexity dichotomies for the problem based on three structural parameters: diameter, pathwidth, and path eccentricity.

    DOI: 10.1016/j.tcs.2024.114984

    Web of Science

    Scopus

  4. Enumerating Minimal Vertex Covers and Dominating Sets with Capacity and/or Connectivity Constraints Open Access

    Kobayashi, Y; Kurita, K; Mann, K; Matsui, Y; Ono, H

    ALGORITHMS   Vol. 18 ( 2 )   2025.2

     More details

    Publisher:Algorithms  

    In this paper, we consider the minimal vertex cover and minimal dominating sets with capacity and/or connectivity constraint enumeration problems. We develop polynomial-delay enumeration algorithms for these problems on bounded-degree graphs. For the case of minimal connected vertex covers, our algorithms run in polynomial delay, even on the class of d-claw free graphs. This result is extended for bounded-degree graphs and outputs in quasi-polynomial time on general graphs. To complement these algorithmic results, we show that the minimal connected vertex cover, minimal connected dominating set, and minimal capacitated vertex cover enumeration problems in 2-degenerated bipartite graphs are at least as hard as enumerating minimal transversals in hypergraphs.

    DOI: 10.3390/a18020112

    Open Access

    Web of Science

    Scopus

  5. Efficient constant-factor approximate enumeration of minimal subsets for monotone properties with weight constraints Open Access

    Kobayashi, Y; Kurita, K; Wasa, K

    DISCRETE APPLIED MATHEMATICS   Vol. 361   page: 258 - 275   2025.1

     More details

    Publisher:Discrete Applied Mathematics  

    A property Π on a finite set U is monotone if for every X⊆U satisfying Π, every superset Y⊆U of X also satisfies Π. Many combinatorial properties can be seen as monotone properties. The problem of finding a subset of U satisfying Π with the minimum weight is a central problem in combinatorial optimization. Although many approximate/exact algorithms have been developed to solve this kind of problem on numerous properties, a solution obtained by these algorithms is often unsuitable for real-world applications due to the difficulty of building accurate mathematical models on real-world problems. A promising approach to overcome this difficulty is to enumerate multiple small solutions rather than to find a single small solution. To this end, given a weight function w:U→Q>0 and k∈Q>0, we devise algorithms that approximately enumerate all minimal subsets of U with weight at most k satisfying Π for various monotone properties Π, where “approximate enumeration” means that algorithms output all minimal subsets satisfying Π whose weight is at most k and may output some minimal subsets satisfying Π whose weight exceeds k but is at most ck for some constant c≥1. These algorithms allow us to efficiently enumerate minimal vertex covers, minimal dominating sets in bounded degree graphs, minimal feedback vertex sets, minimal hitting sets in bounded rank hypergraphs, etc., of weight at most k with constant approximation factors.

    DOI: 10.1016/j.dam.2024.10.014

    Open Access

    Web of Science

    Scopus

  6. Maximal Common Subsequence Enumeration is Hard

    Buzzega Giovanni, Conte Alessio, Kobayashi Yasuaki, Kurita Kazuhiro, Punzi Giulia

    人工知能学会研究会資料 人工知能基本問題研究会   Vol. 131 ( 0 ) page: 31 - 36   2025.1

     More details

    Language:Japanese   Publisher:一般社団法人 人工知能学会  

    DOI: 10.11517/jsaifpai.131.0_31

    CiNii Research

  7. Algorithms for Optimally Shifting Intervals Under Intersection Graph Models

    Honorato-Droguett N., Kurita K., Hanaka T., Ono H.

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)   Vol. 14752 LNCS   page: 66 - 78   2025

     More details

    Publisher:Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)  

    We propose a new model for graph editing problems on intersection graphs. In well-studied graph editing problems, adding and deleting vertices and edges are used as graph editing operations. As a graph editing operation on intersection graphs, we propose moving objects corresponding to vertices. In this paper, we focus on interval graphs as an intersection graph. We give a linear-time algorithm to find the total moving distance for transforming an interval graph into a complete graph. The concept of this algorithm can be applied for (i) transforming a unit square graph into a complete graph over L1 distance and (ii) attaining the existence of a k-clique on unit interval graphs. In addition, we provide LP-formulations to achieve several properties in the associated graph of unit intervals.

    DOI: 10.1007/978-981-97-7752-5_5

    Scopus

  8. An approximation algorithm for K-best enumeration of minimal connected edge dominating sets with cardinality constraints Open Access

    Kurita, K; Wasa, K

    THEORETICAL COMPUTER SCIENCE   Vol. 1005   2024.7

     More details

    Publisher:Theoretical Computer Science  

    K-best enumeration, which asks to output k-best solutions without duplication, is a helpful tool in data analysis for many fields. In such fields, graphs typically represent data. Thus subgraph enumeration has been paid much attention to such fields. However, k-best enumeration tends to be intractable since, in many cases, finding one optimum solution is NP-hard. To overcome this difficulty, we combine k-best enumeration with a concept of enumeration algorithms called approximation enumeration algorithms. As a main result, we propose a 4-approximation algorithm for minimal connected edge dominating sets which outputs k minimal solutions with cardinality at most 4⋅OPT‾, where OPT‾ is the cardinality of a minimum solution which is not outputted by the algorithm. Our proposed algorithm runs in O(nm2Δ) delay, where n, m, Δ are the number of vertices, the number of edges, and the maximum degree of an input graph.

    DOI: 10.1016/j.tcs.2024.114628

    Web of Science

    Scopus

  9. On the hardness of inclusion-wise minimal separators enumeration

    Brosse, C; Defrain, O; Kurita, K; Limouzy, V; Uno, T; Wasa, K

    INFORMATION PROCESSING LETTERS   Vol. 185   2024.3

     More details

    Publisher:Information Processing Letters  

    Enumeration problems are often encountered as key subroutines in the exact computation of graph parameters such as chromatic number, treewidth, or treedepth. In the case of treedepth computation, the enumeration of inclusion-wise minimal separators plays a crucial role. However and quite surprisingly, the complexity status of this problem has not been settled since it has been posed as an open direction by Kloks and Kratsch in 1998. Recently at the PACE 2020 competition dedicated to treedepth computation, solvers have been circumventing that by listing all minimal a-b separators and filtering out those that are not inclusion-wise minimal, at the cost of efficiency. Naturally, having an efficient algorithm for listing inclusion-wise minimal separators would drastically improve such practical algorithms. In this note, however, we show that no efficient algorithm is to be expected from an output-sensitive perspective, namely, we prove that there is no output-polynomial time algorithm for inclusion-wise minimal separators enumeration unless P=NP.

    DOI: 10.1016/j.ipl.2023.106469

    Web of Science

    Scopus

  10. Dichotomies for Tree Minor Containment with Structural Parameters

    Gima, T; Kumabe, S; Kurita, K; Okada, Y; Otachi, Y

    WALCOM: ALGORITHMS AND COMPUTATION, WALCOM 2024   Vol. 14549   page: 392 - 405   2024

     More details

    Publisher:Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)  

    The problem of determining whether a graph G contains another graph H as a minor, referred to as the minor containment problem, is a fundamental problem in the field of graph algorithms. While it is -complete when G and H are general graphs, it is sometimes tractable on more restricted graph classes. This study focuses on the case where both G and H are trees, known as the tree minor containment problem. Even in this case, the problem is known to be -complete. In contrast, polynomial-time algorithms are known for the case when both trees are caterpillars or when the maximum degree of H is a constant. Our research aims to clarify the boundary of tractability and intractability for the tree minor containment problem. Specifically, we provide dichotomies for the computational complexities of the problem based on three structural parameters: the diameter, pathwidth, and path eccentricity.

    DOI: 10.1007/978-981-97-0566-5_28

    Web of Science

    Scopus

  11. Enumerating Minimal Vertex Covers and Dominating Sets with Capacity and/or Connectivity Constraints

    Kobayashi, Y; Kurita, K; Matsui, Y; Ono, H

    COMBINATORIAL ALGORITHMS, IWOCA 2024   Vol. 14764   page: 232 - 246   2024

  12. 要素数制約付き極小辺被覆の多項式遅延列挙

    小林 靖明, 栗田 和宏

    人工知能学会研究会資料 人工知能基本問題研究会   Vol. 126 ( 0 ) page: 39 - 43   2023.11

     More details

    Language:Japanese   Publisher:一般社団法人 人工知能学会  

    DOI: 10.11517/jsaifpai.126.0_39

    CiNii Research

  13. Enumerating Empty and Surrounding Polygons Open Access

    TERUI Shunta, YAMANAKA Katsuhisa, HIRAYAMA Takashi, HORIYAMA Takashi, KURITA Kazuhiro, UNO Takeaki

    IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences   Vol. E106.A ( 9 ) page: 1082 - 1091   2023.9

     More details

    Language:English   Publisher:The Institute of Electronics, Information and Communication Engineers  

    <p>We are given a set <i>S</i> of <i>n</i> points in the Euclidean plane. We assume that <i>S</i> is in general position. A simple polygon <i>P</i> is an <i>empty polygon</i> of <i>S</i> if each vertex of <i>P</i> is a point in <i>S</i> and every point in <i>S</i> is either outside <i>P</i> or a vertex of <i>P</i>. In this paper, we consider the problem of enumerating all the empty polygons of a given point set. To design an efficient enumeration algorithm, we use a reverse search by Avis and Fukuda with child lists. We propose an algorithm that enumerates all the empty polygons of <i>S</i> in <i>O</i>(<i>n</i><sup>2</sup>|<i>ε</i>(<i>S</i>)|)-time, where <i>ε</i>(<i>S</i>) is the set of empty polygons of <i>S</i>. Moreover, by applying the same idea to the problem of enumerating surrounding polygons of a given point set <i>S</i>, we propose an enumeration algorithm that enumerates them in <i>O</i>(<i>n</i><sup>2</sup>)-delay, while the known algorithm enumerates in <i>O</i>(<i>n</i><sup>2</sup> log <i>n</i>)-delay, where a <i>surroundingpolygon</i> of <i>S</i> is a polygon such that each vertex of the polygon is a point in <i>S</i> and every point in <i>S</i> is either inside the polygon or a vertex of the polygon.</p>

    DOI: 10.1587/transfun.2022dmp0007

    Web of Science

    Scopus

    CiNii Research

  14. Polynomial-Delay Enumeration of Large Maximal Common Independent Sets in Two Matroids

    Kobayashi Y., Kurita K., Wasa K.

    Leibniz International Proceedings in Informatics, LIPIcs   Vol. 272   2023.8

     More details

    Publisher:Leibniz International Proceedings in Informatics, LIPIcs  

    Finding a maximum cardinality common independent set in two matroids (also known as Matroid Intersection) is a classical combinatorial optimization problem, which generalizes several well-known problems, such as finding a maximum bipartite matching, a maximum colorful forest, and an arborescence in directed graphs. Enumerating all maximal common independent sets in two (or more) matroids is a classical enumeration problem. In this paper, we address an “intersection” of these problems: Given two matroids and a threshold τ, the goal is to enumerate all maximal common independent sets in the matroids with cardinality at least τ. We show that this problem can be solved in polynomial delay and polynomial space. We also discuss how to enumerate all maximal common independent sets of two matroids in non-increasing order of their cardinalities.

    DOI: 10.4230/LIPIcs.MFCS.2023.58

    Scopus

  15. Optimal LZ-End Parsing Is Hard

    Bannai H., Funakoshi M., Kurita K., Nakashima Y., Seto K., Uno T.

    Leibniz International Proceedings in Informatics, LIPIcs   Vol. 259   2023.6

     More details

    Publisher:Leibniz International Proceedings in Informatics, LIPIcs  

    LZ-End is a variant of the well-known Lempel-Ziv parsing family such that each phrase of the parsing has a previous occurrence, with the additional constraint that the previous occurrence must end at the end of a previous phrase. LZ-End was initially proposed as a greedy parsing, where each phrase is determined greedily from left to right, as the longest factor that satisfies the above constraint [Kreft & Navarro, 2010]. In this work, we consider an optimal LZ-End parsing that has the minimum number of phrases in such parsings. We show that a decision version of computing the optimal LZ-End parsing is NP-complete by showing a reduction from the vertex cover problem. Moreover, we give a MAX-SAT formulation for the optimal LZ-End parsing adapting an approach for computing various NP-hard repetitiveness measures recently presented by [Bannai et al., 2022]. We also consider the approximation ratio of the size of greedy LZ-End parsing to the size of the optimal LZ-End parsing, and give a lower bound of the ratio which asymptotically approaches 2.

    DOI: 10.4230/LIPIcs.CPM.2023.3

    Scopus

  16. A Framework to Design Approximation Algorithms for Finding Diverse Solutions in Combinatorial Problems, Reviewed

    Tesshu Hanaka, Masashi Kiyomi, Yasuaki Kobayashi, Yusuke Kobayashi, Kazuhiro Kurita, Yota Otachi

    Proceedings of the AAAI Conference on Artificial Intelligence     2023

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (international conference proceedings)  

  17. Computing Diverse Shortest Paths Efficiently: A Theoretical and Experimental Study

    Hanaka T., Kobayashi Y., Kurita K., Lee S.W., Otachi Y.

    Proceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022   Vol. 36   page: 3758 - 3766   2022.6

     More details

    Publisher:Proceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022  

    Finding diverse solutions in combinatorial problems recently has received considerable attention (Baste et al. 2020; Fomin et al. 2020; Hanaka et al. 2021). In this paper we study the following type of problems: given an integer k, the problem asks for k solutions such that the sum of pairwise (weighted) Hamming distances between these solutions is maximized. Such solutions are called diverse solutions. We present a polynomial-time algorithm for finding diverse shortest stpaths in weighted directed graphs. Moreover, we study the diverse version of other classical combinatorial problems such as diverse weighted matroid bases, diverse weighted arborescences, and diverse bipartite matchings. We show that these problems can be solved in polynomial time as well. To evaluate the practical performance of our algorithm for finding diverse shortest st-paths, we conduct a computational experiment with synthetic and real-world instances. The experiment shows that our algorithm successfully computes diverse solutions within reasonable computational time.

    Scopus

  18. Constant Amortized Time Enumeration of Eulerian trails Reviewed

    Kazuhiro Kurita, Kunihiro Wasa

    Theoretical Computer Science   Vol. 923   page: 1 - 12   2022.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.tcs.2022.04.048

  19. Linear-Delay Enumeration for Minimal Steiner Problems Reviewed

    Kobayashi Yasuaki, Kurita Kazuhiro, Wasa Kunihiro

    Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems     2022.6

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1145/3517804.3524148

  20. An Improved Deterministic Parameterized Algorithm for Cactus Vertex Deletion

    Aoike, Y; Gima, T; Hanaka, T; Kiyomi, M; Kobayashi, Y; Kobayashi, Y; Kurita, K; Otachi, Y

    THEORY OF COMPUTING SYSTEMS   Vol. 66 ( 2 ) page: 502 - 515   2022.4

     More details

    Language:Japanese   Publisher:Theory of Computing Systems  

    A cactus is a connected graph that does not contain K4 − e as a minor. Given a graph G = (V,E) and an integer k ≥ 0, Cactus Vertex Deletion (also known as Diamond Hitting Set) is the problem of deciding whether G has a vertex set of size at most k whose removal leaves a forest of cacti. The previously best deterministic parameterized algorithm for this problem was due to Bonnet et al. [WG 2016], which runs in time 26knO(1), where n is the number of vertices of G. In this paper, we design a deterministic algorithm for Cactus Vertex Deletion, which runs in time 17.64knO(1). As an almost straightforward application of our algorithm, we also give a deterministic 17.64knO(1)-time algorithm for Even Cycle Transversal, which improves the previous running time 50knO(1) of the known deterministic parameterized algorithm due to Misra et al. [WG 2012].

    DOI: 10.1007/s00224-022-10076-x

    Web of Science

    Scopus

  21. Polynomial-Delay and Polynomial-Space Enumeration of Large Maximal Matchings

    Kobayashi, Y; Kurita, K; Wasa, K

    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2022)   Vol. 13453   page: 342 - 355   2022

     More details

    Language:Japanese   Publisher:Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)  

    Enumerating matchings is a classical problem in the field of enumeration algorithms. There are polynomial-delay enumeration algorithms for several settings, such as enumerating perfect matchings, maximal matchings, and (weighted) matchings in specific orders. In this paper, we present polynomial-delay enumeration algorithms for maximal matchings with cardinality at least given threshold t. Our algorithm enumerates all such matchings in O(nm) delay with exponential space, where n and m are the number of vertices and edges of an input graph, respectively. We also present a polynomial-delay and polynomial-space enumeration algorithm for this problem. As a variant of this algorithm, we give an algorithm that enumerates k-best maximal matchings that runs in polynomial-delay.

    DOI: 10.1007/978-3-031-15914-5_25

    Web of Science

    Scopus

  22. Computing Diverse Shortest Paths Efficiently: A Theoretical and Experimental Study Reviewed

    Proceedings of the AAAI Conference on Artificial Intelligence     2022

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1609/aaai.v36i4.20290

  23. 多様な解集合を発見する効率良い近似アルゴリズム

    栗田 和宏, 土中 哲秀, 清見 礼, 小林 靖明, 小林 佑輔, 大舘 陽太

    人工知能学会研究会資料 人工知能基本問題研究会   Vol. 119 ( 0 ) page: 21 - 26   2022

     More details

    Language:Japanese   Publisher:一般社団法人 人工知能学会  

    DOI: 10.11517/jsaifpai.119.0_21

    CiNii Research

  24. Extracting Cliches: Typify Slanderous Expressions Against the Confessions in the #MeToo Movement Reviewed

    武富 有香, 須田 永遠, 栗田 和宏

    Digital Humanities Conference 2022 Conference Abstracts   Vol. -   page: 695 - 696   2022

     More details

▼display all

MISC 2

  1. Polynomial-Delay and Polynomial-Space Enumeration of Heavy Maximal Matchings Reviewed

    Yasuaki Kobayashi, Kazuhiro Kurita, and Kunihiro Wasa

    The 6th Workshop on Enumeration Problems and Applications     2024

     More details

    Authorship:Lead author   Language:English  

  2. Amortized Enumeration of Graphlets Reviewed

    Alessio Conte, Roberto Grossi, Yasuaki Kobayashi, Kazuhiro Kurita, Davide Rucci, Takeaki Uno, and Kunihiro Wasa

    The 6th Workshop on Enumeration Problems and Applications     2024

     More details

    Authorship:Lead author   Language:English  

Presentations 3

  1. 極大性と要素数の二つの制約を同時に満たす部分集合列挙アルゴリズム Invited

    栗田和宏

    日本OR学会研究部会:最適化の理論とアルゴリズム(RAOTA)  2023.11.25 

     More details

    Event date: 2023.11

    Presentation type:Oral presentation (invited, special)  

    Venue:国立情報学研究所   Country:Japan  

  2. Techniques for designing polynomial-delay enumeration algorithms for maximal subset enumeration problems

    Kazuhiro Kurita

    AFSA seminar B04  2022.6.21  Creation and Organization of Innovative Algorithmic Foundations for Social Advancement

     More details

    Event date: 2022.6

    Language:English   Presentation type:Public lecture, seminar, tutorial, course, or other speech  

  3. 解グラフを用いた多項式遅延列挙アルゴリズムの構築技法 Invited

    栗田和宏

    2022年電子情報通信学会総合大会, COMP学生シンポジウム  2022.3.15 

     More details

    Event date: 2022.3

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:オンライン開催   Country:Japan  

Research Project for Joint Research, Competitive Funding, etc. 1

  1. 順序制約付き極大部分集合列挙の基盤技術開発

    Grant number:JPMJAX2105  2021.10 - 2024.3

    戦略的創造研究推進事業/ ACT-X 

      More details

    Authorship:Principal investigator  Grant type:Competitive

KAKENHI (Grants-in-Aid for Scientific Research) 6

  1. Developing an Analytical Method to Understand and Classify Slanderous Narratives on Social Media using Literary Techniques

    Grant number:24K15204  2024.4 - 2029.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Authorship:Coinvestigator(s) 

  2. Foundation of Japanese stylistics for social media analysis

    Grant number:22K12285  2022.4 - 2027.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

      More details

    Authorship:Coinvestigator(s) 

  3. 列挙や数え上げなどを統一的に扱うための基盤技術

    Grant number:22H03549  2022.4 - 2026.3

    科学研究費助成事業  基盤研究(B)

    堀山 貴史, 伝住 周平, 和佐 州洋, 栗田 和宏, 脊戸 和寿, 中畑 裕

      More details

    Authorship:Coinvestigator(s) 

    制約条件を満たす解の列挙、解の個数の数え上げ、すべての解の中からのランダムサンプリングなどのアルゴリズムの設計は、互いに深く関連しつつも、それぞれ独自の技法が必要とされることが多い。このため、それぞれのアルゴリズムは個別に設計されることが多い。本研究課題では、制約条件が定義する解空間の性質についての理解をもとに、基本的なアイデアを記述し、その記述から各アルゴリズムを統一的に導出するための基盤技術の研究を行う。

  4. 部分グラフ列挙問題で用いる多項式遅延列挙アルゴリズム設計技法の拡張に関する研究

    Grant number:21H05861  2021.9 - 2023.3

    科学研究費助成事業  学術変革領域研究(A)

    栗田 和宏

      More details

    Authorship:Principal investigator 

    Grant amount:\2600000 ( Direct Cost: \2000000 、 Indirect Cost:\600000 )

    部分集合列挙の研究に対する近年の大きな進展として,部分グラフ列挙分野で2019年に近接探索(proxmity search)とよばれる技法が開発され,列挙を容易にする十分条件が明らかになった. しかし,近接探索では,ある列挙問題を効率良く解くアルゴリズムの存在性を仮定するため,問題ごとに専用のアルゴリズムを設計する必要があるため,十分条件として扱いづらい.また,近接探索のアイディアは部分グラフ列挙問題以外にも適用可能であると申請者は考える.そこで本研究では,近接探索の他の列挙問題に対する拡張と,あるアルゴリズムの存在性を用いない効率良い列挙のための十分条件の発見を目指す.
    本研究の目的は極大/極小部分グラフ列挙で用いられる技法を一般の離散構造への拡張を目指すことである.特に本研究では独立性システムというグラフよりも一般的な離散構造である独立性システムに着目した.独立性システムとは台集合 E 対し,次の性質を満たす E の部分集合の族 I である.I は空集合を含み,I が X を含むならば,Xの任意の部分集合は I に含まれる.
    この独立性システムの極大部分集合を列挙する問題は P ≠ NP の仮定のもと,効率良い列挙アルゴリズムが存在しない.しかし,入力制約問題とよばれる問題が効率よく解けると仮定するとこの問題は効率よく解ける.しかし,多項式遅延というより制限したクラスを考えると,この関係は十分条件にしかならない.このギャップは長年列挙アルゴリズム分野で大きなギャップとなっており,列挙アルゴリズム分野の中心的な問題に対しても,入力制約問題が多項式時間で解けないため,多項式遅延列挙が容易ではない問題が多かった.しかし,2019年にこのギャップを部分的に埋める方法が発見され,多くの極大/極小部分グラフ列挙問題が多項式遅延で列挙できることが明らかになった.本研究ではこの技法で用いられたアイディアをもとに独立性システム上の列挙問題について多項式遅延列挙ができるかどうかについて研究を行った.
    本研究の結果として,独立性システムの一部であるマトロイドマッチングで表現できる離散構造は多項式遅延で解けることを明らかにした.しかし,他の具体的な問題についてはこれらの知見を生かすことは容易ではなかった.さらに,独立性システム上の列挙問題の多くは極小横断と似た難しさを持っているため,これまで列挙アルゴリズム分野で考えられてきた困難な問題と似た問題を多く持っていた.そのため,初年度に得られていた結果を多少拡張した結果しか得られなかった.
    令和4年度が最終年度であるため、記入しない。
    令和4年度が最終年度であるため、記入しない。

  5. A Method for Analyzing Collective Behavior Based on Structuring Topics on Large-Scale SNS

    Grant number:21H03559  2021.4 - 2026.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

      More details

    Authorship:Coinvestigator(s) 

  6. サイズ制約付き極小部分集合列挙問題に対する多項式遅延近似列挙アルゴリズムの研究

    Grant number:21K17812  2021.4 - 2025.3

    科学研究費助成事業  若手研究

    栗田 和宏

      More details

    Authorship:Principal investigator 

    Grant amount:\4810000 ( Direct Cost: \3700000 、 Indirect Cost:\1110000 )

    列挙問題はその問題自体の効率良い計算の理論的限界の研究が行われるだけでなく,最適化や,データマイニングやデータベース分野でも盛んに研究が行われおり,理論と実用の両面から研究されている重要な問題である.しかし,既存の列挙の理論研究と実用を考えたとき,理論的に効率良い列挙アルゴリズムの研究には課題があると申請者は考える.特に申請者が考える大きな課題は,実用上の有望な解と定式化した列挙問題の解のギャップが大きすぎることである.このギャップにより,列挙した解のほぼ全てが無意味な場合もある.そのため,本研究では実用を見据えた新たな列挙問題の提案とその列挙問題を解くアルゴリズムの基盤技術開発を行う.
    これまでの研究で,小さな極小解を列挙するには入力制約問題が重要であり,この問題が効率よく解け,近似解を一つ効率よく計算できるような問題であれば,小さな極小解を近似的に効率よく列挙できることを明らかにした.この方針は大きな極大解の列挙には直接的に適用できないため,次なる理論的な興味として,大きな極大解の厳密な列挙が可能かどうかについて研究を行なっていた.この結果は研究題目の小さな極小解列挙とは直接的に関係はないが,伝統的な組合せ最適化においては最大最小定理のように,ある種の最大解がある種の最小解を得るための手掛かりになる場合がある.具体例としてはグラフ中のマッチングと呼ばれる構造は最小な辺被覆を計算するための上界となる.この事実と2022年に採択された大きな極大マッチング列挙アルゴリズムの知見を組合せ,小さな極小辺被覆を効率よく列挙するアルゴリズムを提案した.さらに,2023年度に発表した二つのマトロイドの大きな極大共通独立集合を列挙するアルゴリズムをさらに改良し,次数3のグラフに対する小さな連結極小頂点被覆を効率よく列挙するアルゴリズムも与えた.この結果は二つのマトロイドの大きな極大共通独立集合を一般化したマトロイドパリティと呼ばれる離散構造に対し,大きな極大解を列挙するアルゴリズムを与えたことの系として得られる.最大マトロイドパリティは一般的には多項式時間で計算することはできないが,ある程度の妥当な仮定を追加することで大きな極大マトロイドパリティを効率よく列挙することができる.この結果はマッチングの結果とマトロイド交叉の結果を一般化した結果である.
    これまでの研究では小さな極小解の列挙について,ある程度一般的なアルゴリズムを得ることができた.また,昨年度では大きな極大解の列挙アルゴリズムの開発で得た知識をもとに幾つかのグラフ上の問題で小さな極小解を列挙する効率良いアルゴリズムを得ることができた.このように,大きな解の列挙と小さな解の列挙の知見を合わせることによって,当初は予定していなかった興味深い研究結果が得られている.このことからも本研究が順調に進展していることがわかる.
    一方,近似を許した場合は辺被覆などの扱いやすい離散構造以外にも良いアルゴリズムを設計できるかもしれないが,近似をより有効に使った際にどの程度の乖離が生まれるかについてはまだあまり明らかにできていない.今後はこの近似を有効に使ったアルゴリズムについても研究していきたい.
    これまでの研究では小さな極小解を近似的に列挙する一般的な技法と,特定のグラフの構造に対する小さな極小解を厳密に列挙する技法を与えた.これらの技法は解グラフ技法という列挙アルゴリズムを設計する強力な技法に強く依存している.このような小さな極小解を近似的に列挙する技法についての既存研究は多くないが,小さな極小解を厳密に列挙する技法についての研究はいくつか存在する.そのような研究においてはバックトラック法と最適化アルゴリズムの組合せが一般的な技法である.これまでの研究では会グラフ技法と最適解の構造の組合せで効率良いアルゴリズム設計を可能にしてきたが,今年度は別の視点からの研究として,バックトラック法と近似アルゴリズム,または局所探索と近似アルゴリズムなどを組合せた技法による研究を進めていこうと考えている.

▼display all

 

Teaching Experience (Off-campus) 2

  1. Discrete Mathematics

    2024.4 - 2025.3 The University of Electro-Communications)

     More details

    Level:Undergraduate (specialized)  Country:Japan

  2. Discrete Mathematics

    2023.10 - 2024.3 The University of Electro-Communications)

     More details

    Level:Undergraduate (specialized)  Country:Japan