Updated on 2024/10/17

写真a

 
LAOHAVISIT Anuphon
 
Organization
Institute of Transformative Bio-Molecules Designated associate professor
Title
Designated associate professor

Degree 2

  1. Doctor of Philosophy (Plant Sciences) ( 2010.1   University of Cambridge ) 

  2. Bachelor of Arts (Natural Sciences) ( 2005.7   University of Cambridge ) 

 

Papers 22

  1. Quinone perception in plants via leucine-rich-repeat receptor-like kinases.

    Laohavisit A, Wakatake T, Ishihama N, Mulvey H, Takizawa K, Suzuki T, Shirasu K

    Nature   Vol. 587 ( 7832 ) page: 92 - 97   2020.11

     More details

    Language:English  

    DOI: 10.1038/s41586-020-2655-4

    PubMed

  2. Wound-induced rooting in plants—a big BIG ROle emerges for calcium and auxin Invited Reviewed

    Anuphon Laohavisit

    Plant and Cell Physiology   Vol. 64 ( 2 ) page: 149 - 151   2023.2

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1093/pcp/pcad007

    DOI: 10.1093/pcp/pcad007

  3. Apoplastic Expression of CARD1-ecto Domain in Nicotiana benthamiana and Purification from the Apoplastic Fluids

    Ishihama Nobuaki, Laohavisit Anuphon, Takizawa Kaori, Shirasu Ken

    BIO-PROTOCOL   Vol. 12 ( 8 ) page: e4387   2022.4

     More details

  4. WIND transcription factors orchestrate wound-induced callus formation, vascular reconnection and defense response in Arabidopsis.

    Iwase A, Kondo Y, Laohavisit A, Takebayashi A, Ikeuchi M, Matsuoka K, Asahina M, Mitsuda N, Shirasu K, Fukuda H, Sugimoto K

    The New phytologist   Vol. 232 ( 2 ) page: 734 - 752   2021.10

     More details

    Language:English  

    DOI: 10.1111/nph.17594

    PubMed

  5. Genome Sequence of Striga asiatica Provides Insight into the Evolution of Plant Parasitism.

    Yoshida S, Kim S, Wafula EK, Tanskanen J, Kim YM, Honaas L, Yang Z, Spallek T, Conn CE, Ichihashi Y, Cheong K, Cui S, Der JP, Gundlach H, Jiao Y, Hori C, Ishida JK, Kasahara H, Kiba T, Kim MS, Koo N, Laohavisit A, Lee YH, Lumba S, McCourt P, Mortimer JC, Mutuku JM, Nomura T, Sasaki-Sekimoto Y, Seto Y, Wang Y, Wakatake T, Sakakibara H, Demura T, Yamaguchi S, Yoneyama K, Manabe RI, Nelson DC, Schulman AH, Timko MP, dePamphilis CW, Choi D, Shirasu K

    Current biology : CB   Vol. 29 ( 18 ) page: 3041 - 3052.e4   2019.9

     More details

    Language:English   Publisher:Current Biology  

    Parasitic plants in the genus Striga, commonly known as witchweeds, cause major crop losses in sub-Saharan Africa and pose a threat to agriculture worldwide. An understanding of Striga parasite biology, which could lead to agricultural solutions, has been hampered by the lack of genome information. Here, we report the draft genome sequence of Striga asiatica with 34,577 predicted protein-coding genes, which reflects gene family contractions and expansions that are consistent with a three-phase model of parasitic plant genome evolution. Striga seeds germinate in response to host-derived strigolactones (SLs) and then develop a specialized penetration structure, the haustorium, to invade the host root. A family of SL receptors has undergone a striking expansion, suggesting a molecular basis for the evolution of broad host range among Striga spp. We found that genes involved in lateral root development in non-parasitic model species are coordinately induced during haustorium development in Striga, suggesting a pathway that was partly co-opted during the evolution of the haustorium. In addition, we found evidence for horizontal transfer of host genes as well as retrotransposons, indicating gene flow to S. asiatica from hosts. Our results provide valuable insights into the evolution of parasitism and a key resource for the future development of Striga control strategies. Yoshida et al. report the Striga genome sequence, providing insights into parasitic plant genome evolution and a key resource for the future development of Striga control strategies. The genome also shows evidence for the horizontal transfer of host genes and retrotransposons, indicating gene flow to the parasite from hosts.

    DOI: 10.1016/j.cub.2019.07.086

    Web of Science

    Scopus

    PubMed

  6. A calmodulin-like protein regulates plasmodesmal closure during bacterial immune responses.

    Xu B, Cheval C, Laohavisit A, Hocking B, Chiasson D, Olsson TSG, Shirasu K, Faulkner C, Gilliham M

    The New phytologist   Vol. 215 ( 1 ) page: 77 - 84   2017.7

     More details

    Language:English  

    DOI: 10.1111/nph.14599

    PubMed

  7. Exploiting algal NADPH oxidase for biophotovoltaic energy.

    Anderson A, Laohavisit A, Blaby IK, Bombelli P, Howe CJ, Merchant SS, Davies JM, Smith AG

    Plant biotechnology journal   Vol. 14 ( 1 ) page: 22 - 8   2016.1

     More details

    Language:English  

    DOI: 10.1111/pbi.12332

    PubMed

  8. Annexin 1 regulates the H2O2-induced calcium signature in Arabidopsis thaliana roots.

    Richards SL, Laohavisit A, Mortimer JC, Shabala L, Swarbreck SM, Shabala S, Davies JM

    The Plant journal : for cell and molecular biology   Vol. 77 ( 1 ) page: 136 - 45   2014.1

     More details

    Language:English  

    DOI: 10.1111/tpj.12372

    PubMed

  9. Salinity-induced calcium signaling and root adaptation in Arabidopsis require the calcium regulatory protein annexin1.

    Laohavisit A, Richards SL, Shabala L, Chen C, Colaço RD, Swarbreck SM, Shaw E, Dark A, Shabala S, Shang Z, Davies JM

    Plant physiology   Vol. 163 ( 1 ) page: 253 - 62   2013.9

     More details

    Language:English  

    DOI: 10.1104/pp.113.217810

    PubMed

  10. Arabidopsis annexin1 mediates the radical-activated plasma membrane Ca²+- and K+-permeable conductance in root cells.

    Laohavisit A, Shang Z, Rubio L, Cuin TA, Véry AA, Wang A, Mortimer JC, Macpherson N, Coxon KM, Battey NH, Brownlee C, Park OK, Sentenac H, Shabala S, Webb AA, Davies JM

    The Plant cell   Vol. 24 ( 4 ) page: 1522 - 33   2012.4

     More details

    Language:English  

    DOI: 10.1105/tpc.112.097881

    PubMed

  11. Cytosolic Ca(2+) determinations in studying plant responses to salinity and oxidative stress.

    Laohavisit A, Colaço R, Davies J

    Methods in molecular biology (Clifton, N.J.)   Vol. 913   page: 163 - 71   2012

     More details

    Language:English  

    DOI: 10.1007/978-1-61779-986-0_10

    PubMed

  12. NOX or not? Evidence for algal NADPH oxidases.

    Anderson A, Bothwell JH, Laohavisit A, Smith AG, Davies JM

    Trends in plant science   Vol. 16 ( 11 ) page: 579 - 81   2011.11

     More details

    Language:English  

    DOI: 10.1016/j.tplants.2011.09.003

    PubMed

  13. Receptor-like activity evoked by extracellular ADP in Arabidopsis root epidermal plasma membrane.

    Demidchik V, Shang Z, Shin R, Colaço R, Laohavisit A, Shabala S, Davies JM

    Plant physiology   Vol. 156 ( 3 ) page: 1375 - 85   2011.7

     More details

    Language:English  

    DOI: 10.1104/pp.111.174722

    PubMed

  14. Annexins.

    Laohavisit A, Davies JM

    The New phytologist   Vol. 189 ( 1 ) page: 40 - 53   2011.1

     More details

    Language:English  

    DOI: 10.1111/j.1469-8137.2010.03533.x

    PubMed

  15. Annexins: components of the calcium and reactive oxygen signaling network.

    Laohavisit A, Brown AT, Cicuta P, Davies JM

    Plant physiology   Vol. 152 ( 4 ) page: 1824 - 9   2010.4

     More details

    Language:English  

    DOI: 10.1104/pp.109.145458

    PubMed

  16. Extracellular ATP activates an Arabidopsis plasma membrane Ca(2+)-permeable conductance.

    Shang Z, Laohavisit A, Davies JM

    Plant signaling & behavior   Vol. 4 ( 10 ) page: 989 - 91   2009.10

     More details

    Language:English  

    DOI: 10.4161/psb.4.10.9680

    PubMed

  17. Plant extracellular ATP signalling by plasma membrane NADPH oxidase and Ca2+ channels.

    Demidchik V, Shang Z, Shin R, Thompson E, Rubio L, Laohavisit A, Mortimer JC, Chivasa S, Slabas AR, Glover BJ, Schachtman DP, Shabala SN, Davies JM

    The Plant journal : for cell and molecular biology   Vol. 58 ( 6 ) page: 903 - 13   2009.6

     More details

    Language:English  

    DOI: 10.1111/j.1365-313X.2009.03830.x

    PubMed

  18. Heme-independent soluble and membrane-associated peroxidase activity of a Zea mays annexin preparation.

    Mortimer JC, Coxon KM, Laohavisit A, Davies JM

    Plant signaling & behavior   Vol. 4 ( 5 ) page: 428 - 30   2009.5

     More details

    Language:English  

    DOI: 10.1105/tpc.108.059550

    PubMed

  19. Zea mays annexins modulate cytosolic free Ca2+ and generate a Ca2+-permeable conductance.

    Laohavisit A, Mortimer JC, Demidchik V, Coxon KM, Stancombe MA, Macpherson N, Brownlee C, Hofmann A, Webb AA, Miedema H, Battey NH, Davies JM

    The Plant cell   Vol. 21 ( 2 ) page: 479 - 93   2009.2

     More details

    Language:English  

    DOI: 10.1105/tpc.108.059550

    PubMed

  20. Voltage, reactive oxygen species and the influx of calcium.

    Mortimer JC, Laohavisit A, Miedema H, Davies JM

    Plant signaling & behavior   Vol. 3 ( 9 ) page: 698 - 9   2008.9

     More details

    Language:English  

    DOI: 10.4161/psb.3.9.6405

    PubMed

  21. Annexins: multifunctional components of growth and adaptation.

    Mortimer JC, Laohavisit A, Macpherson N, Webb A, Brownlee C, Battey NH, Davies JM

    Journal of experimental botany   Vol. 59 ( 3 ) page: 533 - 44   2008

     More details

    Language:English  

    DOI: 10.1093/jxb/erm344

    PubMed

  22. The gas that opens gates: calcium channel activation by ethylene.

    Laohavisit A, Davies JM

    The New phytologist   Vol. 174 ( 3 ) page: 470 - 473   2007

     More details

    Language:English  

    DOI: 10.1111/j.1469-8137.2007.02081.x

    PubMed

▼display all

KAKENHI (Grants-in-Aid for Scientific Research) 1

  1. Quinone compounds as novel plant growth regulators

    Grant number:24K01718  2024.4 - 2027.3

    Nagoya University  Grant-in-Aid for Scientific Research (B)

      More details

    Authorship:Principal investigator