2024/09/25 更新

写真a

ヤマダ シュンヤ
山田 峻也
YAMADA Shunya
所属
大学院情報学研究科 附属組込みシステム研究センター 助教
大学院担当
大学院情報学研究科
学部担当
情報学部 コンピュータ科学科
職名
助教

学位 1

  1. 博士(情報学) ( 2020年3月   名古屋大学 ) 

研究キーワード 1

  1. 空間センシング,データフュージョン

学歴 2

  1. 名古屋大学   情報学研究科 情報システム学専攻

    2017年4月 - 2020年3月

      詳細を見る

    国名: 日本国

  2. 京都工芸繊維大学   工芸科学研究科   機械設計学専攻

    2015年4月 - 2017年3月

      詳細を見る

    国名: 日本国

受賞 1

  1. Best Paper Award

    2020年4月   IARIA   A Vehicle Position Estimation Method Combining Roadside Vehicle Detector and In-Vehicle Sensors

    Shunya Yamada, Yousuke Watanabe, Hiroaki Takada

     詳細を見る

    受賞区分:国際学会・会議・シンポジウム等の賞  受賞国:ポルトガル共和国

 

論文 12

  1. Enhancing Autonomous Vehicles' Situational Awareness with Dynamic Maps: Cooperative Prediction on Edge, Cloud and Vehicle 査読有り

    Lu Tao, Yousuke Watanabe, Ryosuke Takeuchi, Shinichi Kusayama, Shunya Yamada, Hiroaki Takada

    IEEE Transactions on Intelligent Vehicles     頁: 1 - 13   2024年9月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

  2. Tracking Pedestrians Under Occlusion in Parking Space

    Zhou Zhengshu, Yamada Shunya, Watanabe Yousuke, Takada Hiroaki

    COMPUTER SYSTEMS SCIENCE AND ENGINEERING   44 巻 ( 3 ) 頁: 2109 - 2127   2023年

     詳細を見る

    記述言語:日本語   出版者・発行元:Computer Systems Science and Engineering  

    Many traffic accidents occur in parking lots. One of the serious safety risks is vehicle-pedestrian conflict. Moreover, with the increasing development of automatic driving and parking technology, parking safety has received significant attention from vehicle safety analysts. However, pedestrian protection in parking lots still faces many challenges. For example, the physical structure of a parking lot may be complex, and dead corners would occur when the vehicle density is high. These lead to pedestrians' sudden appearance in the vehicle's path from an unexpected position, resulting in collision accidents in the parking lot. We advocate that besides vehicular sensing data, high-precision digital map of the parking lot, pedestrians' smart device's sensing data, and attribute information of pedestrians can be used to detect the position of pedestrians in the parking lot. However, this subject has not been studied and explored in existing studies. To fill this void, this paper proposes a pedestrian tracking framework integrating multiple information sources to provide pedestrian position and status information for vehicles and protect pedestrians in parking spaces. We also evaluate the proposed method through real-world experiments. The experimental results show that the proposed framework has its advantage in pedestrian attribute information extraction and positioning accuracy. It can also be used for pedestrian tracking in parking spaces.

    DOI: 10.32604/csse.2023.029005

    Web of Science

    Scopus

  3. 路車協調に向けた物標情報提供のためのデータフュージョンシステム

    川田 福和, 丈達 生伍, 山田 峻也, 渡辺 陽介, 佐藤 健哉, 高田 広章

    自動制御連合講演会講演論文集   66 巻 ( 0 ) 頁: 1147 - 1151   2023年

     詳細を見る

    記述言語:日本語   出版者・発行元:自動制御連合講演会  

    DOI: 10.11511/jacc.66.0_1147

    CiNii Research

  4. Estimation Method of Parking Space Conditions Using Multiple 3D-LiDARs

    Yamada Shunya, Watanabe Yousuke, Kanamori Ryo, Sato Kenya, Takada Hiroaki

    INTERNATIONAL JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS RESEARCH   20 巻 ( 2 ) 頁: 422 - 432   2022年8月

     詳細を見る

    記述言語:日本語   出版者・発行元:International Journal of Intelligent Transportation Systems Research  

    In the early stages of the spread of autonomous vehicles, it is conceivable to operate an automated valet parking system in parking lots where autonomous vehicles and non-autonomous vehicles coexist. Since non-autonomous vehicles may park beyond the parking space, it is necessary to estimate parking space conditions three-dimensionally. This paper proposes a method to estimate the parking space conditions using multiple 3D-LiDARs that can detect the space three-dimensionally. In the evaluation experiment, multiple 3D-LiDARs were installed in the parking lot of a public facility, and the estimation accuracy of the proposed method was evaluated in various situations.

    DOI: 10.1007/s13177-022-00300-w

    Web of Science

    Scopus

  5. Comparative evaluation of Kalman filters and motion models in vehicular state estimation and path prediction

    Tao Lu, Watanabe Yousuke, Yamada Shunya, Takada Hiroaki

    JOURNAL OF NAVIGATION   74 巻 ( 5 ) 頁: 1142 - 1160   2021年9月

     詳細を見る

    記述言語:日本語   出版者・発行元:Journal of Navigation  

    Vehicle state estimation and path prediction, which usually involve Kalman filter and motion model, are critical tasks for intelligent driving. In vehicle state estimation, the comparative performance assessment, regarding accuracy and efficiency, of the unscented Kalman filter (UKF) and the extended Kalman filter (EKF) is rarely discussed. This paper is devoted to empirically evaluating the performance of UKF and EKF incorporating different motion models and investigating the models' properties and the affecting factors in path prediction. Extensive real world experiments have been carried out and the results show that EKF and UKF have roughly identical accuracy in state estimation; however, EKF is faster than UKF generally; the fastest filter is about 2â 6 times faster than the slowest. The path prediction experiments reveal that the velocity estimate and the used motion model affect path prediction; the more realistically the model reflects the vehicle's driving status, the more reliable its predictions.

    DOI: 10.1017/S0373463321000370

    Web of Science

    Scopus

  6. Collision Risk Assessment Service for Connected Vehicles: Leveraging Vehicular State and Motion Uncertainties

    Tao Lu, Watanabe Yousuke, Li Yixiao, Yamada Shunya, Takada Hiroaki

    IEEE INTERNET OF THINGS JOURNAL   8 巻 ( 14 ) 頁: 11548 - 11560   2021年7月

     詳細を見る

    記述言語:日本語   出版者・発行元:IEEE Internet of Things Journal  

    The Internet of Things plays an indispensable role in the development of connected vehicles, which will pave the way for road safety applications. In recent years, the concept of a cooperative collision warning system (CCWS) has been introduced and developed to enhance road safety, and it has been seen as a typical Internet-of-Vehicles application. In most CCWSs, it is vital to have a detection mechanism based on trajectory predictions where the uncertainties associated with vehicular state and motion are complex. However, most available approaches in this regard did not consider these uncertainties. Hence, this article proposes a new collision risk assessment (CRA) method where sigma trajectories that include multiple possible trajectories considering multiple aspects of vehicular motion are designed to cope with vehicular uncertainties. Our method is implemented in a novel server-based architecture, which is different from the commonly used vehicle-based controlled CCWSs. The CRA is provided as a service by a cloud server. The proposed method and architecture are validated and evaluated through extensive real-world experiments. Experimental results show that our method outperforms a referenced method in terms of CRA and achieves better robustness in tolerating communication delays and dropouts. Latencies in CRA service were analyzed, and it was found that powerful computing resources provided by cloud servers can significantly decrease computational cost, which will indirectly compensate for communication costs in the future. Based on our high-performance CRA method, the proposed architecture can be regarded as a novel option for CCWS design.

    DOI: 10.1109/JIOT.2021.3059222

    Web of Science

    Scopus

  7. PAIDS: Toward pedestrian high-precision position and attribute information detection

    Zhou Z., Kitamura S., Watanabe Y., Yamada S., Takada H.

    International Journal of Mechatronics and Automation   8 巻 ( 4 ) 頁: 187 - 199   2021年

     詳細を見る

    記述言語:日本語   出版者・発行元:International Journal of Mechatronics and Automation  

    Pedestrian detection sensors in road infrastructure and smartphone's built-in sensors have been used to detect and track pedestrians for road safety. Nevertheless, although pedestrian detection sensors in road infrastructure can detect pedestrians' high-precision position, they cannot acquire the accurate attribute information of pedestrians. On the other hand, smartphone sensors can send location information, user identifier, and the attribute information of a user, but it has a significant margin of error in GPS data. The defects of LiDAR and smartphone render acquiring a pedestrian's high-precision location and attribute information simultaneously impossible. Currently, few studies on the simultaneous acquisition of pedestrian high-precision position and attribute information have been conducted. In this paper, the authors propose a pedestrian position and attribute information detecting system to extract both pedestrian high-precision position and attribute information in real-time based on LiDAR and smartphone sensor fusion. Moreover, an experiment is carried out to evaluate the system.

    DOI: 10.1504/IJMA.2021.120380

    Scopus

  8. Extraction of Pedestrian Position and Attribute Information Based on the Integration of LiDAR and Smartphone Sensors

    Zhou Zhengshu, Kitamura Saya, Watanabe Yousuke, Yamada Shunya, Takada Hiroaki

    2021 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2021)     頁: 784 - 789   2021年

     詳細を見る

    記述言語:日本語   出版者・発行元:2021 IEEE International Conference on Mechatronics and Automation, ICMA 2021  

    Pedestrian detection sensors in road infrastructure and GPS sensors mounted in smartphones have been used in driving safety support systems for detecting pedestrians. However, although pedestrian detection sensors in road infrastructure can detect pedestrians' high-precision position, they cannot acquire the attribute information of pedestrians. Conversely, a smartphone's built-in sensor can send GPS location information, user identifier, and the attribute information of a user, but it has a margin of error from meters to more than tens of meters in GPS location information. This renders acquiring a pedestrian's high-precision location and attribute information simultaneously impossible. To date, no research on the simultaneous acquisition of pedestrian high-precision position and attribute information has been conducted. To fill this gap, this paper proposes an approach to extract both pedestrian high-precision position and attribute information in real-time based on multi-sensor fusion. Moreover, an experiment is conducted to evaluate the proposed approach.

    DOI: 10.1109/ICMA52036.2021.9512649

    Web of Science

    Scopus

  9. 自律移動ロボットのための二次元LRFの計測特性を考慮したEmpty確率分布

    山田 峻也, 渡辺 陽介, 高田 広章

    日本ロボット学会誌   38 巻 ( 4 ) 頁: 379 - 390   2020年

     詳細を見る

    記述言語:日本語   出版者・発行元:一般社団法人 日本ロボット学会  

    DOI: 10.7210/jrsj.38.379

    CiNii Research

  10. エッジコンピューティングを利用した自動運転車のための環境情報分散管理システム

    山田 峻也, 渡辺 陽介, 高田 広章

    日本ロボット学会誌   38 巻 ( 2 ) 頁: 199 - 209   2020年

     詳細を見る

    記述言語:日本語   出版者・発行元:一般社団法人 日本ロボット学会  

    DOI: 10.7210/jrsj.38.199

    CiNii Research

  11. Evaluation of Vehicle Position Estimation Method Combining Roadside Vehicle Detector and In-vehicle Sensors

    Shunya YAMADA, Yousuke WATANABE, Hiroaki TAKADA

    The International Journal on Advances in Networks and Services   13 巻 ( 3&4 ) 頁: 82 - 93   2020年

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)  

  12. Performance Evaluation of Querying Point Clouds in RDBMS

    Ikawa Gen, Watanabe Yousuke, Yamada Shunya, Takada Hiroaki

    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP)     頁: 284 - 287   2019年

     詳細を見る

    記述言語:日本語  

    Web of Science

▼全件表示

講演・口頭発表等 14

  1. LiDARを使用したリアルタイム駐車場マネジメントシステムの取り組み 招待有り

    山田峻也

    『Meet up Chubu 』vol.34  モビリティ with Map-NAGOYA in トッキンナゴヤ2024  2024年2月29日  中部経済産業局、中部経済連合会

     詳細を見る

    開催年月日: 2024年2月 - 2024年3月

    記述言語:日本語   会議種別:公開講演,セミナー,チュートリアル,講習,講義等  

    開催地:愛知県   国名:日本国  

  2. 高精度道路地図に基づく分散KVS上での点群管理手法

    WebDB夏のワークショップ2024  2024年9月 

     詳細を見る

    開催年月日: 2024年9月

    記述言語:日本語  

    開催地:淡路島  

  3. 複数のLiDARからの連続的な物体検知情報を扱うマルチフレームデータアソシエーション手法

    第42回日本ロボット学会学術講演会 (RSJ2024)  2024年9月 

     詳細を見る

    開催年月日: 2024年9月

  4. 自動バレーパーキングに向けた駐車スペースの満空状態確率に基づく経路生成手法

    ITSシンポジウム2023  2023年12月8日 

     詳細を見る

    開催年月日: 2023年12月

    記述言語:日本語   会議種別:ポスター発表  

    開催地:富山  

  5. 路車協調に向けた物標情報提供のためのデータフュージョンシステム

    第66回自動制御連合講演会  2023年10月8日  計測自動制御学会

     詳細を見る

    開催年月日: 2023年10月

    記述言語:日本語   会議種別:口頭発表(一般)  

    開催地:東北大学川内キャンパス  

  6. 高精度道路地図を用いた走行予定経路に基づく経路競合可能性の検索

    第177回データベースシステム・第152回情報基礎とアクセス技術合同研究発表会  2023年9月22日 

     詳細を見る

    開催年月日: 2023年9月

  7. LiDARを用いたレイトレースによる駐車状態推定手法

    第41回日本ロボット学会学術講演会  2023年9月13日  日本ロボット学会

     詳細を見る

    開催年月日: 2023年9月 - 2923年9月

    記述言語:日本語   会議種別:口頭発表(一般)  

    開催地:仙台国際センター  

  8. LiDARを用いた分散処理による車庫状態推定手法

    山田峻也

    第40回日本ロボット学会学術講演会(RSJ2022)  2022年9月 

     詳細を見る

    開催年月日: 2022年9月

  9. 複数の3D-LiDARを用いた車庫状態モニタリングシステム

    山田峻也

    第19回ITSシンポジウム2021  2021年12月 

     詳細を見る

    開催年月日: 2021年12月

  10. 高精度地図情報に基づく路面の点群データの識別手法

    山田峻也

    第39回日本ロボット学会学術講演会(RSJ2021)  2021年9月 

     詳細を見る

    開催年月日: 2021年9月

  11. 路車協調による高速道路合流支援のための車両位置推定手法

    山田峻也

    センサネットワークとモバイルインテリジェンス研究会(SeMI)  2021年1月 

     詳細を見る

    開催年月日: 2021年1月

  12. 高精度地図を利用したLiDARの路面識別フィルタの試作

    山田峻也

    第38回日本ロボット学会学術講演会(RSJ2020)  2020年9月 

     詳細を見る

    開催年月日: 2020年9月

  13. 自動運転車のための2次元LRFを利用した車線上オブジェクト提供システムの試作

    山田峻也

    第37回日本ロボット学会学術講演会(RSJ2019)  2019年9月 

     詳細を見る

    開催年月日: 2019年9月

  14. 2次元LRFの計測特性を考慮したEmpty確率分布の提案

    山田峻也

    第36回日本ロボット学会学術講演会(RSJ2018)  2018年9月 

     詳細を見る

    開催年月日: 2018年9月

▼全件表示

 

担当経験のある科目 (本学) 8

  1. PBL2

    2024

  2. オペレーティング・システム基礎及び演習

    2024

  3. オペレーティング・システム及び演習1

    2024

  4. オペレーティング・システム及び演習2

    2024

  5. PBL2

    2023

  6. PBL3

    2023

  7. オペレーティング・システム及び演習1

    2023

  8. オペレーティング・システム及び演習2

    2023

▼全件表示