Updated on 2023/09/29

写真a

 
SHIMOTOHNO Akie
 
Organization
Institute of Transformative Bio-Molecules Designated lecturer
Title
Designated lecturer
External link

Degree 1

  1. Ph.D. ( The University of Tokyo ) 

Research Interests 2

  1. Development, Signal transduction, Peptides, Cell cycle, Cell division, Genetics, Morphogenesis, Phytohormone, Stem cells

  2. Plant Physiology / Molecular Biology / Molecular Genetics

Research Areas 3

  1. Life Science / Developmental biology

  2. Life Science / Plant molecular biology and physiology

  3. Life Science / Plant molecular biology and physiology  / Development, Signal transduction, Peptides, Cell cycle, Cell division, Genetics, Morphogenesis, Phytohormone, Stem cells

Current Research Project and SDGs 1

  1. 植物幹細胞の分子機構と環境応答の仕組みの理解

Research History 1

  1. Nagoya University   Institute of Transformative Bio-Molecules   Designated lecturer

    2021.4

Professional Memberships 3

  1. 日本植物生理学会

      More details

  2. 日本植物学会

      More details

  3. Plant Biotechnology

      More details

Committee Memberships 1

  1. Plant Biotechnology   Associate Editors  

    2022.9   

Awards 2

  1. EMBO long-term fellowship

    2007   European Molecular Biology Organization (EMBO)  

    Akie Shimotohno

     More details

  2. Humboldt Research Fellowship

    2005   Alexander von Humboldt Foundation  

    Akie Shimotohno

     More details

 

Papers 24

  1. Chemical synthesis of the EPF-family of plant cysteine-rich proteins and late-stage dye attachment by chemoselective amide-forming ligations. Reviewed International coauthorship

    Kumarswamyreddy N, Nakagawa A, Endo H, Shimotohno A, Torii KU, Bode JW, Oishi S.

    RSC Chem Biol.   Vol. 3 ( 12 ) page: 1422 - 1431   2022.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1039/d2cb00155a

  2. Illuminating the molecular mechanisms underlying shoot apical meristem homeostasis in plants Invited Reviewed

    Akie Shimotohno

    Plant Biotechnol   Vol. 39 ( 1 ) page: 19 - 28   2022.3

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.5511/plantbiotechnology.22.0213a

  3. Correction to: CLE2 regulates light-dependent carbohydrate metabolism in Arabidopsis shoots. Reviewed International journal

    Dichao Ma, Satoshi Endo, Shigeyuki Betsuyaku, Akie Shimotohno, Hiroo Fukuda

    Plant molecular biology   Vol. 106 ( 1-2 ) page: 221   2021.4

     More details

  4. Regulation of the Plant Cell Cycle in Response to Hormones and the Environment. Reviewed International journal

    Akie Shimotohno, Shiori S Aki, Naoki Takahashi, Masaaki Umeda

    Annual review of plant biology     2021.3

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    Developmental and environmental signals converge on cell cycle machinery to achieve proper and flexible organogenesis under changing environments. Studies on the plant cell cycle began 30 years ago, and accumulated research has revealed many links between internal and external factors and the cell cycle. In this review, we focus on how phytohormones and environmental signals regulate the cell cycle to enable plants to cope with a fluctuating environment. After introducing key cell cycle regulators, we first discuss how phytohormones and their synergy are important for regulating cell cycle progression and how environmental factors positively and negatively affect cell division. We then focus on the well-studied example of stress-induced G2 arrest and view the current model from an evolutionary perspective. Finally, we discuss the mechanisms controlling the transition from the mitotic cycle to the endocycle, which greatly contributes to cell enlargement and resultant organ growth in plants. Expected final online publication date for the Annual Review of Plant Biology, Volume 72 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

    DOI: 10.1146/annurev-arplant-080720-103739

    PubMed

    researchmap

  5. CLE2 regulates light-dependent carbohydrate metabolism in Arabidopsis shoots. Reviewed International journal

    Dichao Ma, Satoshi Endo, Shigeyuki Betsuyaku, Akie Shimotohno, Hiroo Fukuda

    Plant molecular biology   Vol. 104 ( 6 ) page: 561 - 574   2020.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    KEY MESSAGE: This study focused on the role of CLE1-CLE7 peptides as environmental mediators and indicated that root-induced CLE2 functions systemically in light-dependent carbohydrate metabolism in shoots. Plants sense environmental stimuli and convert them into cellular signals, which are transmitted to distinct cells and tissues to induce adequate responses. Plant hormones and small secretory peptides often function as environmental stress mediators. In this study, we investigated whether CLAVATA3/EMBRYO SURROUNDING REGION-RELATED proteins, CLE1-CLE7, which share closely related CLE domains, mediate environmental stimuli in Arabidopsis thaliana. Expression analysis of CLE1-CLE7 revealed that these genes respond to different environmental stimuli, such as nitrogen deprivation, nitrogen replenishment, cold, salt, dark, and sugar starvation, in a sophisticated manner. To further investigate the function of CLE2, we generated transgenic Arabidopsis lines expressing the β-glucuronidase gene under the control of the CLE2 promoter or expressing the CLE2 gene under the control of an estradiol-inducible promoter. We also generated cle2-1 and cle2-2 mutants using the CRISPR/Cas9 technology. In these transgenic lines, dark induced the expression of CLE2 in the root vasculature. Additionally, induction of CLE2 in roots induced the expression of various genes not only in roots but also in shoots, and genes related to light-dependent carbohydrate metabolism were particularly induced in shoots. In addition, cle2 mutant plants showed chlorosis when subjected to a shade treatment. These results suggest that root-induced CLE2 functions systemically in light-dependent carbohydrate metabolism in shoots.

    DOI: 10.1007/s11103-020-01059-y

    PubMed

    researchmap

  6. Topology of regulatory networks that guide plant meristem activity: similarities and differences. Reviewed International journal

    Akie Shimotohno, Ben Scheres

    Current opinion in plant biology   Vol. 51   page: 74 - 80   2019.10

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    Plants adapt their morphology in response to variable environmental conditions such as nitrate availability, drought, and temperature shifts. Three crucial aspects to this developmental plasticity are the control of initiation, identity and activity of meristems. At the cellular level, the activity of meristems is controlled by balancing self-renewal in stem cells, amplifying divisions in their daughter cells, and cell differentiation. Recent studies in plants have uncovered transcription factors regulating meristem activity at cellular resolution, and regulatory networks that couple these factors with phytohormone signalling for global plant growth regulation. Here, we highlight selected recent advances in our understanding of the multidimensional transcriptional networks that regulate meristem activity and discuss emerging insights on how a selection of environmental cues impinges on these networks.

    DOI: 10.1016/j.pbi.2019.04.006

    PubMed

    researchmap

  7. Root stem cell niche organizer specification by molecular convergence of PLETHORA and SCARECROW transcription factor modules. Reviewed International journal

    Akie Shimotohno, Renze Heidstra, Ikram Blilou, Ben Scheres

    Genes & development   Vol. 32 ( 15-16 ) page: 1085 - 1100   2018.8

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    Continuous formation of somatic tissues in plants requires functional stem cell niches where undifferentiated cells are maintained. In Arabidopsis thaliana, PLETHORA (PLT) and SCARECROW (SCR) genes are outputs of apical-basal and radial patterning systems, and both are required for root stem cell specification and maintenance. The WUSCHEL-RELATED HOMEOBOX 5 (WOX5) gene is specifically expressed in and required for functions of a small group of root stem cell organizer cells, also called the quiescent center (QC). PLT and SCR are required for QC function, and their expression overlaps in the QC; however, how they specify the organizer has remained unknown. We show that PLT and SCR genetically and physically interact with plant-specific teosinte-branched cycloidea PCNA (TCP) transcription factors to specify the stem cell niche during embryogenesis and maintain organizer cells post-embryonically. PLT-TCP-SCR complexes converge on PLT-binding sites in the WOX5 promoter to induce expression.

    DOI: 10.1101/gad.314096.118

    PubMed

    researchmap

  8. The PLETHORA Gene Regulatory Network Guides Growth and Cell Differentiation in Arabidopsis Roots. Reviewed International journal

    Luca Santuari, Gabino F Sanchez-Perez, Marijn Luijten, Bas Rutjens, Inez Terpstra, Lidija Berke, Maartje Gorte, Kalika Prasad, Dongping Bao, Johanna L P M Timmermans-Hereijgers, Kenichiro Maeo, Kenzo Nakamura, Akie Shimotohno, Ales Pencik, Ondrej Novak, Karin Ljung, Sebastiaan van Heesch, Ewart de Bruijn, Edwin Cuppen, Viola Willemsen, Ari Pekka Mähönen, Wolfgang Lukowitz, Berend Snel, Dick de Ridder, Ben Scheres, Renze Heidstra

    The Plant cell   Vol. 28 ( 12 ) page: 2937 - 2951   2016.12

     More details

    Publishing type:Research paper (scientific journal)  

    Organ formation in animals and plants relies on precise control of cell state transitions to turn stem cell daughters into fully differentiated cells. In plants, cells cannot rearrange due to shared cell walls. Thus, differentiation progression and the accompanying cell expansion must be tightly coordinated across tissues. PLETHORA (PLT) transcription factor gradients are unique in their ability to guide the progression of cell differentiation at different positions in the growing Arabidopsis thaliana root, which contrasts with well-described transcription factor gradients in animals specifying distinct cell fates within an essentially static context. To understand the output of the PLT gradient, we studied the gene set transcriptionally controlled by PLTs. Our work reveals how the PLT gradient can regulate cell state by region-specific induction of cell proliferation genes and repression of differentiation. Moreover, PLT targets include major patterning genes and autoregulatory feedback components, enforcing their role as master regulators of organ development.

    DOI: 10.1105/tpc.16.00656

    Web of Science

    PubMed

    researchmap

  9. SCARECROW-LIKE23 and SCARECROW jointly specify endodermal cell fate but distinctly control SHORT-ROOT movement. Reviewed International journal

    Yuchen Long, Joachim Goedhart, Martinus Schneijderberg, Inez Terpstra, Akie Shimotohno, Benjamin P Bouchet, Anna Akhmanova, Theodorus W J Gadella Jr, Renze Heidstra, Ben Scheres, Ikram Blilou

    The Plant journal : for cell and molecular biology   Vol. 84 ( 4 ) page: 773 - 84   2015.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Intercellular signaling through trafficking of regulatory proteins is a widespread phenomenon in plants and can deliver positional information for the determination of cell fate. In the Arabidopsis root meristem, the cell fate determinant SHORT-ROOT (SHR), a GRAS domain transcription factor, acts as a signaling molecule from the stele to the adjacent layer to specify endodermal cell fate. Upon exiting the stele, SHR activates another GRAS domain transcription factor, SCARCROW (SCR), which, together with several BIRD/INDETERMINATE DOMAIN proteins, restricts movement of SHR to define a single cell layer of endodermis. Here we report that endodermal cell fate also requires the joint activity of both SCR and its closest homologue SCARECROW-LIKE23 (SCL23). We show that SCL23 protein moves with zonation-dependent directionality. Within the meristem, SCL23 exhibits short-ranged movement from ground tissue to vasculature. Away from the meristem, SCL23 displays long-range rootward movement into meristematic vasculature and a bidirectional radial spread, respectively. As a known target of SHR and SCR, SCL23 also interacts with SCR and SHR and can restrict intercellular outspread of SHR without relying on nuclear retention as SCR does. Collectively, our data show that SCL23 is a mobile protein that controls movement of SHR and acts redundantly with SCR to specify endodermal fate in the root meristem.

    DOI: 10.1111/tpj.13038

    PubMed

    researchmap

  10. Mathematical modeling and experimental validation of the spatial distribution of boron in the root of Arabidopsis thaliana identify high boron accumulation in the tip and predict a distinct root tip uptake function. Reviewed

    Akie Shimotohno, Naoyuki Sotta, Takafumi Sato, Micol De Ruvo, Athanasius F M Marée, Verônica A Grieneisen, Toru Fujiwara

    Plant & cell physiology   Vol. 56 ( 4 ) page: 620 - 30   2015.4

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    Boron, an essential micronutrient, is transported in roots of Arabidopsis thaliana mainly by two different types of transporters, BORs and NIPs (nodulin26-like intrinsic proteins). Both are plasma membrane localized, but have distinct transport properties and patterns of cell type-specific accumulation with different polar localizations, which are likely to affect boron distribution. Here, we used mathematical modeling and an experimental determination to address boron distributions in the root. A computational model of the root is created at the cellular level, describing the boron transporters as observed experimentally. Boron is allowed to diffuse into roots, in cells and cell walls, and to be transported over plasma membranes, reflecting the properties of the different transporters. The model predicts that a region around the quiescent center has a higher concentration of soluble boron than other portions. To evaluate this prediction experimentally, we determined the boron distribution in roots using laser ablation-inductivity coupled plasma-mass spectrometry. The analysis indicated that the boron concentration is highest near the tip and is lower in the more proximal region of the meristem zone, similar to the pattern of soluble boron distribution predicted by the model. Our model also predicts that upward boron flux does not continuously increase from the root tip toward the mature region, indicating that boron taken up in the root tip is not efficiently transported to shoots. This suggests that root tip-absorbed boron is probably used for local root growth, and that instead it is the more mature root regions which have a greater role in transporting boron toward the shoots.

    DOI: 10.1093/pcp/pcv016

    PubMed

    researchmap

  11. How to stimulate stem cells in plants Invited Reviewed

    Shimotohno A, Zhang H, Cruz-Ramirez A, Scheres B

    NPC Highlights   Vol. 14   page: 20 - 23   2011

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    researchmap

  12. CDK Phosphorylation Reviewed

    Akie Shimotohno, Masaaki Umeda

    Cell Cycle Control and Plant Development   Vol. 32   page: 114 - 137   2007.11

     More details

    Authorship:Lead author   Publishing type:Part of collection (book)  

    DOI: 10.1002/9780470988923.ch5

    Scopus

    researchmap

  13. Diverse phosphoregulatory mechanisms controlling cyclin-dependent kinase-activating kinases in Arabidopsis. Reviewed International journal

    Akie Shimotohno, Ryoko Ohno, Katerina Bisova, Norihiro Sakaguchi, Jirong Huang, Csaba Koncz, Hirofumi Uchimiya, Masaaki Umeda

    The Plant journal : for cell and molecular biology   Vol. 47 ( 5 ) page: 701 - 10   2006.9

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    For the full activation of cyclin-dependent kinases (CDKs), not only cyclin binding but also phosphorylation of a threonine (Thr) residue within the T-loop is required. This phosphorylation is catalyzed by CDK-activating kinases (CAKs). In Arabidopsis three D-type CDK genes (CDKD;1-CDKD;3) encode vertebrate-type CAK orthologues, of which CDKD;2 exhibits high phosphorylation activity towards the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II. Here, we show that CDKD;2 forms a stable complex with cyclin H and is downregulated by the phosphorylation of the ATP-binding site by WEE1 kinase. A knockout mutant of CDKD;3, which has a higher CDK kinase activity, displayed no defect in plant development. Instead, another type of CAK - CDKF;1 - exhibited significant activity towards CDKA;1 in Arabidopsis root protoplasts, and the activity was dependent on the T-loop phosphorylation of CDKF;1. We propose that two distinct types of CAK, namely CDKF;1 and CDKD;2, play a major role in CDK and CTD phosphorylation, respectively, in Arabidopsis.

    PubMed

    researchmap

  14. Diverse phosphoregulatory mechanisms controlling cyclin-dependent kinase-activating kinases in Arabidopsis.

    Shimotohno A, Ohno R, Bisova K, Sakaguchi N, Huang J, Koncz C, Uchimiya H, Umeda M

    The Plant journal : for cell and molecular biology   Vol. 47 ( 5 ) page: 701 - 10   2006.9

  15. Control of cell division and transcription by cyclin-dependent kinase-activating kinases in plants. Reviewed

    Masaaki Umeda, Akie Shimotohno, Masatoshi Yamaguchi

    Plant & cell physiology   Vol. 46 ( 9 ) page: 1437 - 42   2005.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Cyclin-dependent protein kinases (CDKs) play key roles in the progression of the cell cycle in eukaryotes. A CDK-activating kinase (CAK) catalyzes the phosphorylation of CDKs to activate their enzyme activity; thus, it is involved in activation of cell proliferation. In plants, two distinct classes of CAK have been identified; CDKD is functionally related to vertebrate-type CAKs, while CDKF is a plant-specific CAK having unique enzymatic characteristics. Recently, CDKF was shown to phosphorylate and activate CDKDs in Arabidopsis. This led to a proposal that CDKD and CDKF constitute a phosphorylation cascade that mediates environmental or hormonal signals to molecular machineries that control the cell cycle and transcription. In this review, we have summarized the biochemical features of plant CAKs and discussed the manner in which they diverge from animal and yeast orthologs. We have introduced several transgenic studies in which CAK genes were used as a tool to modify the CDK activity and to analyze cell division and differentiation during organ development.

    PubMed

    researchmap

  16. Control of cell division and transcription by cyclin-dependent kinase-activating kinases in plants.

    Umeda M, Shimotohno A, Yamaguchi M

    Plant & cell physiology   Vol. 46 ( 9 ) page: 1437 - 42   2005.9

     More details

  17. Functional analysis of Arabidopsis CDK-activating kinases

    N Sakaguchi, A Shimotohno, H Uchimiya, K Sakaguchi, M Umeda

    PLANT AND CELL PHYSIOLOGY   Vol. 46   page: S224 - S224   2005

     More details

    Language:English   Publisher:OXFORD UNIV PRESS  

    Web of Science

    researchmap

  18. The plant-specific kinase CDKF;1 is involved in activating phosphorylation of cyclin-dependent kinase-activating kinases in Arabidopsis. Reviewed International journal

    Akie Shimotohno, Chikage Umeda-Hara, Katerina Bisova, Hirofumi Uchimiya, Masaaki Umeda

    The Plant cell   Vol. 16 ( 11 ) page: 2954 - 66   2004.11

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    Cyclin-dependent kinases (CDKs) play essential roles in coordinate control of cell cycle progression. Activation of CDKs requires interaction with specific cyclin partners and phosphorylation of their T-loops by CDK-activating kinases (CAKs). The Arabidopsis thaliana genome encodes four potential CAKs. CAK2At (CDKD;3) and CAK4At (CDKD;2) are closely related to the vertebrate CAK, CDK7/p40MO15; they interact with cyclin H and phosphorylate CDKs, as well as the C-terminal domain (CTD) of the largest subunit of RNA polymerase II. CAK1At (CDKF;1) shows cyclin H-independent CDK-kinase activity and can activate a heterologous CAK, Mcs6, in fission yeast. In Arabidopsis, CAK1At is a subunit of a protein complex of 130 kD, which phosphorylates the T-loop of CAK2At and CAK4At and activates the CTD-kinase activity of CAK4At in vitro and in root protoplasts. These results suggest that CAK1At is a novel CAK-activating kinase that modulates the activity of CAK2At and CAK4At, thereby controlling CDK activities and basal transcription in Arabidopsis.

    PubMed

    researchmap

  19. The plant-specific kinase CDKF;1 is involved in activating phosphorylation of cyclin-dependent kinase-activating kinases in Arabidopsis.

    Shimotohno A, Umeda-Hara C, Bisova K, Uchimiya H, Umeda M

    The Plant cell   Vol. 16 ( 11 ) page: 2954 - 66   2004.11

     More details

  20. Functional analysis of protein kinases controlling CDK activity in Arabidopsis

    R Ohno, K Bisova, A Shimotohno, H Uchimiya, M Umeda

    PLANT AND CELL PHYSIOLOGY   Vol. 45   page: S65 - S65   2004

     More details

    Language:English   Publisher:OXFORD UNIV PRESS  

    Web of Science

    researchmap

  21. Differential phosphorylation activities of CDK-activating kinases in Arabidopsis thaliana. Reviewed International journal

    Akie Shimotohno, Satoko Matsubayashi, Masatoshi Yamaguchi, Hirofumi Uchimiya, Masaaki Umeda

    FEBS letters   Vol. 534 ( 1-3 ) page: 69 - 74   2003.1

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    Activation of cyclin-dependent kinases (CDKs) requires phosphorylation of a threonine residue within the T-loop by a CDK-activating kinase (CAK). Here we isolated an Arabidopsis cDNA (CAK4At) whose predicted product shows a high similarity to vertebrate CDK7/p40(MO15). Northern blot analysis showed that expressions of the four Arabidopsis CAKs (CAK1At-CAK4At) were not dependent on cell division. CAK2At- and CAK4At-immunoprecipitates of Arabidopsis crude extract phosphorylated CDK and the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II with different preferences. These results suggest the existence of differential mechanisms in Arabidopsis that control CDK and CTD phosphorylation by multiple CAKs.

    PubMed

    researchmap

  22. Differential phosphorylation activities of CDK-activating kinases in Arabidopsis thaliana.

    Shimotohno A, Matsubayashi S, Yamaguchi M, Uchimiya H, Umeda M

    FEBS letters   Vol. 534 ( 1-3 ) page: 69 - 74   2003.1

  23. Control of plant cell division through phosphorylation of CDKs in Arabidopsis

    A Shimotohno, Huang, JR, M Umeda, H Uchimiya

    PLANT AND CELL PHYSIOLOGY   Vol. 43   page: S213 - S213   2002

     More details

    Language:English   Publisher:OXFORD UNIV PRESS  

    Web of Science

    researchmap

  24. Demonstration of the importance and usefulness of manipulating non-active-site residues in protein design Reviewed

    Akie Shimotohno, Shinya Oue, Takato Yano, Seiki Kuramitsu, Hiroyuki Kagamiyama

    The Journal of Biochemistry   Vol. 129 ( 6 ) page: 943 - 948   2001.6

     More details

    Authorship:Lead author   Language:English   Publisher:(公社)日本生化学会  

    Directed evolutionを用いて,アスパラギン酸アミノトランスフェラーゼのバリンに対する触媒効率を10^6倍上昇させることができたが,変異残基の殆どは活性部位から遠く離れた場所に位置していた.これらの変異残基の基質特異性への影響を解析した結果,酵素やタンパク質の研究では,活性中心以外の残基のも着目すべきであることが実験的に示された

    DOI: 10.1093/oxfordjournals.jbchem.a002941

    Scopus

    PubMed

    researchmap

    Other Link: https://search.jamas.or.jp/index.php?module=Default&action=Link&pub_year=2001&ichushi_jid=J04549&link_issn=&doc_id=20010619170009&doc_link_id=10007856395&url=http%3A%2F%2Fci.nii.ac.jp%2Fnaid%2F10007856395&type=CiNii&icon=https%3A%2F%2Fjk04.jamas.or.jp%2Ficon%2F00003_1.gif

▼display all

Books 3

  1. 植物の生きる知恵 5 植物の情報を伝える経路-環境メディエータとシグナル伝達の秘密に迫る

    福田裕穂, 下遠野明恵, 遠藤暁詩( Role: Joint author)

    生物の科学 遺伝 74(5)  2020 

     More details

  2. 気孔形成過程の遺伝子発現ダイナミクス: 自己複製する細胞の生成,増殖そして終結

    下遠野明恵( Role: Contributor)

    細胞工学, 第93巻  2015 

     More details

  3. Cell cycle control and plant development, CDK phosphorylation. in (D. Inze, ed.)

    Akie Shimotohno and Masaaki Umeda

    Blackwell Publishing, Oxford  2007 

     More details

MISC 10

  1. 環境応答に関与するペプチドシグナルの分子機構と生理的役割

    下遠野明恵, 福田裕穂

    日本植物学会大会研究発表記録   Vol. 82nd   2018

  2. シロイヌナズナのホウ素輸送体の空間的・時間的制御の意義を理解するための統合的試み

    下遠野明恵, GRIENEISEN Veronica, MAREE Stan, 藤原徹

    日本土壌肥料学会講演要旨集   Vol. 60   2014

  3. シロイヌナズナのホウ素輸送体の根における空間的配置と時間的制御の意義についての数理モデルを用いた考察

    藤原徹, 下遠野明恵, 佐藤貴文, MAREE Stan, GRIENEISEN Veronica

    日本数理生物学会大会講演要旨集   Vol. 23rd   2013

  4. シロイヌナズナのAP2DNA結合ドメインを2つ持つAP2型転写因子のコンセンサス結合配列の比較解析

    徳田剛史, 前尾健一郎, 河合都妙, 下遠野明恵, SCHERES Ben, 中村研三

    日本植物生理学会年会要旨集   Vol. 50th   2009

  5. シロイヌナズナのCDK活性化キナーゼの機能解析

    坂口法洋, 下遠野明恵, 内宮博文, 坂口謙吾, 梅田正明

    日本植物生理学会年会要旨集   Vol. 46th   2005

  6. シロイヌナズナのCDK活性を制御するキナーゼ群の機能解析

    大野良子, BISOVA K, 下遠野明恵, 内宮博文, 梅田正明

    日本植物生理学会年会要旨集   Vol. 45th   2004

  7. CDK活性化キナーゼ(CAK)を介した植物の細胞分裂の制御機構の解析

    下遠野明恵, 内宮博文, 梅田正明

    日本分子生物学会年会プログラム・講演要旨集   Vol. 27th   2004

  8. CDKのリン酸化による細胞分裂の活性化機構の解析

    下遠野明恵, 黄継栄, 梅田正明, 内宮博文

    日本植物生理学会年会要旨集   Vol. 42nd   2002

  9. CDKのリン酸化カスケードによる細胞分裂の制御機構の解析

    下遠野明恵, 梅田正明, 内宮博文

    日本植物生理学会年会要旨集   Vol. 41st   2001

  10. Regulation of cell division through phosphorylation of CDKs :

    SHIMOTOHNO Akie, UMEDA Masaaki, UCHIMIYA Hirofumi

    Plant and cell physiology   Vol. 42   page: s46   2001

     More details

    Language:English   Publisher:Japanese Society of Plant Physiologists  

    CiNii Books

    researchmap

    Other Link: https://projects.repo.nii.ac.jp/?action=repository_uri&item_id=184642

▼display all

Presentations 33

  1. Molecular analysis for root stem cell maintenance in Arabidopsis thaliana.

    Akie Shimotohno

    The 35th European annual conference  2010 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  2. 環境応答に関与するペプチドシグナルの分子機構と生理的役割

    下遠野明恵, 福田裕穂

    第82回日本植物学会  2018.9.14 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  3. 環境応答に関わる CLE ペプチドシグナルの役割

    下遠野明恵, 福田裕穂

    第60回日本植物生理学会年会  2019.3.18 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  4. 環境ストレスに呼応した CLE ペプチドの新たな役割

    下遠野明恵, 福田裕穂

    第62回日本植物生理学会年会  2021.3.15 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  5. 根の幹細胞形成・維持を制御する分子ネットワーク Invited

    下遠野明恵

    第三回幹細胞研究会  2017 

     More details

    Presentation type:Oral presentation (invited, special)  

    researchmap

  6. シロイヌナズナのホウ素輸送体の空間的・時間的制御の意義を理解するための統合的試み

    下遠野明恵, Veronica Grieneisen, Stan Maree, 藤原徹

    日本土壌肥料学会  2014.9 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  7. シロイヌナズナのCDK活性化キナーゼの機能解析

    坂口法洋, 下遠野明恵, 内宮博文, 坂口謙吾, 梅田正明

    日本植物生理学会年会  2005.3 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  8. Transcriptional network of stem cells patterning in Arabidopsis thaliana.

    Akie Shimotohno, Renze Heidstra, Ben Scheres

    The 9th International Congress of Plant Molecular Biology (IPMB)  2009 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  9. Transcriptional network of stem cells formation in Arabidopsis thaliana. Invited

    Akie Shimotohno

    2012 

     More details

    Presentation type:Symposium, workshop panel (nominated)  

    researchmap

  10. Transcription factor complexes in Arabidopsis root development.

    Akie Shimotohno, Renze Heidstra, Ben Scheres

    The 21th International Conference on Arabidopsis research  2010 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  11. Roles of CLE peptide signaling in response to environmental stimuli.

    Akie Shimotohno, Hiroo Fukuda

    The 60th Annual Meeting of the JSPP  2019 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  12. Regulation of plant cell division through phosphorylation of CDKs Invited

    Akie Shimotohno

    Gyeongsang National University & The University of Tokyo Joint Symposium in Plant Molecular Biology  2002 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  13. QC specification by protein complexes that link two proteins action.

    Akie Shimotohno

    The 21th Experimental Plant Science Meeting  2013 

     More details

  14. QC initiation by protein complexes that link two proteins action.

    Akie Shimotohno, Renze Heidstra, Ben Scheres

    The 18th International Conference on Arabidopsis research  2007 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  15. Protein interactions connect two stem cell regulatory pathways in Arabidopsis roots.

    Akie Shimotohno

    The 19th Experimental Plant Science Meeting  2012 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  16. Protein complexes of transcription factors control the stem cell niche in Arabidopsis roots.” in New frontiers in the root developmental biology. Invited

    Akie Shimotohno, Ben Scheres

    The 55th Annual Meeting of JSPP  2014 

     More details

    Presentation type:Symposium, workshop panel (nominated)  

    researchmap

  17. PLETHORA protein complexes in root development.

    Akie Shimotohno, Renze Heidstra, Ben Scheres

    The 19th International Conference on Arabidopsis research  2008 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  18. Molecular dynamics mechanism for root growth and cell patterning in Arabidopsis stem cell niche.

    Akie Shimotohno

    The 13th NPC Meeting  2011 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  19. A study on CLE1 to CLE7 meditated environmental signals in Arabidopsis thaliana.

    Dichao Ma, Akie Shimotohno, Satoshi Endo, Hiroo Fukuda

    2018.6 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  20. A study on CLE peptide-meditated environmental signaling in Arabidopsis thaliana.

    馬笛超, 下遠野明恵, 近藤侑貴, 福田裕穂

    2016.3 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  21. A novel strategy for sensing and survival against environmental stresses in plants.

    Akie Shimotohno, Hiroo Fukuda

    Frontiers in plant environmental response research  2019 

     More details

    Presentation type:Poster presentation  

    researchmap

  22. A novel CDK Phosphorylation cascade in Arabidopsis thaliana.

    Akie Shimotohno, Hirofumi Uchimiya, Masaaki Umeda

    The 15th International Conference on Arabidopsis Research  2004 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  23. A CDK phosphorylation cascade mediated by CDK-activating kinases in Arabidopsis.

    Akie Shimotohno, Masaaki Umeda

    The 7th International Congress on Plant Molecular Biology (ISPMB)  2003 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  24. Control of cell division and differentiation by cyclin-dependent kinase activities in plants. Invited

    Masaaki Umeda, Masatoshi Yamaguchi, Akie Shimotohno

    The International Symposium on Plant Axis Formation and Signal Transduction  2005 

     More details

    Presentation type:Oral presentation (invited, special)  

    researchmap

  25. Comprehensive study of distinct CLE gene family in Arabidopsis thaliana

    Akie Shimotohno, Hiroo Fukuda

    2016.9.16 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  26. Comprehensive study of distinct CLE gene family in Arabidopsis thaliana.

    Shimotohno A, Fukuda H

    2016.9 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  27. Comparison of consensus binding-site sequences of seven AP2-type transcription factors of Arabidopsis thaliana with two AP2 DNA-binding domains.

    Tsuyoshi Tokuda, Kenichiro Maeo, Tsutae Kawai, Akie Shimotohno, Ben Scheres, Kenzo Nakamura

    The 21th International Conference on Arabidopsis research  2010 

     More details

    Presentation type:Poster presentation  

    researchmap

  28. Cell layer specific expression of boron transporter in Arabidopsis root.

    福田牧葉, 下遠野明恵, 反田直之, 笠井光治, 神谷岳洋, 藤原徹

    第58回日本植物生理学会  2017.3 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  29. Cell cycle control and plant development in Arabidopsis.

    Akie Shimotohno

    The NPC seminar  2006 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  30. CDK-phosphorylation cascade in Arabidopsis. Invited

    Akie Shimotohno, Masaaki Umeda

    The VIB seminar  2004 

     More details

    Presentation type:Symposium, workshop panel (nominated)  

    researchmap

  31. An integrative approach to elucidate the role of nutrients in process of plant.

    Akie Shimotohno, Takafumi Sato, Veronica Grieneisen, Stan Maree, Toru Fujiwara

    2014.3 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  32. How to recall positioning cue for root development

    Akie Shimotohno

    The 11th NPC Meeting  2010 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  33. Exploring cell-layer specific roles of boron transporters in Arabidopsis roots.

    2016.3 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

▼display all

KAKENHI (Grants-in-Aid for Scientific Research) 3

  1. 植物の幹細胞新生を統御する分子ネットワークの解明

    Grant number:20H04882  2020.4 - 2022.3

    日本学術振興会  科学研究費助成事業 新学術領域研究(研究領域提案型)  新学術領域研究(研究領域提案型)

    下遠野 明恵

      More details

    Authorship:Principal investigator 

    Grant amount:\11700000 ( Direct Cost: \9000000 、 Indirect Cost:\2700000 )

    植物幹細胞の構築における分子機構をゲノム恒常性の観点から解析を行うことによって、これまで明らかにされてこなかった組織という『場』の制約の中で起こる細胞の初期化と幹細胞の新生に寄与する未知の制御系の解明を目指す。さらに、動物幹細胞の新生・維持機構との類似点や植物幹細胞の独自性を比較検証することで、植物の幹細胞能獲得に至る仕組みを明らかにし、当該新学術領域の目指す多能性幹細胞の基盤原理の解明に貢献する。

    researchmap

  2. Harnessing synthetic chemistry to elucidate novel mechanisms of stomatal patterning

    Grant number:19H00990  2019.4 - 2023.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (A)

      More details

    Authorship:Coinvestigator(s) 

    researchmap

  3. 幹細胞新生に関わる分子基盤の解明

    Grant number:19K05943  2019.4 - 2022.3

    日本学術振興会  科学研究費助成事業 基盤研究(C)  基盤研究(C)

    下遠野 明恵

      More details

    Authorship:Principal investigator 

    Grant amount:\4290000 ( Direct Cost: \3300000 、 Indirect Cost:\990000 )

    幹細胞の特性である優れた自己複製能と多分化能は、転写因子を構成要素にもつ遺伝子発現制御系が緻密にコントロールされていることに起因する。これまでに幹細胞の維持に関わる個々の因子の同定と機能解析は進められているが、これらが幹細胞ニッチでどのような分子ネットワークを介して協調的に機能しているかに関する知見は少ない。そこで本研究では、植物多能性幹細胞の機能維持に関わる因子群の特定と、それらの動態を分子レベルで明らかにすることを目指している。申請者はこれまでに、根の幹細胞形成に関わる鍵転写因子群のいくつかを特定しており、本研究ではこの制御機構を司る新たな構成因子の同定とその作用機序の解明を行う。初年度は、当初の予定通り、生体内での転写因子制御因子の単離・精製と相互作用を観察するための予備実験と系の確立を行なった。幹細胞の確立と機能維持に関わる未知の制御因子(群)の同定を行うために、相互作用を阻害しないようにデザインした異なるタグのバリエーションを段階的に発現できる系の確立と形質転換体の作出を行なった。さらに、本研究課題で検証を試みている転写因子間の相互作用を生体内で捉えるために、一過的な発現系で立体構築を阻害しない蛍光標識の組み合わせの選択や蛍光強度の最適化などの予備的な解析を実施し、これらの結果を踏まえて作成したコンストラクトを植物体内に導入し、次年度以降の解析に使用する系の確立を進めている。

    researchmap