2024/10/18 更新

写真a

ロクジョウ ヒロキ
六條 宏紀
ROKUJO Hiroki
所属
未来材料・システム研究所 附属高度計測技術実践センター 素粒子計測部 助教
大学院担当
大学院理学研究科
職名
助教
外部リンク

学位 1

  1. 博士(理学) ( 2013年3月   神戸大学 ) 

研究分野 1

  1. 自然科学一般 / 素粒子、原子核、宇宙線、宇宙物理にする実験

経歴 3

  1. 名古屋大学   未来材料・システム研究所 附属高度計測技術実践センター   助教

    2023年4月 - 現在

      詳細を見る

  2. 名古屋大学   未来材料・システム研究所 附属高度計測技術実践センター   特任助教

    2020年4月 - 2023年3月

      詳細を見る

  3. 名古屋大学   大学院理学研究科   研究員

    2018年4月 - 2020年3月

      詳細を見る

所属学協会 2

  1. 日本写真学会

      詳細を見る

  2. 日本物理学会

      詳細を見る

委員歴 3

  1. The 38th International Cosmic Ray Conference (ICRC2023)   local organizing committee  

    2022年8月 - 2024年4月   

      詳細を見る

    団体区分:学協会

  2. 日本写真学会    大会実行委員  

    2022年4月 - 現在   

      詳細を見る

    団体区分:学協会

  3. 20th International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2018)   local organizing committee  

    2017年11月 - 2018年5月   

      詳細を見る

    団体区分:学協会

受賞 4

  1. 2024年度日本写真学会年次大会レビュー賞

    2024年5月   日本写真学会   GRAINE2023 年気球実験~オーストラリアでの実験現場を紹介~

    六條宏紀,長原翔伍(GRAINE collaboration)

     詳細を見る

  2. 2022年度日本写真学会 進歩賞

    2022年6月   日本写真学会   宇宙物理学、素粒子物理学また原子核乾板技術の進歩と応用

    六條宏紀

     詳細を見る

  3. 新学術領域「ニュートリノで拓く素粒子と宇宙」研究会2020 Best Poster Awards

    2020年12月   Atmospheric Gamma-ray Observation on GRAINE 2018 Balloon Experiment and Comparison with HKKM Model

    Hiroki Rokujo

     詳細を見る

  4. 2019年度写真学会年次大会 編集長賞

    2019年7月   日本写真学会   気球搭載エマルション望遠鏡のγ線イメージング性能

    六條宏紀

     詳細を見る

 

論文 53

  1. Nuclear emulsion film production system for experiments in full-area scanning and analysis era 査読有り

    Rokujo, H; Sugimura, K; Yamamoto, S; Hayashi, H; Nakamura, M; Nakamura, Y; Nakano, T; Sato, O; Usuda, I

    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT   1066 巻   2024年9月

     詳細を見る

    担当区分:筆頭著者, 責任著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment  

    Research utilizing the sub-micron three-dimensional spatial resolution of nuclear emulsion detectors has been expanding in various fields, triggered by the development of automated emulsion scanning technology. This paper describes a new production system capable of supplying several thousand square meters of nuclear emulsion film per year. The development and introduction of improved emulsion gel, knife coating, and drying equipment have enabled the mass production of double-side coated nuclear emulsion films with thick emulsion layers suitable for full-area scanning and analysis. This system has played an essential role in numerous nuclear emulsion experiments.

    DOI: 10.1016/j.nima.2024.169622

    Web of Science

    Scopus

    researchmap

  2. Neutrino rate predictions for FASER 査読有り

    Abraham, RM; Anders, J; Antel, C; Ariga, A; Ariga, T; Atkinson, J; Bernlochner, FU; Boeckh, T; Boyd, J; Brenner, L; Burger, A; Cadoux, F; Cardella, R; Casper, DW; Cavanagh, C; Chen, X; Coccaro, A; Debieux, S; D'Onofrio, M; Desai, A; Dmitrievsky, S; Eley, S; Favre, Y; Fellers, D; Feng, JL; Fenoglio, CA; Ferrere, D; Fieg, M; Filali, W; Gibson, S; Gonzalez-Sevilla, S; Gornushkin, Y; Gwilliam, C; Hayakawa, D; Hsu, SC; Hu, Z; Iacobucci, G; Inada, T; Iodice, L; Jakobsen, S; Joos, H; Kajomovitz, E; Kawahara, H; Keyken, A; Kling, F; Köck, D; Kontaxakis, P; Kose, U; Kotitsa, R; Kuehn, S; Kugathasan, T; Lefebvre, H; Levinson, L; Li, K; Liu, JF; Lutz, MS; MacDonald, J; Magliocca, C; Martinelli, F; McCoy, L; McFayden, J; Medina, AP; Milanesio, M; Moretti, T; Munker, M; Nakamura, M; Nakano, T; Neuhaus, F; Nevay, L; Ohashi, K; Otono, H; Pang, H; Paolozzi, L; Petersen, B; Prim, M; Queitsch-Maitland, M; Rokujo, H; Ruiz-Choliz, E; Rubbia, A; Sabater-Iglesias, J; Sato, O; Scampoli, P; Schmieden, K; Schott, M; Sfyrla, A; Shamim, M; Shively, S; Takubo, Y; Tarannum, N; Theiner, O; Torrence, E; Vasina, S; Vormwald, B; Wang, W; Wang, YX; Welch, E; Zahorec, S; Zambito, S; Zhang, SL

    PHYSICAL REVIEW C   110 巻 ( 1 )   2024年7月

     詳細を見る

    出版者・発行元:Physical Review D  

    The Forward Search Experiment (FASER) at CERN's Large Hadron Collider (LHC) has recently directly detected the first collider neutrinos. Neutrinos play an important role in all FASER analyses, either as signal or background, and it is therefore essential to understand the neutrino event rates. In this study, we update previous simulations and present prescriptions for theoretical predictions of neutrino fluxes and cross sections, together with their associated uncertainties. With these results, we discuss the potential for possible measurements that could be carried out in the coming years with the FASER neutrino data to be collected in LHC Run 3 and Run 4.

    DOI: 10.1103/PhysRevD.110.012009

    Web of Science

    Scopus

  3. First Measurement of the ν<sub>e</sub> and ν<sub>μ</sub> Interaction Cross Sections at the LHC with FASER's Emulsion Detector 査読有り

    Abraham, RM; Anders, J; Antel, C; Ariga, A; Ariga, T; Atkinson, J; Bernlochner, FU; Boeckh, T; Boyd, J; Brenner, L; Burger, A; Cadoux, F; Cardella, R; Casper, DW; Cavanagh, C; Chen, X; Coccaro, A; Debieux, S; D'Onofrio, M; Desai, A; Dmitrievsky, S; Eley, S; Favre, Y; Fellers, D; Feng, JL; Fenoglio, CA; Ferrere, D; Fieg, M; Filali, W; Fujimori, H; Garabaglu, A; Gibson, S; Gonzalez-Sevilla, S; Gornushkin, Y; Gwilliam, C; Hayakawa, D; Hsu, SC; Hu, Z; Iacobucci, G; Inada, T; Iodice, L; Jakobsen, S; Joos, H; Kajomovitz, E; Kanai, T; Kawahara, H; Keyken, A; Kling, F; Koeck, D; Kontaxakis, P; Kose, U; Kotitsa, R; Kuehn, S; Kugathasan, T; Lefebvre, H; Levinson, L; Li, K; Liu, JF; Lutz, MS; Macdonald, J; Magliocca, C; Martinelli, F; Mccoy, L; Mcfayden, J; Medina, AP; Milanesio, M; Moretti, T; Munker, M; Nakamura, M; Nakano, T; Neuhaus, F; Nevay, L; Nonaka, M; Okui, K; Ohashi, K; Otono, H; Pang, H; Paolozzi, L; Petersen, B; Prim, M; Queitsch-Maitland, M; Rokujo, H; Ruiz-Choliz, E; Rubbia, A; Sabater-Iglesias, J; Sato, O; Scampoli, P; Schmieden, K; Schott, M; Sfyrla, A; Shamim, M; Shively, S; Takubo, Y; Tarannum, N; Theiner, O; Torrence, E; Vasina, S; Vormwald, B; Wang, D; Wang, YX; Welch, E; Zahorec, S; Zambito, S; Zhang, SL; FASER Collaboration

    PHYSICAL REVIEW LETTERS   133 巻 ( 2 ) 頁: 021802   2024年7月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Physical Review Letters  

    The first results of the study of high-energy electron neutrino (νe) and muon neutrino (νμ) charged-current interactions in the FASERν emulsion-tungsten detector of the FASER experiment at the LHC are presented. A 128.8 kg subset of the FASERν volume was analyzed after exposure to 9.5 fb-1 of s=13.6 TeV pp data. Four (eight) νe (νμ) interaction candidate events are observed with a statistical significance of 5.2σ (5.7σ). This is the first direct observation of νe interactions at a particle collider and includes the highest-energy νe and νμ ever detected from an artificial source. The interaction cross section per nucleon σ/Eν is measured over an energy range of 560-1740 GeV (520-1760 GeV) for νe (νμ) to be (1.2-0.7+0.8)×10-38 cm2 GeV-1 [(0.5±0.2)×10-38 cm2 GeV-1], consistent with standard model predictions. These are the first measurements of neutrino interaction cross sections in those energy ranges.

    DOI: 10.1103/PhysRevLett.133.021802

    Web of Science

    Scopus

    PubMed

    researchmap

    その他リンク: http://harvest.aps.org/v2/journals/articles/10.1103/PhysRevLett.133.021802/fulltext

  4. The FASER detector 査読有り

    Abreu H., Mansour E.A., Antel C., Ariga A., Ariga T., Bernlochner F., Boeckh T., Boyd J., Brenner L., Cadoux F., Casper D.W., Cavanagh C., Chen X., Coccaro A., Crespo-Lopez O., Débieux S., Dmitrievsky S., D'Onofrio M., Dougherty L., Dozen C., Ezzat A., Favre Y., Fellers D., Feng J.L., Ferrere D., Galantay E.K., Gall J., Gamberini E., Gibson S., Gonzalez-Sevilla S., Gornushkin Y., Gwilliam C., Hayakawa D., Hsu S.C., Hu Z., Iacobucci G., Inada T., Jakobsen S., Johnson E., Kajomovitz E., Kawahara H., Kling F., Kose U., Kotitsa R., Krusse J., Kuehn S., Lefebvre H., Levinson L., Li K., Liu J., Magliocca C., Martinelli F., McFayden J., Meehan S., Milanesio M., Miura M., Mladenov D., Moretti T., Munker M., Nakamura M., Nakano T., Nessi M., Neuhaus F., Nevay L., Osborne J., Otono H., Pandini C., Pang H., Paolozzi L., Petersen B., Pietropaolo F., Prim M., Queitsch-Maitland M., Resnati F., Rizzi C., Rokujo H., Ruiz-Choliz E., Salfeld-Nebgen J., Galan F.S., Sato O., Scampoli P., Schmieden K., Schott M., Sfyrla A., Shively S., Sipos R., Spencer J., Takubo Y., Tarannum N., Theiner O., Thonet P., Torrence E., Tufanli S., Vasina S., Vendeuvre C., Vormwald B., Wang D., Zambito S., Zhang G.

    Journal of Instrumentation   19 巻 ( 5 )   2024年5月

     詳細を見る

    出版者・発行元:Journal of Instrumentation  

    FASER, the ForwArd Search ExpeRiment, is an experiment dedicated to searching for light, extremely weakly-interacting particles at CERN's Large Hadron Collider (LHC). Such particles may be produced in the very forward direction of the LHC's high-energy collisions and then decay to visible particles inside the FASER detector, which is placed 480 m downstream of the ATLAS interaction point, aligned with the beam collisions axis. FASER also includes a sub-detector, FASERν, designed to detect neutrinos produced in the LHC collisions and to study their properties. In this paper, each component of the FASER detector is described in detail, as well as the installation of the experiment system and its commissioning using cosmic-rays collected in September 2021 and during the LHC pilot beam test carried out in October 2021. FASER has successfully started taking LHC collision data in 2022, and will run throughout LHC Run 3.

    DOI: 10.1088/1748-0221/19/05/P05066

    Scopus

  5. First Emulsion <i>γ</i>-Ray Telescope Imaging of the Vela Pulsar by the GRAINE 2018 Balloon-borne Experiment 査読有り

    Takahashi, S; Aoki, S; Iyono, A; Karasuno, A; Kodama, K; Komatani, R; Komatsu, M; Komiyama, M; Kuretsubo, K; Marushima, T; Matsuda, S; Morishima, K; Morishita, M; Naganawa, N; Nakamura, M; Nakamura, M; Nakamura, T; Nakamura, Y; Nakano, N; Nakano, T; Nakazawa, K; Nishio, A; Oda, M; Rokujo, H; Sato, O; Sugimura, K; Suzuki, A; Torii, M; Yamamoto, S; Yoshimoto, M

    ASTROPHYSICAL JOURNAL   960 巻 ( 1 ) 頁: 47 - 47   2024年1月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Astrophysical Journal  

    We are developing the Gamma-Ray Astro-Imager with Nuclear Emulsion project, designed for 10 MeV-100 GeV cosmic γ-ray observations with a high angular resolution (5′/0.°08 at 1-2 GeV) and a polarization-sensitive large-aperture (∼10 m2) emulsion telescope for repeated long-duration balloon flights. In 2018, a balloon-borne experiment was carried out in Australia with a 0.38 m2 sensitive area and a flight duration of 17.4 hr, including 6.7 hr of Vela observations. Significant improvements compared with the 2015 balloon-borne experiment were achieved by a factor of 5, including both an increase in effective area × time and a reduction in the background contribution. We aimed to demonstrate the telescope’s overall performance based on detection and imaging of a known γ-ray source, the Vela pulsar. A robust detection of the Vela pulsar was achieved with a 68% containment radius of 0.°42, at a significance of 6σ, at energies above 80 MeV. The resulting angular profile is consistent with that of a pointlike source. We achieved the current best imaging performance of the Vela pulsar using an emulsion γ-ray telescope with the highest angular resolution of any γ-ray telescope to date.

    DOI: 10.3847/1538-4357/ad0973

    Web of Science

    Scopus

    researchmap

    その他リンク: https://iopscience.iop.org/article/10.3847/1538-4357/ad0973/pdf

  6. Search for dark photons with the FASER detector at the LHC 査読有り

    Abreu, H; Anders, J; Antel, C; Ariga, A; Ariga, T; Atkinson, J; Bernlochner, FU; Boeckh, T; Boyd, J; Brenner, L; Cadouxc, F; Casper, DW; Cavanaghj, C; Chen, X; Coccaro, A; D'Onofrioj, M; Desai, A; Dmitrievsky, S; Dozen, C; Favre, Y; Fellersm, D; Feng, JL; Fenoglio, CA; Ferrere, D; Galon, I; Gibson, S; Gonzalez-Sevillac, S; Gornushkin, Y; Gwilliam, C; Hayakawa, D; Hsu, SC; Hu, Z; Iacobucci, G; Inada, T; Jakobsen, S; Joos, H; Kajomovitz, E; Kawahara, H; Keyken, A; Kling, F; Köck, D; Kose, U; Kotitsa, R; Kuehn, S; Lefebvre, H; Levinson, L; Li, K; Liu, JF; MacDonald, J; Magliocca, C; Martinelli, F; McFayden, J; Meehan, S; Milanesio, M; Moretti, T; Munker, M; Nakamura, M; Nakano, T; Neuhaus, F; Nevay, L; Ohashi, K; Otono, H; Pang, H; Paolozzi, L; Petersen, B; Prim, M; Queitsch-Maitland, M; Rokujo, H; Ruiz-Choliz, E; Sabater-Iglesias, J; Salfeld-Nebgen, J; Sato, O; Scampoli, P; Schmieden, K; Schott, M; Sfyrla, A; Shively, S; Takubo, Y; Tarannum, N; Theiner, O; Torrence, E; Trojanowski, S; Vasina, S; Vormwald, B; Wang, D; Welch, E; Zahorec, S; Zambito, S

    PHYSICS LETTERS B   848 巻   2024年1月

     詳細を見る

    出版者・発行元:Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics  

    The FASER experiment at the LHC is designed to search for light, weakly-interacting particles produced in proton-proton collisions at the ATLAS interaction point that travel in the far-forward direction. The first results from a search for dark photons decaying to an electron-positron pair, using a dataset corresponding to an integrated luminosity of 27.0 fb−1 collected at centre-of-mass energy s=13.6 TeV in 2022 in LHC Run 3, are presented. No events are seen in an almost background-free analysis, yielding world-leading constraints on dark photons with couplings ϵ∼2×10−5−1×10−4 and masses ∼17 MeV−70 MeV. The analysis is also used to probe the parameter space of a massive gauge boson from a U(1)B−L model, with couplings gB−L∼5×10−6−2×10−5 and masses ∼15 MeV−40 MeV excluded for the first time.

    DOI: 10.1016/j.physletb.2023.138378

    Web of Science

    Scopus

  7. Development of proton beam irradiation system for the NA65/DsTau experiment 査読有り

    Aoki, S; Ariga, A; Ariga, T; Charitonidis, N; Dmitrievsky, S; Dobre, R; Firu, E; Gornushkin, Y; Guler, AM; Hayakawa, D; Kodama, K; Komatsu, M; Kose, U; Miloi, MM; Miura, M; Nakamura, M; Nakano, T; Neagu, AT; Okumura, T; Oz, C; Rokujo, H; Sato, O; Vasina, S; Yoshida, J; Yoshimoto, M; Yuksel, E

    JOURNAL OF INSTRUMENTATION   18 巻 ( 10 ) 頁: P10008 - P10008   2023年10月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Journal of Instrumentation  

    Tau neutrino is the least studied lepton of the Standard Model (SM). The NA65/DsTau experiment targets to investigate Ds , the parent particle of the ντ , using the nuclear emulsion-based detector and to decrease the systematic uncertainty of ντ flux prediction from over 50 % to 10 % for future beam dump experiments. In the experiment, the emulsion detectors are exposed to the CERN SPS 400 GeV proton beam. To provide optimal conditions for the reconstruction of interactions, the protons are required to be uniformly distributed over the detector's surface with an average density of 105 cm-2 and the fluctuation of less than 10%. To address this issue, we developed a new proton irradiation system called the target mover. The new target mover provided irradiation with a proton density of 1.01 × 105 cm-2 and the density fluctuation of 1.9 ± 0.3% in the DsTau 2021 run.

    DOI: 10.1088/1748-0221/18/10/P10008

    Web of Science

    Scopus

    researchmap

    その他リンク: https://iopscience.iop.org/article/10.1088/1748-0221/18/10/P10008/pdf

  8. First Direct Observation of Collider Neutrinos with FASER at the LHC 査読有り

    Abreu, H; Anders, J; Antel, C; Ariga, A; Ariga, T; Atkinson, J; Bernlochner, FU; Blesgen, T; Boeckh, T; Boyd, J; Brenner, L; Cadoux, F; Casper, DW; Cavanagh, C; Chen, X; Coccaro, A; Desai, A; Dmitrievsky, S; D'Onofrio, M; Favre, Y; Fellers, D; Feng, JL; Fenoglio, CA; Ferrere, D; Gibson, S; Gonzalez-Sevilla, S; Gornushkin, Y; Gwilliam, C; Hayakawa, D; Hsu, SC; Hu, Z; Iacobucci, G; Inada, T; Jakobsen, S; Joos, H; Kajomovitz, E; Kawahara, H; Keyken, A; Kling, F; Köck, D; Kose, U; Kotitsa, R; Kuehn, S; Lefebvre, H; Levinson, L; Li, K; Liu, JF; Macdonald, J; Magliocca, C; Martinelli, F; Mcfayden, J; Milanesio, M; Mladenov, D; Moretti, T; Munker, M; Nakamura, M; Nakano, T; Nessi, M; Neuhaus, F; Nevay, L; Otono, H; Pang, H; Paolozzi, L; Petersen, B; Pietropaolo, F; Prim, M; Queitsch-Maitland, M; Resnati, F; Rokujo, H; Ruiz-Choliz, E; Sabater-Iglesias, J; Sato, O; Scampoli, P; Schmieden, K; Schott, M; Sfyrla, A; Shively, S; Takubo, Y; Tarannum, N; Theiner, O; Torrence, E; Tufanli, S; Vasina, S; Vormwald, B; Wang, D; Welch, E

    PHYSICAL REVIEW LETTERS   131 巻 ( 3 ) 頁: 031801   2023年7月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Physical Review Letters  

    We report the first direct observation of neutrino interactions at a particle collider experiment. Neutrino candidate events are identified in a 13.6 TeV center-of-mass energy pp collision dataset of 35.4 fb-1 using the active electronic components of the FASER detector at the Large Hadron Collider. The candidates are required to have a track propagating through the entire length of the FASER detector and be consistent with a muon neutrino charged-current interaction. We infer 153-13+12 neutrino interactions with a significance of 16 standard deviations above the background-only hypothesis. These events are consistent with the characteristics expected from neutrino interactions in terms of secondary particle production and spatial distribution, and they imply the observation of both neutrinos and anti-neutrinos with an incident neutrino energy of significantly above 200 GeV.

    DOI: 10.1103/PhysRevLett.131.031801

    Web of Science

    Scopus

    PubMed

    researchmap

    その他リンク: http://harvest.aps.org/v2/journals/articles/10.1103/PhysRevLett.131.031801/fulltext

  9. Updated constraints on sterile neutrino mixing in the OPERA experiment using a new ν <inf>e</inf> identification method 査読有り

    Agafonova N., Alexandrov A., Anokhina A., Aoki S., Ariga A., Ariga T., Bertolin A., Bozza C., Brugnera R., Buontempo S., Chernyavskiy M., Chukanov A., Consiglio L., D’Ambrosio N., De Lellis G., De Serio M., del Amo Sanchez P., Di Crescenzo A., Di Ferdinando D., Di Marco N., Dmitrievsky S., Dracos M., Duchesneau D., Dusini S., Dzhatdoev T., Ebert J., Ereditato A., Fini R.A., Fukuda T., Galati G., Garfagnini A., Gentile V., Goldberg J., Gorbunov S., Gornushkin Y., Grella G., Guler A.M., Gustavino C., Hagner C., Hara T., Hayakawa T., Hollnagel A., Ishiguro K., Iuliano A., Jakovčć K., Jollet C., Kamiscioglu C., Kamiscioglu M., Kim S.H., Kitagawa N., Kliček B., Kodama K., Komatsu M., Kose U., Kreslo I., Laudisio F., Lauria A., Longhin A., Loverre P., Malgin A., Mandrioli G., Matsuo T., Matveev V., Mauri N., Medinaceli E., Meregaglia A., Mikado S., Miyanishi M., Mizutani F., Monacelli P., Montesi M.C., Morishima K., Muciaccia M.T., Naganawa N., Naka T., Nakamura M., Nakano T., Niwa K., Ogawa S., Okateva N., Ozaki K., Paoloni A., Paparella L., Park B.D., Pasqualini L., Pastore A., Patrizii L., Pessard H., Podgrudkov D., Polukhina N., Pozzato M., Pupilli F., Roda M., Roganova T., Rokujo H., Rosa G., Ryazhskaya O., Sato O., Schembri A., Shakiryanova I.

    Progress of Theoretical and Experimental Physics   2023 巻 ( 3 )   2023年3月

     詳細を見る

    記述言語:英語   出版者・発行元:Progress of Theoretical and Experimental Physics  

    This paper describes a new νe identification method specifically designed to improve the low-energy (< 30 GeV) νe identification efficiency attained by enlarging the emulsion film scanning volume with the next-generation emulsion readout system. A relative increase of 25–70% in the νe low-energy region is expected, leading to improvements in the OPERA sensitivity to neutrino oscillations in the framework of the 3 + 1 model. The method is applied to a subset of data where the detection efficiency increase is expected to be more relevant, and one additional νe candidate is found. The analysis combined with the ντ appearance results improves the upper limit on sin 22θμe to 0.016 at 90% C.L. in the MiniBooNE allowed region Δm241 ∼ 0.3 eV2

    DOI: 10.1093/ptep/ptad012

    Scopus

  10. The Forward Physics Facility at the High-Luminosity LHC 査読有り

    Feng, JL; Kling, F; Reno, MH; Rojo, J; Soldin, D; Anchordoqui, LA; Boyd, J; Ismail, A; Harland-Lang, L; Kelly, KJ; Pandey, V; Trojanowski, S; Tsai, YD; Alameddine, JM; Araki, T; Ariga, A; Ariga, T; Asai, K; Bacchetta, A; Balazs, K; Barr, AJ; Battistin, M; Bian, JM; Bertone, C; Bai, WD; Bakhti, P; Balantekin, AB; Barman, B; Batell, B; Bauer, M; Bauer, B; Becker, M; Berlin, A; Bertuzzo, E; Bhattacharya, A; Bonvini, M; Boogert, ST; Boyarsky, A; Bramante, J; Brdar, V; Carmona, A; Casper, DW; Celiberto, FG; Cerutti, F; Chachamis, G; Chauhan, G; Citron, M; Copello, E; Corso, JP; Darmé, L; D'Agnolo, RT; Darvishi, N; Das, A; De Lellis, G; De Roeck, A; de Vries, J; Dembinski, HP; Demidov, S; DeNiverville, P; Denton, PB; Deppisch, FF; Dev, PSB; Di Crescenzo, A; Dienes, KR; Diwan, MV; Dreiner, HK; Du, Y; Dutta, B; Duwentäster, P; Elie, L; Ellis, SAR; Enberg, R; Farzan, Y; Fieg, M; Foguel, AL; Foldenauer, P; Foroughi-Abari, S; Fortin, JF; Friedland, A; Fuchs, E; Fucilla, M; Gallmeister, K; Garcia, A; Canal, CAG; Garzelli, MV; Gauld, R; Ghosh, S; Ghoshal, A; Gibson, S; Giuli, F; Gonçalves, VP; Gorbunov, D; Goswami, S; Grau, S; Günther, JY; Guzzi, M; Haas, A; Hakulinen, T; Harris, SP; Harz, J; Herrera, JCH; Hill, CS; Hirsch, M; Hobbs, TJ; Höche, S; Hryczuk, A; Huang, F; Inada, T; Infantino, A; Ismail, A; Jacobsson, R; Jana, S; Jeong, YS; Jho, Y; Kalashnikov, D; Kärkkäinen, TJ; Keppel, C; Kim, J; Klasen, M; Klein, SR; Ko, P; Köhler, D; Komatsu, M; Kovarík, K; Kulkarni, S; Kumar, J; Kumar, K; Kuo, JL; Krauss, F; Kusina, A; Laletin, M; Le Roux, C; Lee, SJ; Lee, HS; Lefebvre, H; Li, JM; Li, SL; Li, YC; Liu, W; Liu, Z; Lonjon, M; Lyu, KF; Maciula, R; Abraham, RM; Masouminia, MR; McFayden, J; Mikulenko, O; Mohammed, MMA; Mohan, KA; Morfín, JG; Mosel, U; Mosny, M; Muzakka, KF; Nadolsky, P; Nakano, T; Nangia, S; Cornago, AN; Nevay, LJ; Ninin, P; Nocera, ER; Nomura, T; Nunes, R; Okada, N; Olness, F; Osborne, J; Otono, H; Ovchynnikov, M; Papa, A; Pei, JL; Peon, G; Perez, G; Pickering, L; Plätzer, S; Plestid, R; Poddar, TK; Quílez, P; Rai, M; Rajaee, M; Raut, D; Reimitz, P; Resnati, F; Rhode, W; Richardson, P; Ritz, A; Rokujo, H; Roszkowski, L; Ruhe, T; Ruiz, R; Sabate-Gilarte, M; Sandrock, A; Sarcevic, I; Sarkar, S; Sato, O; Scherb, C; Schienbein, I; Schulz, H; Schwaller, P; Sciutto, SJ; Sengupta, D; Shchutska, L; Shimomura, T; Silvetti, F; Sinha, K; Sjöstrand, T; Sobczyk, JT; Song, HY; Soriano, JF; Soreq, Y; Stasto, A; Stuart, D; Su, SF; Su, W; Szczurek, A; Tabrizi, Z; Takubo, Y; Taoso, M; Thomas, B; Thonet, P; Tuckler, D; Vera, AS; Vincke, H; Vishnudath, KN; Wang, ZS; Winkler, MW; Wu, WJ; Xie, KP; Xu, XJ; You, T; Yu, JY; Yu, JH; Zapp, K; Zhang, YC; Zhang, Y; Zhou, GH; Funchal, RZ

    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS   50 巻 ( 3 )   2023年1月

     詳細を見る

    記述言語:英語   出版者・発行元:Journal of Physics G: Nuclear and Particle Physics  

    High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential.

    DOI: 10.1088/1361-6471/ac865e

    Web of Science

    Scopus

  11. Measurements of protons and charged pions emitted from ν<sub>μ</sub> charged-current interactions on iron at a mean neutrino energy of 1.49 GeV using a nuclear emulsion detector 査読有り

    Oshima, H; Matsuo, T; Ali, A; Aoki, S; Berns, L; Fukuda, T; Hanaoka, Y; Hayato, Y; Hiramoto, A; Ichikawa, AK; Inamoto, H; Kasumi, A; Kawahara, H; Kikawa, T; Komatani, R; Komatsu, M; Kuretsubo, K; Marushima, T; Matsumoto, H; Mikado, S; Minamino, A; Mizuno, K; Morimoto, Y; Morishima, K; Naganawa, N; Naiki, M; Nakamura, M; Nakamura, Y; Nakano, T; Nakaya, T; Nishio, A; Odagawa, T; Ogawa, S; Rokujo, H; Sato, O; Shibuya, H; Sugimura, K; Suzui, L; Suzuki, Y; Takagi, H; Takahashi, S; Takao, T; Tanihara, Y; Watanabe, M; Yamada, K; Yasutome, K; Yokoyama, M; Yoshimoto, M; Collaboration, NCN

    PHYSICAL REVIEW D   106 巻 ( 3 )   2022年8月

     詳細を見る

    記述言語:英語   出版者・発行元:Physical Review D  

    This study conducted an analysis of muons, protons, and charged pions emitted from νμ charged-current interactions on iron using a nuclear emulsion detector. The emulsion detector with a 65 kg iron target was exposed to a neutrino beam corresponding to 4.0×1019 protons on target with a mean neutrino energy of 1.49 GeV. The measurements were performed at a momentum threshold of 200 (50) MeV/c for protons (pions), which are the lowest momentum thresholds attempted up to now. The measured quantities are the multiplicities, emission angles, and momenta of the muons, protons, and charged pions. In addition to these inclusive measurements, exclusive measurements such as the muon-proton emission-angle correlations of specific channels and the opening angle between the protons of CC0π2p events were performed. The data were compared to Monte Carlo predictions and some significant differences were observed. The results of the study demonstrate the capability of detailed measurements of neutrino-nucleus interactions using a nuclear emulsion detector to improve neutrino interaction models.

    DOI: 10.1103/PhysRevD.106.032016

    Web of Science

    Scopus

  12. The tracking detector of the FASER experiment 査読有り

    Abreu H., Antel C., Ariga A., Ariga T., Bernlochner F., Boeckh T., Boyd J., Brenner L., Cadoux F., Casper D.W., Cavanagh C., Chen X., Coccaro A., Crespo-Lopez O., Dmitrievsky S., D'Onofrio M., Dozen C., Ezzat A., Favre Y., Fellers D., Feng J.L., Ferrere D., Gibson S., Gonzalez-Sevilla S., Gornushkin Y., Gwilliam C., Hsu S.C., Hu Z., Iacobucci G., Inada T., Jakobsen S., Kajomovitz E., Kling F., Kose U., Kuehn S., Lefebvre H., Levinson L., Li K., Liu J., Magliocca C., McFayden J., Milanesio M., Meehan S., Mladenov D., Moretti T., Munker M., Nakamura M., Nakano T., Nessi M., Neuhaus F., Nevay L., Otono H., Pandini C., Pang H., Paolozzi L., Petersen B., Pietropaolo F., Prim M., Queitsch-Maitland M., Resnati F., Rizzi C., Rokujo H., Ruiz-Choliz E., Salfeld-Nebgen J., Sato O., Scampoli P., Schmieden K., Schott M., Sfyrla A., Shively S., Spencer J., Takubo Y., Tarannum N., Theiner O., Torrence E., Tufanli S., Vasina S., Vormwald B., Wang D.

    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment   1034 巻   2022年7月

     詳細を見る

    記述言語:英語   出版者・発行元:Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment  

    FASER is a new experiment designed to search for new light weakly-interacting long-lived particles (LLPs) and study high-energy neutrino interactions in the very forward region of the LHC collisions at CERN. The experimental apparatus is situated 480 m downstream of the ATLAS interaction-point aligned with the beam collision axis. The FASER detector includes four identical tracker stations constructed from silicon microstrip detectors. Three of the tracker stations form a tracking spectrometer, and enable FASER to detect the decay products of LLPs decaying inside the apparatus, whereas the fourth station is used for the neutrino analysis. The spectrometer has been installed in the LHC complex since March 2021, while the fourth station is not yet installed. FASER will start physics data taking when the LHC resumes operation in early 2022. This paper describes the design, construction and testing of the tracking spectrometer, including the associated components such as the mechanics, readout electronics, power supplies and cooling system.

    DOI: 10.1016/j.nima.2022.166825

    Scopus

  13. The SHiP experiment at the proposed CERN SPS Beam Dump Facility 査読有り

    Ahdida, C; Akmete, A; Albanese, R; Alt, J; Alexandrov, A; Anokhina, A; Aoki, S; Arduini, G; Atkin, E; Azorskiy, N; Back, JJ; Bagulya, A; Dos Santos, FB; Baranov, A; Bardou, F; Barker, GJ; Battistin, M; Bauche, J; Bay, A; Bayliss, V; Berdnikov, AY; Berdnikov, YA; Betancourt, C; Bezshyiko, I; Bezshyyko, O; Bick, D; Bieschke, S; Blanco, A; Boehm, J; Bogomilov, M; Boiarska, I; Bondarenko, K; Bonivento, WM; Borburgh, J; Boyarsky, A; Brenner, R; Breton, D; Brignoli, A; Büscher, V; Buonaura, A; Buontempo, S; Cadeddu, S; Calviani, M; Campanelli, M; Casolino, M; Charitonidis, N; Chau, P; Chauveau, J; Chepurnov, A; Chernyavskiy, M; Choi, KY; Chumakov, A; Climescu, M; Conaboy, A; Congedo, L; Cornelis, K; Cristinziani, M; Crupano, A; Dallavalle, GM; Datwyler, A; D'Ambrosio, N; D'Appollonio, G; de Asmundis, R; Saraiva, JD; De Lellis, G; de Magistris, M; De Roeck, A; De Serio, M; De Simone, D; Dedenko, L; Dergachev, P; Di Crescenzo, A; Di Giulio, L; Dib, C; Dijkstra, H; Dmitrenko, V; Dougherty, LA; Dolmatov, A; Donskov, S; Drohan, V; Dubreuil, A; Durhan, O; Ehlert, M; Elikkaya, E; Enik, T; Etenko, A; Fedin, O; Fedotovs, F; Ferrillo, M; Ferro-Luzzi, M; Filippov, K; Fini, RA; Fischer, H; Fonte, P; Franco, C; Fraser, M; Fresa, R; Froeschl, R; Fukuda, T; Galati, G; Gall, J; Gatignon, L; Gavrilov, G; Gentile, V; Goddard, B; Golinka-Bezshyyko, L; Golovatiuk, A; Golovtsov, V; Golubkov, D; Golutvin, A; Gorbounov, P; Gorbunov, D; Gorbunov, S; Gorkavenko, V; Gorshenkov, M; Grachev, V; Grandchamp, AL; Graverini, E; Grenard, JL; Grenier, D; Grichine, V; Gruzinskii, N; Guler, AM; Guz, Y; Haefeli, GJ; Hagner, C; Hakobyan, H; Harris, IW; van Herwijnen, E; Hessler, C; Hollnagel, A; Hosseini, B; Hushchyn, M; Iaselli, G; Iuliano, A; Jacobsson, R; Jokovic, D; Jonker, M; Kadenko, I; Kain, V; Kaiser, B; Kamiscioglu, C; Karpenkov, D; Kershaw, K; Khabibullin, M; Khalikov, E; Khaustov, G; Khoriauli, G; Khotyantsev, A; Kim, YG; Kim, V; Kitagawa, N; Ko, JW; Kodama, K; Kolesnikov, A; Kolev, DI; Kolosov, V; Komatsu, M; Kono, A; Konovalova, N; Kormannshaus, S; Korol, I; Korol'ko, I; Korzenev, A; Platia, EK; Kovalenko, S; Krasilnikova, I; Kudenko, Y; Kurbatov, E; Kurbatov, P; Kurochka, V; Kuznetsova, E; Lacker, HM; Lamont, M; Lantwin, O; Lauria, A; Lee, KS; Lee, KY; Leonardo, N; Lévy, JM; Loschiavo, VP; Lopes, L; Sola, EL; Lyons, F; Lyubovitskij, V; Maalmi, J; Magnan, AM; Maleev, V; Malinin, A; Manabe, Y; Managadze, AK; Manfredi, M; Marsh, S; Marshall, AM; Mefodev, A; Mermod, P; Miano, A; Mikado, S; Mikhaylov, Y; Mikulenko, A; Milstead, DA; Mineev, O; Montesi, MC; Morishima, K; Movchan, S; Muttoni, Y; Naganawa, N; Nakamura, M; Nakano, T; Nasybulin, S; Ninin, P; Nishio, A; Obinyakov, B; Ogawa, S; Okateva, N; Osborne, J; Ovchynnikov, M; Owtscharenko, N; Owen, PH; Pacholek, P; Park, BD; Pastore, A; Patel, M; Pereyma, D; Perillo-Marcone, A; Petkov, GL; Petridis, K; Petrov, A; Podgrudkov, D; Poliakov, V; Polukhina, N; Prieto, JP; Prokudin, M; Prota, A; Quercia, A; Rademakers, A; Rakai, A; Ratnikov, F; Rawlings, T; Redi, F; Reghunath, A; Ricciardi, S; Rinaldesi, M; Rodin, V; Rodin, V; Robbe, P; Cavalcante, ABR; Roganova, T; Rokujo, H; Rosa, G; Ruchayskiy, O; Ruf, T; Samoylenko, V; Samsonov, V; Galan, FS; Diaz, PS; Ull, AS; Sato, O; Savchenko, ES; Schliwinski, JS; Schmidt-Parzefall, W; Schumann, M; Serra, N; Sgobba, S; Shadura, O; Shakin, A; Shaposhnikov, M; Shatalov, P; Shchedrina, T; Shchutska, L; Shevchenko, V; Shibuya, H; Shihora, L; Shirobokov, S; Shustov, A; Silverstein, SB; Simone, S; Simoniello, R; Skorokhvatov, M; Smirnov, S; Soares, G; Sohn, JY; Sokolenko, A; Solodko, E; Starkov, N; Stoel, L; Stramaglia, ME; Sukhonos, D; Suzuki, Y; Takahashi, S; Tastet, JL; Teterin, P; Naing, ST; Timiryasov, I; Tioukov, V; Tommasini, D; Torii, M; Treille, D; Tsenov, R; Ulin, S; Ursov, E; Ustyuzhanin, A; Uteshev, Z; Uvarov, L; Vankova-Kirilova, G; Vannucci, F; Venkova, P; Venturi, V; Vidulin, I; Vilchinski, S; Vincke, H; Vincke, H; Visone, C; Vlasik, K; Volkov, A; Voronkov, R; van Waasen, S; Wanke, R; Wertelaers, P; Williams, O; Woo, JK; Wurm, M; Xella, S; Yilmaz, D; Yilmazer, AU; Yoon, CS; Zaytsev, Y; Zelenov, A; Zimmerman, J

    EUROPEAN PHYSICAL JOURNAL C   82 巻 ( 5 )   2022年5月

     詳細を見る

    記述言語:英語   出版者・発行元:European Physical Journal C  

    The Search for Hidden Particles (SHiP) Collaboration has proposed a general-purpose experimental facility operating in beam-dump mode at the CERN SPS accelerator to search for light, feebly interacting particles. In the baseline configuration, the SHiP experiment incorporates two complementary detectors. The upstream detector is designed for recoil signatures of light dark matter (LDM) scattering and for neutrino physics, in particular with tau neutrinos. It consists of a spectrometer magnet housing a layered detector system with high-density LDM/neutrino target plates, emulsion-film technology and electronic high-precision tracking. The total detector target mass amounts to about eight tonnes. The downstream detector system aims at measuring visible decays of feebly interacting particles to both fully reconstructed final states and to partially reconstructed final states with neutrinos, in a nearly background-free environment. The detector consists of a 50m long decay volume under vacuum followed by a spectrometer and particle identification system with a rectangular acceptance of 5 m in width and 10 m in height. Using the high-intensity beam of 400GeV protons, the experiment aims at profiting from the 4 × 10 19 protons per year that are currently unexploited at the SPS, over a period of 5–10 years. This allows probing dark photons, dark scalars and pseudo-scalars, and heavy neutral leptons with GeV-scale masses in the direct searches at sensitivities that largely exceed those of existing and projected experiments. The sensitivity to light dark matter through scattering reaches well below the dark matter relic density limits in the range from a few MeV/c2 up to 100 MeV-scale masses, and it will be possible to study tau neutrino interactions with unprecedented statistics. This paper describes the SHiP experiment baseline setup and the detector systems, together with performance results from prototypes in test beams, as it was prepared for the 2020 Update of the European Strategy for Particle Physics. The expected detector performance from simulation is summarised at the end.

    DOI: 10.1140/epjc/s10052-022-10346-5

    Web of Science

    Scopus

  14. Observation of sub-GeV atmospheric gamma rays on GRAINE 2018 balloon experiment and comparison with HKKM calculation

    Rokujo H., Aoki S., Iyono A., Karasuno A., Kodama K., Komatani R., Komatsu M., Komiyama M., Kuretsubo K., Marushima T., Matsuda S., Morishima K., Morishita M., Naganawa N., Nakamura M., Nakamura M., Nakamura T., Nakamura Y., Nakano N., Nakano T., Nishio A., Oda M., Sato O., Sugimura K., Suzuki A., Takahashi S., Torii M., Yamamoto S., Yoshimoto M.

    Proceedings of Science   395 巻   2022年3月

     詳細を見る

    出版者・発行元:Proceedings of Science  

    We report a precise measurement of the sub-GeV atmospheric gamma-ray spectrum at balloon altitude on GRAINE 2018 experiment, and comparisons with the predictions calculated by the latest HKKM, which is widely known as a model for atmospheric neutrino flux calculation. Understanding the interactions between cosmic rays and atmospheric nuclei is important for accurate atmospheric neutrino flux calculations. Observation data of sub-GeV atmospheric gamma rays at balloon altitudes are useful for verifying such hadronic interaction models and pion productions in the low energy region. In April 2018, we conducted a balloon experiment (GRAINE 2018) in Australia with the aim of detecting and imaging the celestial gamma-ray sources with the nuclear emulsion telescope. Following flight data analysis, we derived an atmospheric gamma-ray spectrum in 0.1-1 GeV region at altitudes of ∼36 km (residual depth ∼ 4 g/cm2). The flux around the 1 GeV region is in good agreement with the HKKM prediction and smoothly connects to the multi-GeV observations of past balloon experiments. On the other hand, the flux around 0.1 GeV shows a discrepancy with the prediction. In this presentation, the balloon experiment, flight data analysis, and observation results are described.

    Scopus

  15. Track reconstruction and matching between emulsion and silicon pixel detectors for the SHiP-charm experiment

    Ahdida, C; Akmete, A; Albanese, R; Alt, J; Alexandrov, A; Anokhina, A; Aoki, S; Arduini, G; Atkin, E; Azorskiy, N; Back, JJ; Bagulya, A; Dos Santos, FB; Baranov, A; Bardou, F; Barker, GJ; Battistin, M; Bauche, J; Bay, A; Bayliss, ; Bencivenni, G; Berdnikov, AY; Berdnikov, YA; Bertani, M; Betancourt, C; Bezshyiko, ; Bezshyyko, O; Bick, D; Bieschke, S; Blanco, A; Boehm, J; Bogomilov, M; Boiarska, ; Bondarenko, K; Bonivento, WM; Borburgh, J; Boyarsky, A; Brenner, R; Breton, D; Brignoli, A; Büscher, ; Buonaura, A; Buontempo, S; Cadeddu, S; Calcaterra, A; Calviani, M; Campanelli, M; Casolino, M; Charitonidis, N; Chau, P; Chauveau, J; Chepurnov, A; Chernyavskiy, M; Choi, KY; Chumakov, A; Ciambrone, P; Cicero, ; Climescu, M; Conaboy, A; Congedo, L; Cornelis, K; Cristinziani, M; Crupano, A; Dallavalle, GM; Datwyler, A; D'Ambrosio, N; D'Appollonio, G; de Asmundis, R; Saraiva, JD; De Lellis, G; de Magistris, M; De Roeck, A; De Serio, M; De Simone, D; Dedenko, L; Dergachev, P; Di Crescenzo, A; Di Giulio, L; Di Marco, N; Dib, C; Dijkstra, H; Dmitrenko, ; Dougherty, LA; Dolmatov, A; Domenici, D; Donskov, S; Drohan, ; Dubreuil, A; Durhan, O; Ehlert, M; Elikkaya, E; Enik, T; Etenko, A; Fabbri, F; Fedin, O; Fedotovs, F; Felici, G; Ferrillo, M; Ferro-Luzzi, M; Filippov, K; Fini, RA; Fischer, H; Fonte, P; Franco, C; Fraser, M; Fresa, R; Froeschl, R; Fukuda, T; Galati, G; Gall, J; Gatignon, L; Gavrilov, G; Gentile, ; Goddard, B; Golinka-Bezshyyko, L; Golovatiuk, A; Golovtsov, ; Golubkov, D; Golutvin, A; Gorbounov, P; Gorbunov, D; Gorbunov, S; Gorkavenko, ; Gorshenkov, M; Grachev, ; Grandchamp, AL; Graverini, E; Grenard, JL; Grenier, D; Grichine, ; Gruzinskii, N; Guler, AM; Guz, Y; Haefeli, GJ; Hagner, C; Hakobyan, H; Harris, IW; van Herwijnen, E; Hessler, C; Hollnagel, A; Hosseini, B; Hushchyn, M; Iaselli, G; Iuliano, A; Jacobsson, R; Jokovic, D; Jonker, M; Kadenko, ; Kain, ; Kaiser, B; Kamiscioglu, C; Karpenkov, D; Kershaw, K; Khabibullin, M; Khalikov, E; Khaustov, G; Khoriauli, G; Khotyantsev, A; Kim, YG; Kim, ; Kitagawa, N; Ko, JW; Kodama, K; Kolesnikov, A; Kolev, D; Kolosov, ; Komatsu, M; Kono, A; Konovalova, N; Kormannshaus, S; Korol, ; Korol'koo, ; Korzenev, A; Kostyukhin, ; Platia, EK; Kovalenko, S; Krasilnikova, ; Kudenko, Y; Kurbatov, E; Kurbatov, P; Kurochka, ; Kuznetsova, E; Lacker, HM; Lamont, M; Lanfranchi, G; Lantwin, O; Lauria, A; Lee, KS; Lee, KY; Leonardo, N; Lévy, JM; Loschiavo, VP; Lopes, L; Sola, EL; Lyons, F; Lyubovitskij, ; Maalmi, J; Magnan, AM; Maleev, ; Malinin, A; Manabe, Y; Managadze, AK; Manfredi, M; Marsh, S; Marshall, AM; Mefodev, A; Mermod, P; Miano, A; Mikado, S; Mikhaylov, Y; Mikulenko, A; Milstead, DA; Mineev, O; Montanari, A; Montesi, MC; Morishima, K; Movchan, S; Muttoni, Y; Naganawa, N; Nakamura, M; Nakano, T; Nasybulin, S; Ninin, P; Nishio, A; Obinyakov, B; Ogawa, S; Okateva, N; Osborne, J; Ovchynnikov, M; Owtscharenko, N; Owen, PH; Pacholek, P; Paoloni, A; Park, BD; Pastore, A; Patel, M; Pereyma, D; Perillo-Marcone, A; Petkov, GL; Petridis, K; Petrov, A; Podgrudkov, D; Poliakov, ; Polukhina, N; Prieto, JP; Prokudin, M; Prota, A; Quercia, A; Rademakers, A; Rakai, A; Ratnikov, F; Rawlings, T; Redi, F; Reghunath, A; Ricciardi, S; Rinaldesi, M; Rodin, V; Rodin, V; Robbe, P; Cavalcante, ABR; Roganova, T; Rokujo, H; Rosa, G; Rovelli, T; Ruchayskiy, O; Ruf, T; Samoylenko, ; Samsonov, ; Galan, FS; Diaz, PS; Ull, AS; Saputi, A; Sato, O; Savchenko, ES; Schliwinski, JS; Schmidt-Parzefall, W; Schumann, M; Serra, N; Sgobba, S; Shadura, O; Shakin, A; Shaposhnikov, M; Shatalov, P; Shchedrina, T; Shchutska, L; Shevchenko, ; Shibuya, H; Shihora, L; Shirobokov, S; Shustov, A; Silverstein, SB; Simone, S; Simoniello, R; Skorokhvatov, M; Smirnov, S; Soares, G; Sohn, JY; Sokolenko, A; Solodko, E; Starkov, N; Stoel, L; Stramaglia, ME; Sukhonos, D; Suzuki, Y; Takahashi, S; Tastet, JL; Teterin, P; Naing, ST; Timiryasov, ; Tioukov, ; Tommasini, D; Torii, M; Tosi, N; Treille, D; Tsenov, R; Ulin, S; Ursov, E; Ustyuzhanin, A; Uteshev, Z; Uvarov, L; Vankova-Kirilova, G; Vannucci, F; Venkova, P; Venturi, V; Vidulin, ; Vilchinski, S; Vincke, H; Vincke, H; Visone, C; Vlasik, K; Volkov, A; Voronkov, R; van Waasen, S; Wanke, R; Wertelaers, P; Williams, O; Woo, JK; Wurm, M; Xella, S; Yilmaz, D; Yilmazer, AU; Yoon, CS; Zaytsev, Y; Zelenov, A; Zimmerman, J

    JOURNAL OF INSTRUMENTATION   17 巻 ( 3 )   2022年3月

     詳細を見る

    出版者・発行元:Journal of Instrumentation  

    In July 2018 an optimization run for the proposed charm cross section measurement for SHiP was performed at the CERN SPS. A heavy, moving target instrumented with nuclear emulsion films followed by a silicon pixel tracker was installed in front of the Goliath magnet at the H4 proton beam-line. Behind the magnet, scintillating-fibre, drift-tube and RPC detectors were placed. The purpose of this run was to validate the measurement's feasibility, to develop the required analysis tools and fine-tune the detector layout. In this paper, we present the track reconstruction in the pixel tracker and the track matching with the moving emulsion detector. The pixel detector performed as expected and it is shown that, after proper alignment, a vertex matching rate of 87% is achieved.

    DOI: 10.1088/1748-0221/17/03/P03013

    Web of Science

    Scopus

  16. The trigger and data acquisition system of the FASER experiment

    Abreu, H; Mansour, EA; Antel, C; Ariga, A; Ariga, T; Bernlochner, F; Boeckh, T; Boyd, J; Brenner, L; Cadoux, F; Casper, DW; Cavanagh, C; Chen, X; Coccaro, A; Débieux, S; Dmitrievsky, S; Dozen, C; Favre, Y; Fellers, D; Feng, JL; Ferrere, D; Gamberini, E; Galantay, EK; Gibson, S; Gonzalez-Sevilla, S; Gornushkin, Y; Gwilliam, C; Hsu, SC; Hu, Z; Iacobucci, G; Inada, T; Jakobsen, S; Johnson, E; Kajomovitz, E; Kling, F; Kose, U; Kuehn, S; Lefebvre, H; Levinson, L; Li, K; Liu, J; Magliocca, C; McFayden, J; Milanesio, M; Meehan, S; Mladenov, D; Moretti, T; Munker, M; Nakamura, M; Nakano, T; Nessi, M; Neuhaus, F; Nevay, L; Otono, H; Pandini, C; Pang, H; Paolozzi, L; Petersen, B; Pietropaolo, F; Prim, M; Queitsch-Maitland, M; Resnati, F; Rizzi, C; Rokujo, H; Ruiz-Cholis, E; Salfeld-Nebgen, J; Sato, O; Scampoli, P; Schmieden, K; Schott, M; Sfyrla, A; Shively, S; Sipos, R; Spencer, J; Takubo, Y; Tarannum, N; Theiner, O; Torrence, E; Tufanli, S; Vasina, S; Vormwald, B; Wang, D

    JOURNAL OF INSTRUMENTATION   16 巻 ( 12 )   2021年12月

     詳細を見る

    出版者・発行元:Journal of Instrumentation  

    The FASER experiment is a new small and inexpensive experiment that is placed 480 meters downstream of the ATLAS experiment at the CERN LHC. FASER is designed to capture decays of new long-lived particles, produced outside of the ATLAS detector acceptance. These rare particles can decay in the FASER detector together with about 500-1000 Hz of other particles originating from the ATLAS interaction point. A very high efficiency trigger and data acquisition system is required to ensure that the physics events of interest will be recorded. This paper describes the trigger and data acquisition system of the FASER experiment and presents performance results of the system acquired during initial commissioning.

    DOI: 10.1088/1748-0221/16/12/P12028

    Web of Science

    Scopus

  17. Performance of an emulsion telescope for gamma-ray observations in the GRAINE2018 balloon-borne experiment 査読有り

    Nakamura, Y; Aoki, S; Iyono, A; Karasuno, A; Kodama, K; Komatani, R; Komatsu, M; Komiyama, M; Kuretsubo, K; Marushima, T; Matsuda, S; Morishima, K; Morishita, M; Naganawa, N; Nakamura, M; Nakamura, M; Nakamura, T; Nakano, N; Nakano, T; Nishio, A; Oda, M; Rokujo, H; Sato, O; Sugimura, K; Suzuki, A; Takahashi, S; Torii, M; Yamamoto, S; Yoshimoto, M

    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS   2021 巻 ( 12 )   2021年12月

     詳細を見る

    掲載種別:研究論文(学術雑誌)   出版者・発行元:Progress of Theoretical and Experimental Physics  

    The Gamma-Ray Astro-Imager with Nuclear Emulsion (GRAINE) project is aimed at the precise observation of astronomical gamma-ray sources in the energy range of 10 MeV-100 GeV using a balloon-borne telescope utilizing a nuclear emulsion, which can help realize precise imaging with high angular resolution (1.0° at 100 MeV), polarization sensitivity, and large aperture area (10 m2). In 2018, the third balloon experiment was carried out as a demonstration of the detection of the brightest known astronomical gamma-ray source, the Vela pulsar, with an aperture area of 0.38 m2. In these data, some gamma rays were produced by the π0 → 2γdecay, which was caused by the hadronic interactions of cosmic rays in the detector. These could be used to calibrate the reconstructed angle, energy, and so on. In this study, we establish a method of searching for hadronic interactions and concomitant gamma rays with high statistics and purity. Our analysis indicates that the performance of our detector for gamma rays is as expected in wide incidence angle and energy ranges. We plan to commence scientific observations using the proposed system with the verified high angular resolution and largest aperture area in 2022 or later.

    DOI: 10.1093/ptep/ptab148

    Web of Science

    Scopus

    researchmap

    その他リンク: https://academic.oup.com/ptep/article-pdf/2021/12/123H02/42899126/ptab148.pdf

  18. First neutrino interaction candidates at the LHC 査読有り

    Abreu, H; Afik, Y; Antel, C; Arakawa, J; Ariga, A; Ariga, T; Bernlochner, F; Boeckh, T; Boyd, J; Brenner, L; Cadoux, F; Casper, DW; Cavanagh, C; Cerutti, F; Chen, X; Coccaro, A; D'Onofrio, M; Dozen, C; Favre, Y; Fellers, D; Feng, JL; Ferrere, D; Gibson, S; Gonzalez-Sevilla, S; Gwilliam, C; Hsu, SC; Hu, Z; Iacobucci, G; Inada, T; Ismail, A; Jakobsen, S; Kajomovitz, E; Kling, F; Kose, U; Kuehn, S; Lefebvre, H; Levinson, L; Li, K; Liu, JF; Magliocca, C; McFayden, J; Meehan, S; Mladenov, D; Nakamura, M; Nakano, T; Nessi, M; Neuhaus, F; Nevay, L; Otono, H; Pandini, C; Pang, H; Paolozzi, L; Petersen, B; Pietropaolo, F; Prim, M; Queitsch-Maitland, M; Resnati, F; Rokujo, H; Sabaté-Gilarte, M; Salfeld-Nebgen, J; Sato, O; Scampoli, P; Schmieden, K; Schott, M; Sfyrla, A; Shively, S; Spencer, J; Takubo, Y; Theiner, O; Torrence, E; Trojanowski, S; Tufanli, S; Vormwald, B; Wang, D; Zhang, G

    PHYSICAL REVIEW D   104 巻 ( 9 )   2021年11月

     詳細を見る

    掲載種別:研究論文(学術雑誌)   出版者・発行元:Physical Review D  

    FASERν at the CERN Large Hadron Collider (LHC) is designed to directly detect collider neutrinos for the first time and study their cross sections at TeV energies, where no such measurements currently exist. In 2018, a pilot detector employing emulsion films was installed in the far-forward region of ATLAS, 480 m from the interaction point, and collected 12.2 fb-1 of proton-proton collision data at a center-of-mass energy of 13 TeV. We describe the analysis of this pilot run data and the observation of the first neutrino interaction candidates at the LHC. This milestone paves the way for high-energy neutrino measurements at current and future colliders.

    DOI: 10.1103/PhysRevD.104.L091101

    Web of Science

    Scopus

    researchmap

    その他リンク: http://harvest.aps.org/v2/journals/articles/10.1103/PhysRevD.104.L091101/fulltext

  19. OPERA tau neutrino charged current interactions

    Agafonova, N; Alexandrov, A; Anokhina, A; Aoki, S; Ariga, A; Ariga, T; Bertolin, A; Bozza, C; Brugnera, R; Buonaura, A; Buontempo, S; Chernyavskiy, M; Chukanov, A; Consiglio, L; D'Ambrosio, N; De Lellis, G; De Serio, M; Sanchez, PD; Di Crescenzo, A; Di Ferdinando, D; Di Marco, N; Dmitrievsky, S; Dracos, M; Duchesneau, D; Dusini, S; Dzhatdoev, T; Ebert, J; Ereditato, A; Fini, RA; Fornari, F; Fukuda, T; Galati, G; Garfagnini, A; Gentile, V; Goldberg, J; Gorbunov, S; Gornushkin, Y; Grella, G; Guler, AM; Gustavino, C; Hagner, C; Hara, T; Hayakawa, T; Hollnagel, A; Ishiguro, K; Iuliano, A; Jakovcic, K; Jollet, C; Kamiscioglu, C; Kamiscioglu, M; Kim, SH; Kitagawa, N; Klicek, B; Kodama, K; Komatsu, M; Kose, U; Kreslo, I; Laudisio, F; Lauria, A; Lavasa, A; Longhin, A; Loverre, P; Malgin, A; Mandrioli, G; Matsuo, T; Matveev, V; Mauri, N; Medinaceli, E; Meregaglia, A; Mikado, S; Miyanishi, M; Mizutani, F; Monacelli, P; Montesi, MC; Morishima, K; Muciaccia, MT; Naganawa, N; Naka, T; Nakamura, M; Nakano, T; Niwa, K; Ogawa, S; Okateva, N; Ozaki, K; Paoloni, A; Park, BD; Pasqualini, L; Pastore, A; Patrizii, L; Pessard, H; Podgrudkov, D; Polukhina, N; Pozzato, M; Pupilli, F; Roda, M; Roganova, T; Rokujo, H; Rosa, G; Ryazhskaya, O; Sato, O; Shakirianova, I; Schembri, A; Shchedrina, T; Shibayama, E; Shibuya, H; Shiraishi, T; Simko, T; Simone, S; Sirignano, C; Sirri, G; Sotnikov, A; Spinetti, M; Stanco, L; Starkov, N; Stellacci, SM; Stipcevic, M; Strolin, P; Takahashi, S; Tenti, M; Terranova, F; Tioukov, V; Tsanaktsidis, I; Tufanli, S; Ustyuzhanin, A; Vasina, S; García, MV; Vilain, P; Voevodina, E; Votano, L; Vuilleumier, JL; Wilquet, G; Yoon, CS

    SCIENTIFIC DATA   8 巻 ( 1 ) 頁: 218   2021年8月

     詳細を見る

  20. Sensitivity of the SHiP experiment to dark photons decaying to a pair of charged particles

    Ahdida, C; Akmete, A; Albanese, R; Alexandrov, A; Anokhina, A; Aoki, S; Arduini, G; Atkin, E; Azorskiy, N; Back, JJ; Bagulya, A; Dos Santos, FB; Baranov, A; Bardou, F; Barker, GJ; Battistin, M; Bauche, J; Bay, A; Bayliss, V; Bencivenni, G; Berdnikov, AY; Berdnikov, YA; Bertani, M; Betancourt, C; Bezshyiko, I; Bezshyyko, O; Bick, D; Bieschke, S; Blanco, A; Boehm, J; Bogomilov, M; Boiarska, I; Bondarenko, K; Bonivento, WM; Borburgh, J; Boyarsky, A; Brenner, R; Breton, D; Buscher, V; Buonaura, A; Buontempo, S; Cadeddu, S; Calcaterra, A; Calviani, M; Campanelli, M; Casolino, M; Charitonidis, N; Chau, P; Chauveau, J; Chepurnov, A; Chernyavskiy, M; Choi, KY; Chumakov, A; Ciambrone, P; Cicero, V; Congedo, L; Cornelis, K; Cristinziani, M; Crupano, A; Dallavalle, GM; Datwyler, A; D'Ambrosio, N; D'Appollonio, G; de Asmundis, R; Saraiva, JD; De Lellis, G; de Magistris, M; De Roeck, A; De Serio, M; De Simone, D; Dedenko, L; Dergachev, P; Di Crescenzo, A; Di Giulio, L; Di Marco, N; Dib, C; Dijkstra, H; Dmitrenko, V; Dougherty, LA; Dolmatov, A; Domenici, D; Donskov, S; Drohan, V; Dubreuil, A; Durhan, O; Ehlert, M; Elikkaya, E; Enik, T; Etenko, A; Fabbri, F; Fedin, O; Fedotovs, F; Felici, G; Ferrillo, M; Ferro-Luzzi, M; Filippov, K; Fini, RA; Fonte, P; Franco, C; Fraser, M; Fresa, R; Froeschl, R; Fukuda, T; Galati, G; Gall, J; Gatignon, L; Gavrilov, G; Gentile, V; Goddard, B; Golinka-Bezshyyko, L; Golovatiuk, A; Golovtsov, V; Golubkov, D; Golutvin, A; Gorbounov, P; Gorbunov, D; Gorbunov, S; Gorkavenko, V; Gorshenkov, M; Grachev, V; Grandchamp, AL; Graverini, E; Grenard, JL; Grenier, D; Grichine, V; Gruzinskii, N; Guler, AM; Guz, Y; Haefeli, GJ; Hagner, C; Hakobyan, H; Harris, IW; van Herwijnen, E; Hessler, C; Hollnagel, A; Hosseini, B; Hushchyn, M; Iaselli, G; Iuliano, A; Jacobsson, R; Jokovic, D; Jonker, M; Kadenko, I; Kain, V; Kaiser, B; Kamiscioglu, C; Karpenkov, D; Kershaw, K; Khabibullin, M; Khalikov, E; Khaustov, G; Khoriauli, G; Khotyantsev, A; Kim, YG; Kim, V; Kitagawa, N; Ko, JW; Kodama, K; Kolesnikov, A; Kolev, DI; Kolosov, V; Komatsu, M; Kono, A; Konovalova, N; Kormannshaus, S; Korol, I; Korol'ko, I; Korzenev, A; Kostyukhin, V; Platia, EK; Kovalenko, S; Krasilnikova, I; Kudenko, Y; Kurbatov, E; Kurbatov, P; Kurochka, V; Kuznetsova, E; Lacker, HM; Lamont, M; Lanfranchi, G; Lantwin, O; Lauria, A; Lee, KS; Lee, KY; Leonardo, N; Lévy, JM; Loschiavo, VP; Lopes, L; Sola, EL; Lyubovitskij, V; Maalmi, J; Magnan, AM; Maleev, V; Malinin, A; Manabe, Y; Managadze, AK; Manfredi, M; Marsh, S; Marshall, AM; Mefodev, A; Mermod, P; Miano, A; Mikado, S; Mikhaylov, Y; Milstead, DA; Mineev, O; Montanari, A; Montesi, MC; Morishima, K; Movchan, S; Muttoni, Y; Naganawa, N; Nakamura, M; Nakano, T; Nasybulin, S; Ninin, P; Nishio, A; Obinyakov, B; Ogawa, S; Okateva, N; Opitz, B; Osborne, J; Ovchynnikov, M; Owtscharenko, N; Owen, PH; Pacholek, P; Paoloni, A; Park, BD; Pastore, A; Patel, M; Pereyma, D; Perillo-Marcone, A; Petkov, GL; Petridis, K; Petrov, A; Podgrudkov, D; Poliakov, V; Polukhina, N; Prieto, JP; Prokudin, M; Prota, A; Quercia, A; Rademakers, A; Rakai, A; Ratnikov, F; Rawlings, T; Redi, F; Ricciardi, S; Rinaldesi, M; Rodin, V; Rodin, V; Robbe, P; Cavalcante, ABR; Roganova, T; Rokujo, H; Rosa, G; Rovelli, T; Ruchayskiy, O; Ruf, T; Samoylenko, V; Samsonov, V; Galan, FS; Diaz, PS; Ull, AS; Saputi, A; Sato, O; Savchenko, ES; Schliwinski, JS; Schmidt-Parzefall, W; Serra, N; Sgobba, S; Shadura, O; Shakin, A; Shaposhnikov, M; Shatalov, P; Shchedrina, T; Shchutska, L; Shevchenko, V; Shibuya, H; Shirobokov, S; Shustov, A; Silverstein, SB; Simone, S; Simoniello, R; Skorokhvatov, M; Smirnov, S; Soares, G; Sohn, JY; Sokolenko, A; Solodko, E; Starkov, N; Stoel, L; Stramaglia, ME; Sukhonos, D; Suzuki, Y; Takahashi, S; Tastet, JL; Teterin, P; Naing, ST; Timiryasov, I; Tioukov, V; Tommasini, D; Torii, M; Tosi, N; Treille, D; Tsenov, R; Ulin, S; Ursov, E; Ustyuzhanin, A; Uteshev, Z; Uvarov, L; Vankova-Kirilova, G; Vannucci, F; Venturi, V; Vidulin, I; Vilchinski, S; Vincke, H; Vincke, H; Visone, C; Vlasik, K; Volkov, A; Voronkov, R; van Waasen, S; Wanke, R; Wertelaers, P; Williams, O; Woo, JK; Wurm, M; Xella, S; Yilmaz, D; Yilmazer, AU; Yoon, CS; Zaytsev, Y; Zelenov, A; Zimmerman, J

    EUROPEAN PHYSICAL JOURNAL C   81 巻 ( 5 )   2021年5月

     詳細を見る

    出版者・発行元:European Physical Journal C  

    Dark photons are hypothetical massive vector particles that could mix with ordinary photons. The simplest theoretical model is fully characterised by only two parameters: the mass of the dark photon mγD and its mixing parameter with the photon, ε. The sensitivity of the SHiP detector is reviewed for dark photons in the mass range between 0.002 and 10 GeV. Different production mechanisms are simulated, with the dark photons decaying to pairs of visible fermions, including both leptons and quarks. Exclusion contours are presented and compared with those of past experiments. The SHiP detector is expected to have a unique sensitivity for mγD ranging between 0.8 and 3.3-0.5+0.2 GeV, and ε2 ranging between 10 - 11 and 10 - 17.

    DOI: 10.1140/epjc/s10052-021-09224-3

    Web of Science

    Scopus

  21. Sensitivity of the SHiP experiment to light dark matter

    Ahdida, C; Akmete, A; Albanese, R; Alexandrov, A; Anokhina, A; Aoki, S; Arduini, G; Atkin, E; Azorskiy, N; Back, JJ; Bagulya, A; Dos Santos, FB; Baranov, A; Bardou, F; Barker, GJ; Battistin, M; Bauche, J; Bay, A; Bayliss, V; Bencivenni, G; Berdnikov, AY; Berdnikov, YA; Bertani, M; Betancourt, C; Bezshyiko, I; Bezshyyko, O; Bick, D; Bieschke, S; Blanco, A; Boehm, J; Bogomilov, M; Boiarska, I; Bondarenko, K; Bonivento, WM; Borburgh, J; Boyarsky, A; Brenner, R; Breton, D; Buscher, V; Buonaura, A; Buonocore, L; Buontempo, S; Cadeddu, S; Calcaterra, A; Calviani, M; Campanelli, M; Casolino, M; Charitonidis, N; Chau, P; Chauveau, J; Chepurnov, A; Chernyavskiy, M; Choi, KY; Chumakov, A; Ciambrone, P; Cicero, V; Congedo, L; Cornelis, K; Cristinziani, M; Crupano, A; Dallavalle, GM; Datwyler, A; D'Ambrosio, N; D'Appollonio, G; de Asmundis, R; Saraiva, JD; De Lellis, G; de Magistris, M; De Roeck, A; De Serio, M; De Simone, D; Dedenko, L; Dergachev, P; Di Crescenzo, A; Di Giulio, L; Di Marco, N; Dib, C; Dijkstra, H; Dmitrenko, V; Dougherty, LA; Dolmatov, A; Domenici, D; Donskov, S; Drohan, V; Dubreuil, A; Durhan, O; Ehlert, M; Elikkaya, E; Enik, T; Etenko, A; Fabbri, F; Fedin, O; Fedotovs, F; Felici, G; Ferrillo, M; Ferro-Luzzi, M; Filippov, K; Fini, RA; Fonte, P; Franco, C; Fraser, M; Fresa, R; Froeschl, R; Frugiuele, C; Fukuda, T; Galati, G; Gall, J; Gatignon, L; Gavrilov, G; Gentile, V; Goddard, B; Golinka-Bezshyyko, L; Golovatiuk, A; Golovtsov, V; Golubkov, D; Golutvin, A; Gorbounov, P; Gorbunov, D; Gorbunov, S; Gorkavenko, V; Gorshenkov, M; Grachev, V; Grandchamp, AL; Graverini, E; Grenard, JL; Grenier, D; Grichine, V; Gruzinskii, N; Guler, AM; Guz, Y; Haefeli, GJ; Hagner, C; Hakobyan, H; Harris, IW; van Herwijnen, E; Hessler, C; Hollnagel, A; Hosseini, B; Hushchyn, M; Iaselli, G; Iuliano, A; Jacobsson, R; Jokovic, D; Jonker, M; Kadenko, I; Kain, V; Kaiser, B; Kamiscioglu, C; Karpenkov, D; Kershaw, K; Khabibullin, M; Khalikov, E; Khaustov, G; Khoriauli, G; Khotyantsev, A; Kim, YG; Kim, V; Kitagawa, N; Ko, JW; Kodama, K; Kolesnikov, A; Kolev, DI; Kolosov, V; Komatsu, M; Kono, A; Konovalova, N; Kormannshaus, S; Korol, I; Korol'ko, I; Korzenev, A; Kostyukhin, V; Platia, EK; Kovalenko, S; Krasilnikova, I; Kudenko, Y; Kurbatov, E; Kurbatov, P; Kurochka, V; Kuznetsova, E; Lacker, HM; Lamont, M; Lanfranchi, G; Lantwin, O; Lauria, A; Lee, KS; Lee, KY; Lévy, JM; Loschiavo, VP; Lopes, L; Sola, EL; Lyubovitskij, V; Maalmi, J; Magnan, A; Maleev, V; Malinin, A; Maltoni, F; Manabe, Y; Managadze, AK; Manfredi, M; Marsh, S; Marshall, AM; Mattelaer, O; Mefodev, A; Mermod, P; Miano, A; Mikado, S; Mikhaylov, Y; Milstead, DA; Mineev, O; Montanari, A; Montesi, MC; Morishima, K; Movchan, S; Muttoni, Y; Naganawa, N; Nakamura, M; Nakano, T; Nasybulin, S; Ninin, P; Nishio, A; Novikov, A; Obinyakov, B; Ogawa, S; Okateva, N; Opitz, B; Osborne, J; Ovchynnikov, M; Owtscharenko, N; Owen, PH; Pacholek, P; Paoloni, A; Park, BD; Pastore, A; Patel, M; Pereyma, D; Perillo-Marcone, A; Petkov, GL; Petridis, K; Petrov, A; Podgrudkov, D; Poliakov, V; Polukhina, N; Prieto, JP; Prokudin, M; Prota, A; Quercia, A; Rademakers, A; Rakai, A; Ratnikov, F; Rawlings, T; Redi, F; Ricciardi, S; Rinaldesi, M; Rodin, V; Rodin, V; Robbe, P; Cavalcante, ABR; Roganova, T; Rokujo, H; Rosa, G; Rovelli, T; Ruchayskiy, O; Ruf, T; Samoylenko, V; Samsonov, V; Galan, FS; Diaz, PS; Ull, AS; Saputi, A; Sato, O; Savchenko, ES; Schliwinski, JS; Schmidt-Parzefall, W; Serra, N; Sgobba, S; Shadura, O; Shakin, A; Shaposhnikov, M; Shatalov, P; Shchedrina, T; Shchutska, L; Shevchenko, V; Shibuya, H; Shirobokov, S; Shustov, A; Silverstein, SB; Simone, S; Simoniello, R; Skorokhvatov, M; Smirnov, S; Sohn, JY; Sokolenko, A; Solodko, E; Starkov, N; Stoel, L; Stramaglia, ME; Sukhonos, D; Suzuki, Y; Takahashi, S; Tastet, JL; Teterin, P; Naing, ST; Timiryasov, I; Tioukov, V; Tommasini, D; Torii, M; Tosi, N; Tramontano, F; Treille, D; Tsenov, R; Ulin, S; Ursov, E; Ustyuzhanin, A; Uteshev, Z; Uvarov, L; Vankova-Kirilova, G; Vannucci, F; Venturi, V; Vilchinski, S; Vincke, H; Vincke, H; Visone, C; Vlasik, K; Volkov, A; Voronkov, R; van Waasen, S; Wanke, R; Wertelaers, P; Williams, O; Woo, JK; Wurm, M; Xella, S; Yilmaz, D; Yilmazer, AU; Yoon, CS; Zaytsev, Y; Zelenov, A; Zimmerman, J

    JOURNAL OF HIGH ENERGY PHYSICS   2021 巻 ( 4 )   2021年4月

     詳細を見る

    出版者・発行元:Journal of High Energy Physics  

    Dark matter is a well-established theoretical addition to the Standard Model supported by many observations in modern astrophysics and cosmology. In this context, the existence of weakly interacting massive particles represents an appealing solution to the observed thermal relic in the Universe. Indeed, a large experimental campaign is ongoing for the detection of such particles in the sub-GeV mass range. Adopting the benchmark scenario for light dark matter particles produced in the decay of a dark photon, with αD = 0.1 and mA′ = 3mχ, we study the potential of the SHiP experiment to detect such elusive particles through its Scattering and Neutrino detector (SND). In its 5-years run, corresponding to 2 · 1020 protons on target from the CERN SPS, we find that SHiP will improve the current limits in the mass range for the dark matter from about 1 MeV to 300 MeV. In particular, we show that SHiP will probe the thermal target for Majorana candidates in most of this mass window and even reach the Pseudo-Dirac thermal relic. [Figure not available: see fulltext.]

    DOI: 10.1007/JHEP04(2021)199

    Web of Science

    Scopus

  22. First measurement using a nuclear emulsion detector of the <i>ν<sub>μ</sub></i> charged-current cross section on iron around the 1 GeV energy region

    Oshima, H; Matsuo, T; Ali, A; Aoki, S; Berns, L; Fukuda, T; Hanaoka, Y; Hayato, Y; Hiramoto, A; Ichikawa, AK; Kawahara, H; Kikawa, T; Komatani, R; Komatsu, M; Kuretsubo, K; Marushima, T; Matsumoto, H; Mikado, S; Minamino, A; Mizuno, K; Morimoto, Y; Morishima, K; Naganawa, N; Naiki, M; Nakamura, M; Nakamura, Y; Nakano, N; Nakano, T; Nakaya, T; Nishio, A; Odagawa, T; Ogawa, S; Rokujo, H; Sato, O; Shibuya, H; Sugimura, K; Suzui, L; Suzuki, Y; Takagi, H; Takahashi, S; Takao, T; Tanihara, Y; Watanabe, R; Yamada, K; Yasutome, K; Yokoyama, M

    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS   2021 巻 ( 3 )   2021年3月

     詳細を見る

    出版者・発行元:Progress of Theoretical and Experimental Physics  

    We have carried out νμ charged-current interaction measurement on iron using an emulsion detector exposed to the T2K neutrino beam in the J-PARC neutrino facility. The data samples correspond to 4.0 × 1019 protons on target, and the neutrino mean energy is 1.49 GeV. The emulsion detector is suitable for precision measurements of charged particles produced in neutrino-iron interactions with a low momentum threshold thanks to a thin-layered structure and sub-μm spatial resolution. The charged particles are successfully detected, and their multiplicities are measured using the emulsion detector. The cross section was measured to be σFeCC = (1.28 ± 0.11(stat.)+0.12-0.11(syst.)) × 10-38, cm2/nucleon. The cross section in a limited kinematic phase space of induced muons, θμ < 45° and pμ > 400 MeV/c, on iron was σFeCC phase space = (0.84 ± 0.07(stat.)+0.07-0.06(syst.)) × 10-38, cm2/nucleon. The cross-section results are consistent with previous values obtained via different techniques using the same beamline, and they are reproduced well by current neutrino interaction models. These results demonstrate the capability of the detector in the detailed measurement of neutrino-nucleus interactions around the 1 GeV energy region.

    DOI: 10.1093/ptep/ptab027

    Web of Science

    Scopus

  23. 原子核乾板における飛跡認識効率向上のための溶解物理現像法の開発 査読有り

    中野 昇, 六條 宏紀

    日本写真学会誌   84 巻 ( 3 ) 頁: 204 - 210   2021年

     詳細を見る

    記述言語:日本語   出版者・発行元:社団法人 日本写真学会  

    <p>原子核乾板中の現像銀粒子光学像の拡大化は,自動飛跡読取のさらなる高速化に向けた重要な改良方針の1つである.本研究は現像処理の変更による現像銀の拡大効果について調べた.溶解物理現像により得られる補力作用は,飛跡を構成する現像銀のサイズを拡大させる効果があることを示した.加えて,現像工程を化学現像,溶解物理現像の2つに分離した二浴現像法を開発し,原子核乾板の標準的な現像処理(OPERA現像)に比べてノイズ(fog)の増加を起こさず,1.7倍の現像銀サイズ拡大効果を得た.</p>

    DOI: 10.11454/photogrst.84.204

    CiNii Research

  24. First measurement of (ν)over-bar<sub>μ</sub> and ν<sub>μ</sub> charged-current inclusive interactions on water using a nuclear emulsion detector

    Hiramoto, A; Suzuki, Y; Ali, A; Aoki, S; Berns, L; Fukuda, T; Hanaoka, Y; Hayato, Y; Ichikawa, AK; Kawahara, H; Kikawa, T; Koga, T; Komatani, R; Komatsu, M; Kosakai, Y; Matsuo, T; Mikado, S; Minamino, A; Mizuno, K; Morimoto, Y; Morishima, K; Naganawa, N; Naiki, M; Nakamura, M; Nakamura, Y; Nakano, N; Nakano, T; Nakaya, T; Nishio, A; Odagawa, T; Ogawa, S; Oshima, H; Rokujo, H; Sanjana, I; Sato, O; Shibuya, H; Sugimura, K; Suzui, L; Takagi, H; Takao, T; Tanihara, Y; Yasutome, K; Yokoyama, M

    PHYSICAL REVIEW D   102 巻 ( 7 )   2020年10月

     詳細を見る

    出版者・発行元:Physical Review D  

    This paper reports the track multiplicity and kinematics of muons, charged pions, and protons from charged-current inclusive ν¯μ and νμ interactions on a water target, measured using a nuclear emulsion detector in the NINJA experiment. A 3-kg water target was exposed to the T2K antineutrino-enhanced beam corresponding to 7.1×1020 protons on target with a mean energy of 1.3 GeV. Owing to the high granularity of the nuclear emulsion, protons with momenta down to 200 MeV/c from the neutrino-water interactions were detected. We find good agreement between the observed data and model predictions for all kinematic distributions other than the number of charged pions and the muon kinematics shapes. These results demonstrate the capability of measurements with nuclear emulsion to improve neutrino interaction models.

    DOI: 10.1103/PhysRevD.102.072006

    Web of Science

    Scopus

  25. First observation of a tau neutrino charged current interaction with charm production in the OPERA experiment OPERA Collaboration

    Agafonova, N; Aleksandrov, A; Anokhina, A; Aoki, S; Ariga, A; Ariga, T; Bertolin, A; Bozza, C; Brugnera, R; Buonaura, A; Buontempo, S; Chernyavskiy, M; Chukanov, A; Consiglio, L; D'Ambrosio, N; De Lellis, G; De Serio, M; Sanchez, PD; Di Crescenzo, A; Di Ferdinando, D; Di Marco, N; Dmitrievski, S; Dracos, M; Duchesneau, D; Dusini, S; Dzhatdoev, T; Ebert, J; Ereditato, A; Fini, RA; Fornari, F; Fukuda, T; Galati, G; Garfagnini, A; Gentile, V; Goldberg, J; Gorbunov, S; Gornushkin, Y; Grella, G; Guler, AM; Gustavino, C; Hagner, C; Hara, T; Hayakawa, T; Hollnagel, A; Ishiguro, K; Iuliano, A; Jakovcic, K; Jollet, C; Kamiscioglu, C; Kamiscioglu, M; Kim, SH; Kitagawa, N; Klicek, B; Kodama, K; Komatsu, M; Kose, U; Kreslo, I; Laudisio, F; Lauria, A; Longhin, A; Loverre, P; Malgin, A; Malenica, M; Mandrioli, G; Matsuo, T; Matveev, V; Mauri, N; Medinaceli, E; Meregaglia, A; Mikado, S; Miyanishi, M; Mizutani, F; Monacelli, P; Montesi, MC; Morishima, K; Muciaccia, MT; Naganawa, N; Naka, T; Nakamura, M; Nakano, T; Niwa, K; Okateva, N; Ogawa, S; Ozaki, K; Paoloni, A; Paparella, L; Park, BD; Pasqualini, L; Pastore, A; Patrizii, L; Pessard, H; Podgrudkov, D; Polukhina, N; Pozzato, M; Pupilli, F; Roda, M; Roganova, T; Rokujo, H; Rosa, G; Ryazhskaya, O; Sato, O; Schembri, A; Shakirianova, I; Shchedrina, T; Shibuya, H; Shibayama, E; Shiraishi, T; Simone, S; Sirignano, C; Sirri, G; Sotnikov, A; Spinetti, M; Stanco, L; Starkov, N; Stellacci, SM; Stipcevic, M; Strolin, P; Takahashi, S; Tenti, M; Terranova, F; Tioukov, V; Vasina, S; Vilain, P; Voevodina, E; Votano, L; Vuilleumier, JL; Wilquet, G; Yoon, CS

    EUROPEAN PHYSICAL JOURNAL C   80 巻 ( 8 )   2020年8月

     詳細を見る

    出版者・発行元:European Physical Journal C  

    An event topology with two secondary vertices compatible with the decay of short-lived particles was found in the analysis of neutrino interactions in the OPERA target. The observed topology is compatible with tau neutrino charged current (CC) interactions with charm production and neutrino neutral current (NC) interactions with cc¯ pair production. However, other processes can mimic this topology. A dedicated analysis was implemented to identify the underlying process. A Monte Carlo simulation was developed and complementary procedures were introduced in the kinematic reconstruction. A multivariate analysis technique was used to achieve an optimal separation of signal from background. Most likely, this event is a ντ CC interaction with charm production, the tau and charm particle decaying into 1 prong and 2 prongs, respectively. The significance of this observation is evaluated.

    DOI: 10.1140/epjc/s10052-020-8160-y

    Web of Science

    Scopus

  26. Measurement of the muon flux from 400 GeV/c protons interacting in a thick molybdenum/tungsten target

    Ahdida, C; Akmete, A; Albanese, R; Alexandrov, A; Anokhina, A; Aoki, S; Arduini, G; Atkin, E; Azorskiy, N; Back, JJ; Bagulya, A; Dos Santos, FB; Baranov, A; Bardou, F; Barker, GJ; Battistin, M; Bauche, J; Bay, A; Bayliss, V; Bencivenni, G; Berdnikov, AY; Berdnikov, YA; Bertani, M; Betancourt, C; Bezshyiko, I; Bezshyyko, O; Bick, D; Bieschke, S; Blanco, A; Boehm, J; Bogomilov, M; Boiarska, I; Bondarenko, K; Bonivento, WM; Borburgh, J; Boyarsky, A; Brenner, R; Breton, D; Buscher, V; Buonaura, A; Buontempo, S; Cadeddu, S; Calcaterra, A; Calviani, M; Campanelli, M; Casolino, M; Charitonidis, N; Chau, P; Chauveau, J; Chepurnov, A; Chernyavskiy, M; Choi, KY; Chumakov, A; Ciambrone, P; Cicero, V; Congedo, L; Cornelis, K; Cristinziani, M; Crupano, A; Dallavalle, GM; Datwyler, A; D'Ambrosio, N; D'Appollonio, G; de Asmundis, R; Saraiva, JD; De Lellis, G; de Magistris, M; De Roeck, A; De Serio, M; De Simone, D; Dedenko, L; Dergachev, P; Di Crescenzo, A; Di Giulio, L; Di Marco, N; Dib, C; Dijkstra, H; Dmitrenko, V; Dmitrievskiy, S; Dougherty, LA; Dolmatov, A; Domenici, D; Donskov, S; Drohan, V; Dubreuil, A; Durhan, O; Ehlert, M; Elikkaya, E; Enik, T; Etenko, A; Fabbri, F; Fedin, O; Fedotovs, F; Felici, G; Ferrillo, M; Ferro-Luzzi, M; Filippov, K; Fini, RA; Fonte, P; Franco, C; Fraser, M; Fresa, R; Froeschl, R; Fukuda, T; Galati, G; Gall, J; Gatignon, L; Gavrilov, G; Gentile, V; Goddard, B; Golinka-Bezshyyko, L; Golovatiuk, A; Golubkov, D; Golutvin, A; Gorbounov, P; Gorbunov, D; Gorbunov, S; Gorkavenko, V; Gorshenkov, M; Grachev, V; Grandchamp, AL; Graverini, E; Grenard, JL; Grenier, D; Grichine, V; Gruzinskii, N; Guler, AM; Guz, Y; Haefeli, GJ; Hagner, C; Hakobyan, H; Harris, IW; van Herwijnen, E; Hessler, C; Hollnagel, A; Hosseini, B; Hushchyn, M; Iaselli, G; Iuliano, A; Jacobsson, R; Jokovic, D; Jonker, M; Kadenko, I; Kain, V; Kaiser, B; Kamiscioglu, C; Karpenkov, D; Kershaw, K; Khabibullin, M; Khalikov, E; Khaustov, G; Khoriauli, G; Khotyantsev, A; Kim, YG; Kim, V; Kitagawa, N; Ko, JW; Kodama, K; Kolesnikov, A; Kolev, DI; Kolosov, V; Komatsu, M; Kono, A; Konovalova, N; Kormannshaus, S; Korol, I; Korol'ko, I; Korzenev, A; Kostyukhin, V; Platia, EK; Kovalenko, S; Krasilnikova, I; Kudenko, Y; Kurbatov, E; Kurbatov, P; Kurochka, V; Kuznetsova, E; Lacker, HM; Lamont, M; Lanfranchi, G; Lantwin, O; Lauria, A; Lee, KS; Lee, KY; Lévy, JM; Loschiavo, VP; Lopes, L; Sola, EL; Lyubovitskij, V; Maalmi, J; Magnan, A; Maleev, V; Malinin, A; Manabe, Y; Managadze, AK; Manfredi, M; Marsh, S; Marshall, AM; Mefodev, A; Mermod, P; Miano, A; Mikado, S; Mikhaylov, Y; Milstead, DA; Mineev, O; Montanari, A; Montesi, MC; Morishima, K; Movchan, S; Muttoni, Y; Naganawa, N; Nakamura, M; Nakano, T; Nasybulin, S; Ninin, P; Nishio, A; Novikov, A; Obinyakov, B; Ogawa, S; Okateva, N; Opitz, B; Osborne, J; Ovchynnikov, M; Owtscharenko, N; Owen, PH; Pacholek, P; Paoloni, A; Park, BD; Pastore, A; Patel, M; Pereyma, D; Perillo-Marcone, A; Petkov, GL; Petridis, K; Petrov, A; Podgrudkov, D; Poliakov, V; Polukhina, N; Prieto, JP; Prokudin, M; Prota, A; Quercia, A; Rademakers, A; Rakai, A; Ratnikov, F; Rawlings, T; Redi, F; Ricciardi, S; Rinaldesi, M; Rodin, V; Rodin, V; Robbe, P; Cavalcante, ABR; Roganova, T; Rokujo, H; Rosa, G; Rovelli, T; Ruchayskiy, O; Ruf, T; Samoylenko, V; Samsonov, V; Galan, FS; Diaz, PS; Ull, AS; Saputi, A; Sato, O; Savchenko, ES; Schliwinski, JS; Schmidt-Parzefall, W; Serra, N; Sgobba, S; Shadura, O; Shakin, A; Shaposhnikov, M; Shatalov, P; Shchedrina, T; Shchutska, L; Shevchenko, V; Shibuya, H; Shihora, L; Shirobokov, S; Shustov, A; Silverstein, SB; Simone, S; Simoniello, R; Skorokhvatov, M; Smirnov, S; Sohn, JY; Sokolenko, A; Solodko, E; Starkov, N; Stoel, L; Stramaglia, ME; Sukhonos, D; Suzuki, Y; Takahashi, S; Tastet, JL; Teterin, P; Naing, ST; Timiryasov, I; Tioukov, V; Tommasini, D; Torii, M; Tosi, N; Treille, D; Tsenov, R; Ulin, S; Ursov, E; Ustyuzhanin, A; Uteshev, Z; Vankova-Kirilova, G; Vannucci, F; Venturi, V; Vilchinski, S; Vincke, H; Vincke, H; Visone, C; Vlasik, K; Volkov, A; Voronkov, R; van Waasen, S; Wanke, R; Wertelaers, P; Williams, O; Woo, JK; Wurm, M; Xella, S; Yilmaz, D; Yilmazer, AU; Yoon, CS; Zaytsev, Y; Zimmerman, J

    EUROPEAN PHYSICAL JOURNAL C   80 巻 ( 3 )   2020年3月

     詳細を見る

    出版者・発行元:European Physical Journal C  

    The SHiP experiment is proposed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/c proton beam dump at the CERN SPS. About 10 11 muons per spill will be produced in the dump. To design the experiment such that the muon-induced background is minimized, a precise knowledge of the muon spectrum is required. To validate the muon flux generated by our Pythia and GEANT4 based Monte Carlo simulation (FairShip), we have measured the muon flux emanating from a SHiP-like target at the SPS. This target, consisting of 13 interaction lengths of slabs of molybdenum and tungsten, followed by a 2.4 m iron hadron absorber was placed in the H4 400 GeV/c proton beam line. To identify muons and to measure the momentum spectrum, a spectrometer instrumented with drift tubes and a muon tagger were used. During a 3-week period a dataset for analysis corresponding to (3.27±0.07)×1011 protons on target was recorded. This amounts to approximatively 1% of a SHiP spill.

    DOI: 10.1140/epjc/s10052-020-7788-y

    Web of Science

    Scopus

  27. The magnet of the scattering and neutrino detector for the SHiP experiment at CERN

    Ahdida, C; Albanese, R; Alexandrov, A; Anokhina, A; Aoki, S; Arduini, G; Atkin, E; Azorskiy, N; Back, JJ; Bagulya, A; Dos Santos, FB; Baranov, A; Bardou, F; Barker, GJ; Battistin, M; Bauche, J; Bay, A; Bayliss, V; Bencivenni, G; Berdnikov, AY; Berdnikov, YA; Berezkina, I; Bertani, M; Betancourt, C; Bezshyiko, I; Bezshyyko, O; Bick, D; Bieschke, S; Blanco, A; Boehm, J; Bogomilov, M; Bondarenko, K; Bonivento, WM; Borburgh, J; Boyarsky, A; Brenner, R; Breton, D; Brundler, R; Bruschi, M; Büscher, V; Buonaura, A; Buontempo, S; Cadeddu, S; Calcaterra, A; Calviani, M; Campanelli, M; Casolino, M; Charitonidis, N; Chau, P; Chauveau, J; Chepurnov, A; Chernyavskiy, M; Choi, KY; Chumakov, A; Ciambrone, P; Congedo, L; Cornelis, K; Cristinziani, M; Crupano, A; Dallavalle, GM; Datwyler, A; D'Ambrosio, N; D'Appollonio, G; Saraiva, JD; De Lellis, G; de Magistris, M; De Roeck, A; De Serio, M; De Simone, D; Dedenko, L; Dergachev, P; Di Crescenzo, A; Dib, C; Dijkstra, H; Dipinto, P; Dmitrenko, V; Dmitrievskiy, S; Dougherty, LA; Dolmatov, A; Domenici, D; Donskov, S; Drohan, V; Dubreuil, A; Ehlert, M; Enik, T; Etenko, A; Fabbri, F; Fabbri, L; Fabich, A; Fedin, O; Fedotovs, F; Felici, G; Ferro-Luzzi, M; Filippov, K; Fini, RA; Fonte, P; Franco, C; Fraser, M; Fresa, R; Froeschl, R; Fukuda, T; Galati, G; Gall, J; Gatignon, L; Gavrilov, G; Gentile, V; Gerlach, S; Goddard, B; Golinka-Bezshyyko, L; Golovatiuk, A; Golubkov, D; Golutvin, A; Gorbounov, P; Gorbunov, D; Gorbunov, S; Gorkavenko, V; Gornushkin, Y; Gorshenkov, M; Grachev, V; Grandchamp, AL; Granich, G; Graverini, E; Grenard, JL; Grenier, D; Grichine, V; Gruzinskii, N; Guler, AM; Guz, Y; Haefeli, GJ; Hagner, C; Hakobyan, H; Harris, IW; Van Herwijnen, E; Hessler, C; Hollnagel, A; Hosseini, B; Hushchyn, M; Iaselli, G; Iuliano, A; Ivantchenko, V; Jacobsson, R; Jokovic, D; Jonker, M; Kadenko, I; Kain, V; Kaiser, B; Kamiscioglu, C; Kershaw, K; Khabibullin, M; Khalikov, E; Khaustov, G; Khoriauli, G; Khotyantsev, A; Kim, SH; Kim, YG; Kim, V; Kitagawa, N; Ko, JW; Kodama, K; Kolesnikov, A; Kolev, DI; Kolosov, V; Komatsu, M; Kondrateva, N; Kono, A; Konovalova, N; Kormannshaus, S; Korol, I; Korol'ko, I; Korzenev, A; Kostyukhin, V; Platia, EK; Kovalenko, S; Krasilnikova, I; Kudenko, Y; Kurbatov, E; Kurbatov, P; Kurochka, V; Kuznetsova, E; Lacker, HM; Lamont, M; Lanfranchi, G; Lantwin, O; Lauria, A; Lee, KS; Lee, KY; Lévy, JM; Loschiavo, VP; Lopes, L; Sola, EL; Lyubovitskij, V; Maalmi, J; Magnan, A; Maleev, V; Malinin, A; Manabe, Y; Managadze, AK; Manfredi, M; Marsh, S; Marshall, AM; Mefodev, A; Mermod, P; Miano, A; Mikado, S; Mikhaylov, Y; Milstead, DA; Mineev, O; Minutolo, V; Montanari, A; Montesi, MC; Morishima, K; Movchan, S; Muttoni, Y; Naganawa, N; Nakamura, M; Nakano, T; Nasybulin, S; Ninin, P; Nishio, A; Novikov, A; Obinyakov, B; Ogawa, S; Okateva, N; Opitz, B; Osborne, J; Ovchynnikov, M; Owtscharenko, N; Owen, PH; Pacholek, P; Paoloni, A; Park, BD; Park, SK; Passeggio, G; Pastore, A; Patel, M; Pereyma, D; Perillo-Marcone, A; Petkov, GL; Petridis, K; Petrov, A; Podgrudkov, D; Poliakov, V; Polukhina, N; Prieto, JP; Prokudin, M; Prota, A; Quercia, A; Rademakers, A; Rakai, A; Ratnikov, F; Rawlings, T; Redi, F; Ricciardi, S; Rinaldesi, M; Rodin, V; Rodin, V; Robbe, P; Cavalcante, ABR; Roganova, T; Rokujo, H; Rosa, G; Rovelli, T; Ruchayskiy, O; Ruf, T; Samoylenko, V; Samsonov, V; Galan, FS; Diaz, PS; Sanz, A; Saputi, A; Sato, O; Savchenko, ES; Schliwinski, JS; Schmidt-Parzefall, W; Serra, N; Sgobba, S; Shadura, O; Shakin, A; Shaposhnikov, M; Shatalov, P; Shchedrina, T; Shchutska, L; Shevchenko, V; Shibuya, H; Shihora, L; Shirobokov, S; Shustov, A; Silverstein, SB; Simone, S; Simoniello, R; Skorokhvatov, M; Smirnov, S; Sohn, JY; Sokolenko, A; Solodko, E; Starkov, N; Stoel, L; Storaci, B; Stramaglia, ME; Sukhonos, D; Suzuki, Y; Takahashi, S; Tastet, JL; Teterin, P; Naing, ST; Timiryasov, I; Tioukov, V; Tommasini, D; Torii, M; Tosi, N; Treille, D; Tsenov, R; Ulin, S; Ustyuzhanin, A; Uteshev, Z; Vankova-Kirilova, G; Vannucci, F; Venkova, P; Venturi, V; Vilchinski, S; Villa, M; Vincke, H; Vincke, H; Visone, C; Vlasik, K; Volkov, A; Voronkov, R; van Waasen, S; Wanke, R; Wertelaers, P; Woo, JK; Wurm, M; Xella, S; Yilmaz, D; Yilmazer, AU; Yoon, CS; Zarubin, P; Zarubina, I; Zaytsev, Y

    JOURNAL OF INSTRUMENTATION   15 巻 ( 1 )   2020年1月

     詳細を見る

    出版者・発行元:Journal of Instrumentation  

    The Search for Hidden Particles (SHiP) experiment proposal at CERN demands a dedicated dipole magnet for its scattering and neutrino detector. This requires a very large volume to be uniformly magnetized at B > 1.2 T, with constraints regarding the inner instrumented volume as well as the external region, where no massive structures are allowed and only an extremely low stray field is admitted. In this paper we report the main technical challenges and the relevant design options providing a comprehensive design for the magnet of the SHiP Scattering and Neutrino Detector.

    DOI: 10.1088/1748-0221/15/01/P01027

    Web of Science

    Scopus

  28. DsTau: study of tau neutrino production with 400 GeV protons from the CERN-SPS 査読有り

    Aoki, S; Ariga, A; Ariga, T; Dmitrievsky, S; Firu, E; Forshaw, D; Fukuda, T; Gornushkin, Y; Guler, AM; Haiduc, M; Kodama, K; Komatsu, M; Korkmaz, MA; Kose, U; Miloi, M; Miucci, A; Miyanishi, M; Nakamura, M; Nakano, T; Neagu, A; Rokujo, H; Sato, O; Sitnikova, E; Suzuki, Y; Takao, T; Vasina, S; Vladymyrov, M; Weston, T; Yoshidaj, J; Yoshimoto, M

    JOURNAL OF HIGH ENERGY PHYSICS   2020 巻 ( 1 )   2020年1月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Journal of High Energy Physics  

    In the DsTau experiment at the CERN SPS (NA65), an independent and direct way to measure tau neutrino production following high energy proton interactions was proposed. As the main source of tau neutrinos is a decay of Ds mesons, produced in proton-nucleus interactions, the project aims at measuring a differential cross section of this reaction. The experimental method is based on a use of high resolution emulsion detectors for effective registration of events with short lived particle decays. Here we present the motivation of the study, details of the experimental technique, and the first results of the analysis of the data collected during test runs, which prove feasibility of the full scale study of the process in future. [Figure not available: see fulltext.].

    DOI: 10.1007/JHEP01(2020)033

    Web of Science

    Scopus

    researchmap

  29. Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks

    Ahdida, C; Albanese, R; Alexandrov, A; Anokhina, A; Aoki, S; Arduini, G; Atkin, E; Azorskiy, N; Back, JJ; Bagulya, A; Dos Santos, FB; Baranov, A; Bardou, F; Barker, GJ; Battistin, M; Bauche, J; Bay, A; Bayliss, ; Bencivenni, G; Berdnikov, AY; Berdnikov, YA; Berezkina, ; Bertani, M; Betancourt, C; Bezshyiko, ; Bezshyyko, O; Bick, D; Bieschke, S; Blanco, A; Boehm, J; Bogomilov, M; Bondarenko, K; Bonivento, WM; Borburgh, J; Boyarsky, A; Brenner, R; Breton, D; Brundler, R; Bruschi, M; Bscher, ; Buonaura, A; Buontempo, S; Cadeddu, S; Calcaterra, A; Calviani, M; Campanelli, M; Casolino, M; Charitonidis, N; Chau, P; Chauveau, J; Chepurnov, A; Chernyavskiy, M; Choi, KY; Chumakov, A; Ciambrone, P; Congedo, L; Cornelis, K; Cristinziani, M; Crupano, A; Dallavalle, GM; Datwyler, A; D'Ambrosio, N; D'Appollonio, G; Saraiva, JD; De Lellis, G; de Magistris, M; De Roeck, A; De Serio, M; De Simone, D; Dedenko, L; Dergachev, P; Di Crescenzo, A; Di Marco, N; Dib, C; Dijkstra, H; Dipinto, P; Dmitrenko, ; Dmitrievskiy, S; Dougherty, LA; Dolmatov, A; Domenici, D; Donskov, S; Drohan, ; Dubreuil, A; Ehlert, M; Enik, T; Etenko, A; Fabbri, F; Fabbri, L; Fabich, A; Fedin, O; Fedotovs, F; Felici, G; Ferro-Luzzi, M; Filippov, K; Fini, RA; Fonte, P; Franco, C; Fraser, M; Fresa, R; Froeschl, R; Fukuda, T; Galati, G; Gall, J; Gatignon, L; Gavrilov, G; Gentile, ; Gerlach, S; Goddard, B; Golinka-Bezshyyko, L; Golovatiuk, A; Golubkov, D; Golutvin, A; Gorbounov, P; Gorbunov, D; Gorbunov, S; Gorkavenko, ; Gornushkin, Y; Gorshenkov, M; Grachev, ; Grandchamp, AL; Granich, G; Graverini, E; Grenard, JL; Grenier, D; Grichine, ; Gruzinskii, N; Guler, AM; Guz, Y; Haefeli, GJ; Hagner, C; Hakobyan, H; Harris, IW; van Herwijnen, E; Hessler, C; Hollnagel, A; Hosseini, B; Hushchyn, M; Iaselli, G; Iuliano, A; Ivantchenko, ; Jacobsson, R; Jokovic, D; Jonker, M; Kadenko, ; Kain, ; Kaiser, B; Kamiscioglu, C; Kershaw, K; Khabibullin, M; Khalikov, E; Khaustov, G; Khoriauli, G; Khotyantsev, A; Kim, SH; Kim, YG; Kim, ; Kitagawa, N; Ko, JW; Kodama, K; Kolesnikov, A; Kolev, D; Kolosov, ; Komatsu, M; Kondrateva, N; Kono, A; Konovalova, N; Kormannshaus, S; Korol, ; Korol'ko, ; Korzenev, A; Kostyukhin, ; Platia, EK; Kovalenko, S; Krasilnikova, ; Kudenko, Y; Kurbatov, E; Kurbatov, P; Kurochka, ; Kuznetsova, E; Lacker, HM; Lamont, M; Lanfranchi, G; Lantwin, O; Lauria, A; Lee, KS; Lee, KY; Lévy, JM; Loschiavo, VP; Lopes, L; Sola, EL; Lyubovitskij, ; Maalmi, J; Magnan, A; Maleev, ; Malinin, A; Manabe, Y; Managadze, AK; Manfredi, M; Marsh, S; Marshall, AM; Mefodev, A; Mermod, P; Miano, A; Mikado, S; Mikhaylov, Y; Milstead, DA; Mineev, O; Montanari, A; Montesi, MC; Morishima, K; Movchan, S; Muttoni, Y; Naganawa, N; Nakamura, M; Nakano, T; Nasybulin, S; Ninin, P; Nishio, A; Novikov, A; Obinyakov, B; Ogawa, S; Okateva, N; Opitz, B; Osborne, J; Ovchynnikov, M; Owtscharenko, N; Owen, PH; Pacholek, P; Paoloni, A; Park, BD; Park, SK; Pastore, A; Patel, M; Pereyma, D; Perillo-Marcone, A; Petkov, GL; Petridis, K; Petrov, A; Podgrudkov, D; Poliakov, ; Polukhina, N; Prieto, JP; Prokudin, M; Prota, A; Quercia, A; Rademakers, A; Rakai, A; Ratnikov, F; Rawlings, T; Redi, F; Ricciardi, S; Rinaldesi, M; Rodin, V; Rodin, V; Robbe, P; Cavalcante, ABR; Roganova, T; Rokujo, H; Rosa, G; Rovelli, T; Ruchayskiy, O; Ruf, T; Samoylenko, ; Samsonov, ; Galan, FS; Diaz, PS; Ull, AS; Saputi, A; Sato, O; Savchenko, ES; Schliwinski, JS; Schmidt-Parzefall, W; Serra, N; Sgobba, S; Shadura, O; Shakin, A; Shaposhnikov, M; Shatalov, P; Shchedrina, T; Shchutska, L; Shevchenko, ; Shibuya, H; Shihora, L; Shirobokov, S; Shustov, A; Silverstein, SB; Simone, S; Simoniello, R; Skorokhvatov, M; Smirnov, S; Sohn, JY; Sokolenko, A; Solodko, E; Starkov, N; Stoel, L; Storaci, B; Stramaglia, ME; Sukhonos, D; Suzuki, Y; Takahashi, S; Tastet, JL; Teterin, P; Naing, ST; Timiryasov, ; Tioukov, ; Tommasini, D; Torii, M; Tosi, N; Treille, D; Tsenov, R; Ulin, S; Ustyuzhanin, A; Uteshev, Z; Vankova-Kirilova, G; Vannucci, F; Venkova, P; Venturi, V; Vilchinski, S; Villa, M; Vincke, H; Vincke, H; Visone, C; Vlasik, K; Volkov, A; Voronkov, R; van Waasen, S; Wanke, R; Wertelaers, P; Woo, JK; Wurm, M; Xella, S; Yilmaz, D; Yilmazer, AU; Yoon, CS; Zarubin, P; Zarubina, ; Zaytsev, Y

    JOURNAL OF INSTRUMENTATION   14 巻 ( 11 )   2019年11月

     詳細を見る

    出版者・発行元:Journal of Instrumentation  

    This paper presents a fast approach to simulating muons produced in interactions of the SPS proton beams with the target of the SHiP experiment. The SHiP experiment will be able to search for new long-lived particles produced in a 400 GeV/c SPS proton beam dump and which travel distances between fifty metres and tens of kilometers. The SHiP detector needs to operate under ultra-low background conditions and requires large simulated samples of muon induced background processes. Through the use of Generative Adversarial Networks it is possible to emulate the simulation of the interaction of 400 GeV/c proton beams with the SHiP target, an otherwise computationally intensive process. For the simulation requirements of the SHiP experiment, generative networks are capable of approximating the full simulation of the dense fixed target, offering a speed increase by a factor of (106). To evaluate the performance of such an approach, comparisons of the distributions of reconstructed muon momenta in SHiP's spectrometer between samples using the full simulation and samples produced through generative models are presented. The methods discussed in this paper can be generalised and applied to modelling any non-discrete multi-dimensional distribution.

    DOI: 10.1088/1748-0221/14/11/P11028

    Web of Science

    Scopus

  30. Measurement of the cosmic ray muon flux seasonal variation with the OPERA detector

    Agafonova, N; Alexandrov, A; Anokhina, A; Aoki, S; Ariga, A; Ariga, T; Bertolin, A; Bozza, C; Brugnera, R; Buonaura, A; Buontempo, S; Chernyavskiy, M; Chukanov, A; Consiglio, L; D'Ambrosio, N; De Lellis, G; De Serio, M; Sanchez, PD; Di Crescenzo, A; Di Ferdinando, D; Di Marco, N; Dmitrievsky, S; Dracos, M; Duchesneau, D; Dusini, S; Dzhatdoev, T; Ebert, J; Ereditato, A; Fini, RA; Fornari, F; Fukuda, T; Galati, G; Garfagnini, A; Gentile, V; Goldberg, J; Gorbunov, S; Gornushkin, Y; Grella, G; Guler, AM; Gustavino, C; Hagner, C; Hara, T; Hayakawa, T; Hollnagel, A; Ishiguro, K; Iuliano, A; Jakovcic, K; Jollet, C; Kamiscioglu, C; Kamiscioglu, M; Kim, SH; Kitagawa, N; Klicek, B; Kodama, K; Komatsu, M; Kose, U; Kreslo, I; Laudisio, F; Lauria, A; Ljubicic, A; Longhin, A; Loverre, P; Malgin, A; Mandrioli, G; Matsuo, T; Matveev, V; Mauri, N; Medinaceli, E; Meregaglia, A; Mikado, S; Miyanishi, M; Mizutani, F; Monacelli, P; Montesi, MC; Morishima, K; Muciaccia, MT; Naganawa, N; Naka, T; Nakamura, M; Nakano, T; Niwa, K; Ogawa, S; Okateva, N; Ozaki, K; Paoloni, A; Paparella, L; Park, BD; Pasqualini, L; Pastore, A; Patrizii, L; Pessard, H; Podgrudkov, D; Polukhina, N; Pozzato, M; Pupilli, F; Roda, M; Roganova, T; Rokujo, H; Rosa, G; Ryazhskaya, O; Sato, O; Schembri, A; Shakiryanova, I; Shchedrina, T; Shibayama, E; Shibuya, H; Shiraishi, T; Simone, S; Sirignano, C; Sirri, G; Sotnikov, A; Spinetti, M; Stanco, L; Starkov, N; Stellacci, SM; Stipcevic, M; Strolin, P; Takahashi, S; Tenti, M; Terranova, F; Tioukov, V; Vasina, S; Vilain, P; Voevodina, E; Votano, L; Vuilleumier, JL; Wilquet, G; Yoon, CS

    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS   2019 巻 ( 10 )   2019年10月

     詳細を見る

    出版者・発行元:Journal of Cosmology and Astroparticle Physics  

    The OPERA experiment discovered muon neutrino into tau neutrino oscillations in appearance mode, detecting tau leptons by means of nuclear emulsion films. The apparatus was also endowed with electronic detectors with tracking capability, such as scintillator strips and resistive plate chambers. Because of its location in the underground Gran Sasso laboratory, under 3800 m.w.e., the OPERA detector has also been used as an observatory for TeV muons produced by cosmic rays in the atmosphere. In this paper the measurement of the single muon flux modulation and its correlation with the seasonal cycle of atmospheric temperature is reported.

    DOI: 10.1088/1475-7516/2019/10/003

    Web of Science

    Scopus

  31. Final results on neutrino oscillation parameters from the OPERA experiment in the CNGS beam

    Agafonova, N; Alexandrov, A; Anokhina, A; Aoki, S; Ariga, A; Ariga, T; Bertolin, A; Bozza, C; Brugnera, R; Buontempo, S; Chernyavskiy, M; Chukanov, A; Consiglio, L; D'Ambrosio, N; De Lellis, G; De Serio, M; Sanchez, PD; Di Crescenzo, A; Di Ferdinando, D; Di Marco, N; Dmitrievsky, S; Dracos, M; Duchesneau, D; Dusini, S; Dzhatdoev, T; Ebert, J; Ereditato, A; Fini, RA; Fukuda, T; Galati, G; Garfagnini, A; Gentile, V; Goldberg, J; Gorbunov, S; Gornushkin, Y; Grella, G; Guler, AM; Gustavino, C; Hagner, C; Hara, T; Hayakawa, T; Hollnagel, A; Ishiguro, K; Iuliano, A; Jakovcic, K; Jollet, C; Kamiscioglu, C; Kamiscioglu, M; Kim, SH; Kitagawa, N; Klicek, B; Kodama, K; Komatsu, M; Kose, U; Kreslo, I; Laudisio, F; Lauria, A; Longhin, A; Loverre, P; Malgin, A; Mandrioli, G; Matsuo, T; Matveev, V; Mauri, N; Medinaceli, E; Meregaglia, A; Mikado, S; Miyanishi, M; Mizutani, F; Monacelli, P; Montesi, MC; Morishima, K; Muciaccia, MT; Naganawa, N; Naka, T; Nakamura, M; Nakano, T; Niwa, K; Ogawa, S; Okateva, N; Ozaki, K; Paoloni, A; Paparella, L; Park, BD; Pasqualini, L; Pastore, A; Patrizii, L; Pessard, H; Podgrudkov, D; Polukhina, N; Pozzato, M; Pupilli, F; Roda, M; Roganova, T; Rokujo, H; Rosa, G; Ryazhskaya, O; Sato, O; Schembri, A; Shakiryanova, I; Shchedrina, T; Shibayama, E; Shibuya, H; Shiraishi, T; Simone, S; Sirignano, C; Sirri, G; Sotnikov, A; Spinetti, M; Stanco, L; Starkov, N; Stellacci, SM; Stipcevic, M; Strolin, P; Takahashi, S; Tenti, M; Terranova, F; Tioukov, V; Tufanli, S; Vasina, S; Vilain, P; Voevodina, E; Votano, L; Vuilleumier, JL; Wilquet, G; Yoon, CS

    PHYSICAL REVIEW D   100 巻 ( 5 )   2019年9月

     詳細を見る

    出版者・発行元:Physical Review D  

    The OPERA experiment has conclusively observed the appearance of tau neutrinos in the muon neutrino CNGS beam. Exploiting the OPERA detector capabilities, it was possible to isolate high purity samples of νe, νμ and ντ charged current weak neutrino interactions, as well as neutral current weak interactions. In this paper, the full dataset is used for the first time to test the three-flavor neutrino oscillation model and to derive constraints on the existence of a light sterile neutrino within the framework of the 3+1 neutrino model. For the first time, tau and electron neutrino appearance channels are jointly used to test the sterile neutrino hypothesis. A significant fraction of the sterile neutrino parameter space allowed by LSND and MiniBooNE experiments is excluded at 90% C.L. In particular, the best-fit values obtained by MiniBooNE combining neutrino and antineutrino data are excluded at 3.3σ significance.

    DOI: 10.1103/PhysRevD.100.051301

    Web of Science

    Scopus

  32. Development of a balloon-style pressure vessel gondola for balloon-borne emulsion gamma-ray telescopes 査読有り

    Rokujo, H; Komiyama, M; Aoki, S; Hamada, K; Hara, T; Iyono, A; Kawahara, H; Kodama, K; Komatani, R; Komatsu, M; Kuretsubo, K; Marushima, T; Matsuda, S; Matsumoto, H; Miyanishi, M; Mizutani, F; Morishima, K; Morishita, M; Naganawa, N; Nakamura, M; Nakamura, T; Nakamura, Y; Nakano, T; Nishio, A; Niwa, K; Okada, S; Otsuka, N; Ozaki, K; Sato, O; Shibayama, E; Suzuki, A; Takahashi, S; Tateishi, Y; Torii, M; Yabu, M; Yamada, K; Yamamoto, S; Yoshimoto, M

    JOURNAL OF INSTRUMENTATION   14 巻 ( 9 )   2019年9月

     詳細を見る

    出版者・発行元:Journal of Instrumentation  

    A gamma-ray telescope using nuclear emulsions allows observations of stellar objects in the 0.01-100 GeV energy region with high angular resolution, polarization sensitivity, and large aperture area. The Gamma-Ray Astro-Imager with Nuclear Emulsion (GRAINE) project is designed to enable high-precision observation of cosmic gamma rays through the use of balloon-borne emulsion telescopes. We have developed a balloon-style pressure vessel gondola for the GRAINE 2018 balloon-borne experiment. It enables us to maintain robust and vacuum-packed emulsion chambers even at balloon altitudes. The greater part of the vessel is made of membrane materials consisting of ultra-thin polyurethane-coated polyester fabric. It is lightweight and portable, and can be used to expand the mounting area of the detector, unlike mostly metal vessels. Moreover, the absorption of signal gamma rays and background gamma-ray production due to interactions between cosmic rays and the vessel can be minimized. The pressure vessel gondola, equipped with a 0.38-m2 emulsion telescope and other equipment, was launched on April 26, 2018. During the whole observation (17 h 21 m), the internal pressure was kept above 230 hPa. The GRAINE project will start scientific observation using enlarged telescopes and the pressure vessel gondola is planned to include an expansion of the mounting area of the detector to ∼10 m2 while following the design on the GRAINE 2018 model.

    DOI: 10.1088/1748-0221/14/09/P09009

    Web of Science

    Scopus

    researchmap

  33. Sensitivity of the SHiP experiment to Heavy Neutral Leptons

    Ahdida, C; Albanese, R; Alexandrov, A; Anokhina, A; Aoki, S; Arduini, G; Atkin, E; Azorskiy, N; Dos Santos, FB; Back, JJ; Bagulya, A; Baranov, A; Bardou, F; Barker, GJ; Battistin, M; Bauche, J; Bay, A; Bayliss, V; Bencivenni, G; Berdnikov, YA; Berdnikov, AY; Berezkina, I; Bertani, M; Betancourt, C; Bezshyiko, I; Bezshyyko, O; Bick, D; Bieschke, S; Blanco, A; Boehm, J; Bogomilov, M; Bondarenko, K; Bonivento, WM; Borburgh, J; Boyarsky, A; Brenner, R; Breton, D; Brundler, R; Bruschi, M; Büscher, V; Buonaura, A; Buontempo, S; Cadeddu, S; Calcaterra, A; Calviani, M; Campanelli, M; Casolino, M; Charitonidis, N; Chau, P; Chauveau, J; Chepurnov, A; Chernyavskiy, M; Choi, KY; Chumakov, A; Ciambrone, P; Cornelis, K; Cristinziani, M; Crupano, A; Dallavalle, M; Datwyler, A; D'Ambrosio, N; D'Appollonio, G; Dedenko, L; Dergachev, P; Saraiva, JD; De Lellis, G; De Magistris, M; De Roeck, A; De Serio, M; De Simone, D; Dib, C; Dijkstra, H; Dipinto, P; Di Crescenzo, A; Di Marco, N; Dmitrenko, V; Dmitrievskiy, S; Dolmatov, A; Domenici, D; Donskov, S; Dougherty, LA; Drohan, V; Dubreuil, A; Ebert, J; Enik, T; Etenko, A; Fabbri, F; Fabbri, L; Fabich, A; Fedin, O; Fedotovs, F; Ferro-Luzzi, M; Felici, G; Filippov, K; Fini, RA; Fonte, P; Franco, C; Fraser, M; Fresa, R; Froeschl, R; Fukuda, T; Galati, G; Gall, J; Gatignon, L; Gavrilov, G; Gentile, V; Goddard, B; Golinka-Bezshyyko, L; Golovatiuk, A; Golubkov, D; Golutvin, A; Gorbounov, P; Gorbunov, S; Gorbunov, D; Gorkavenko, V; Gornushkin, Y; Gorshenkov, M; Grachev, V; Grandchamp, AL; Granich, G; Graverini, E; Grenard, JL; Grenier, D; Grichine, V; Gruzinskii, N; Guz, Y; Haefeli, GJ; Hagner, C; Hakobyan, H; Harris, IW; Hessler, C; Hollnagel, A; Hosseini, B; Hushchyn, M; Iaselli, G; Iuliano, A; Ivantchenko, V; Jacobsson, R; Jokovic, D; Jonker, M; Kadenko, I; Kain, V; Kamiscioglu, C; Kershaw, K; Khabibullin, M; Khalikov, E; Khaustov, G; Khoriauli, G; Khotyantsev, A; Kim, YG; Kim, V; Kim, SH; Kitagawa, N; Ko, JW; Kodama, K; Kolesnikov, A; Kolev, DI; Kolosov, V; Komatsu, M; Kondrateva, N; Kono, A; Konovalova, N; Kormannshaus, S; Korol, I; Korol'ko, I; Korzenev, A; Kostyukhin, V; Platia, EK; Kovalenko, S; Krasilnikova, I; Kudenko, Y; Kurbatov, E; Kurbatov, P; Kurochka, V; Kuznetsova, E; Lacker, HM; Lamont, M; Lanfranchi, G; Lantwin, O; Lauria, A; Lee, KS; Lee, KY; Lèvy, JM; Lopes, L; Sola, EL; Loschiavo, VP; Lyubovitskij, V; Guler, AM; Maalmi, J; Magnan, A; Maleev, V; Malinin, A; Manabe, Y; Managadze, AK; Manfredi, M; Marsh, S; Marshall, AM; Mefodev, A; Mermod, P; Miano, A; Mikado, S; Mikhaylov, Y; Milstead, DA; Mineev, O; Montanari, A; Montesi, MC; Morishima, K; Movchan, S; Muttoni, Y; Naganawa, N; Nakamura, M; Nakano, T; Nasybulin, S; Ninin, P; Nishio, A; Novikov, A; Obinyakov, B; Ogawa, S; Okateva, N; Opitz, B; Osborne, J; Ovchynnikov, M; Owen, PH; Owtscharenko, N; Pacholek, P; Paoloni, A; Paparella, R; Park, BD; Park, SK; Pastore, A; Patel, M; Pereyma, D; Perillo-Marcone, A; Petkov, GL; Petridis, K; Petrov, A; Podgrudkov, D; Poliakov, V; Polukhina, N; Prieto, JP; Prokudin, M; Prota, A; Quercia, A; Rademakers, A; Rakai, A; Ratnikov, F; Rawlings, T; Redi, F; Ricciardi, S; Rinaldesi, M; Robbe, P; Rodin, V; Rodin, V; Cavalcante, ABR; Roganova, T; Rokujo, H; Rosa, G; Rovelli, T; Ruchayskiy, O; Ruf, T; Samoylenko, V; Samsonov, V; Galan, FS; Diaz, PS; Ull, AS; Saputi, A; Sato, O; Savchenko, ES; Schmidt-Parzefall, W; Serra, N; Sgobba, S; Shadura, O; Shakin, A; Shaposhnikov, M; Shatalov, P; Shchedrina, T; Shchutska, L; Shevchenko, V; Shibuya, H; Shirobokov, S; Shustov, A; Silverstein, SB; Simone, S; Simoniello, R; Skorokhvatov, M; Smirnov, S; Sohn, JY; Sokolenko, A; Solodko, E; Starkov, N; Stoel, L; Storaci, B; Stramaglia, ME; Sukhonos, D; Suzuki, Y; Takahashi, S; Tastet, JL; Teterin, P; Naing, ST; Timiryasov, I; Tioukov, V; Tommasini, D; Torii, M; Tosi, N; Treille, D; Tsenov, R; Ulin, S; Ustyuzhanin, A; Uteshev, Z; Vankova-Kirilova, G; Vannucci, F; van Herwijnen, E; van Waasen, S; Venkova, P; Venturi, V; Vilchinski, S; Villa, M; Vincke, H; Vincke, H; Visone, C; Vlasik, K; Volkov, A; Voronkov, R; Wanke, R; Wertelaers, P; Woo, JK; Wurm, M; Xella, S; Yilmaz, D; Yilmazer, AU; Yoon, CS; Zarubin, P; Zarubina, I; Zaytsev, Y

    JOURNAL OF HIGH ENERGY PHYSICS   2019 巻 ( 4 )   2019年4月

     詳細を見る

    出版者・発行元:Journal of High Energy Physics  

    Heavy Neutral Leptons (HNLs) are hypothetical particles predicted by many extensions of the Standard Model. These particles can, among other things, explain the origin of neutrino masses, generate the observed matter-antimatter asymmetry in the Universe and provide a dark matter candidate. The SHiP experiment will be able to search for HNLs produced in decays of heavy mesons and travelling distances ranging between O(50 m) and tens of kilometers before decaying. We present the sensitivity of the SHiP experiment to a number of HNL’s benchmark models and provide a way to calculate the SHiP’s sensitivity to HNLs for arbitrary patterns of flavour mixings. The corresponding tools and data files are also made publicly available.[Figure not available: see fulltext.].

    DOI: 10.1007/JHEP04(2019)077

    Web of Science

    Scopus

  34. The experimental facility for the Search for Hidden Particles at the CERN SPS

    Ahdida, C; Albanese, R; Alexandrov, A; Anokhina, A; Aoki, S; Arduini, G; Atkin, E; Azorskiy, N; Back, JJ; Bagulya, A; Dos Santos, FB; Baranov, A; Bardou, F; Barker, GJ; Battistin, M; Bauche, J; Bay, A; Bayliss, V; Bencivenni, G; Berdnikov, AY; Berdnikov, YA; Berezkina, I; Bertani, M; Betancourt, C; Bezshyiko, I; Bezshyyko, O; Bick, D; Bieschke, S; Blanco, A; Boehm, J; Bogomilov, M; Bondarenko, K; Bonivento, WM; Borburgh, J; Boyarsky, A; Brenner, R; Breton, D; Brundler, R; Bruschi, M; Buscher, V; Buonaura, A; Buontempo, S; Cadeddu, S; Calcaterra, A; Calviani, M; Campanelli, M; Casolino, M; Charitonidis, N; Chau, P; Chauveau, J; Chepurnov, A; Chernyavskiy, M; Choi, KY; Chumakov, A; Ciambrone, P; Cornelis, K; Cristinziani, M; Crupano, A; Dallavalle, GM; Datwyler, A; D'Ambrosio, N; D'Appollonio, G; Saraiva, JD; De Lellis, G; de Magistris, M; De Roeck, A; De Serio, M; De Simone, D; Dedenko, L; Dergachev, P; Di Crescenzo, A; Di Marco, N; Dib, C; Dijkstra, H; Dipinto, P; Dmitrenko, V; Dmitrievskiy, S; Dougherty, LA; Dolmatov, A; Domenici, D; Donskov, S; Drohan, V; Dubreuil, A; Ebert, J; Enik, T; Etenko, A; Fabbri, F; Fabbri, L; Fabich, A; Fedin, O; Fedotovs, F; Felici, G; Ferro-Luzzi, M; Filippov, K; Fini, RA; Fonte, P; Franco, C; Fraser, M; Fresa, R; Froeschl, R; Fukuda, T; Galati, G; Gall, J; Gatignon, L; Gavrilov, G; Gentile, V; Goddard, B; Golinka-Bezshyyko, L; Golovatiuk, A; Golubkov, D; Golutvin, A; Gorbounov, P; Gorbunov, D; Gorbunov, S; Gorkavenko, V; Gornushkin, Y; Gorshenkov, M; Grachev, V; Grandchamp, AL; Granich, G; Graverini, E; Grenard, JL; Grenier, D; Grichine, V; Gruzinskii, N; Guler, AM; Guz, Y; Haefeli, GJ; Hagner, C; Hakobyan, H; Harris, IW; van Herwijnen, E; Hessler, C; Hollnagel, A; Hosseini, B; Hushchyn, M; Iaselli, G; Iuliano, A; Ivantchenko, V; Jacobsson, R; Jokovic, D; Jonker, M; Kadenko, I; Kain, V; Kamiscioglu, C; Kershaw, K; Khabibullin, M; Khalikov, E; Khaustov, G; Khoriauli, G; Khotyantsev, A; Kim, SH; Kim, YG; Kim, V; Kitagawa, N; Ko, JW; Kodama, K; Kolesnikov, A; Kolev, DI; Kolosov, V; Komatsu, M; Kondrateva, N; Kono, A; Konovalova, N; Kormannshaus, S; Korol, I; Korol'ko, I; Korzenev, A; Kostyukhin, V; Platia, EK; Kovalenko, S; Krasilnikova, I; Kudenko, Y; Kurbatov, E; Kurbatov, P; Kurochka, V; Kuznetsova, E; Lacker, HM; Lamont, M; Lanfranchi, G; Lantwin, O; Lauria, A; Lee, KS; Lee, KY; Lévy, JM; Loschiavo, VP; Lopes, L; Sola, EL; Lyubovitskij, V; Maalmi, J; Magnan, A; Maleev, V; Malinin, A; Manabe, Y; Managadze, AK; Manfredi, M; Marsh, S; Marshall, AM; Mefodev, A; Mermod, P; Miano, A; Mikado, S; Mikhaylov, Y; Milstead, DA; Mineev, O; Montanari, A; Montesi, MC; Morishima, K; Movchan, S; Muttoni, Y; Naganawa, N; Nakamura, M; Nakano, T; Nasybulin, S; Ninin, P; Nishio, A; Novikov, A; Obinyakov, B; Ogawa, S; Okateva, N; Opitz, B; Osborne, J; Ovchynnikov, M; Owtscharenko, N; Owen, PH; Pacholek, P; Paoloni, A; Paparella, R; Park, BD; Park, SK; Pastore, A; Patel, M; Pereyma, D; Perillo-Marcone, A; Petkov, GL; Petridis, K; Petrov, A; Podgrudkov, D; Poliakov, V; Polukhina, N; Prieto, JP; Prokudin, M; Prota, A; Quercia, A; Rademakers, A; Rakai, A; Ratnikov, F; Rawlings, T; Redi, F; Ricciardi, S; Rinaldesi, M; Rodin, V; Rodin, V; Robbe, P; Cavalcante, ABR; Roganova, T; Rokujo, H; Rosa, G; Rovelli, T; Ruchayskiy, O; Ruf, T; Samoylenko, V; Samsonov, V; Galan, FS; Diaz, PS; Ull, AS; Saputi, A; Sato, O; Savchenko, ES; Schmidt-Parzefall, W; Serra, N; Sgobba, S; Shadura, O; Shakin, A; Shaposhnikov, M; Shatalov, P; Shchedrina, T; Shchutska, L; Shevchenko, V; Shibuya, H; Shirobokov, S; Shustov, A; Silverstein, SB; Simone, S; Simoniello, R; Skorokhvatov, M; Smirnov, S; Sohn, JY; Sokolenko, A; Solodko, E; Starkov, N; Stoel, L; Storaci, B; Stramaglia, ME; Sukhonos, D; Suzuki, Y; Takahashi, S; Tastet, JL; Teterin, P; Naing, ST; Timiryasov, I; Tioukov, V; Tommasini, D; Torii, M; Tosi, N; Treille, D; Tsenov, R; Ulin, S; Ustyuzhanin, A; Uteshev, Z; Vankova-Kirilova, G; Vannucci, F; Venkova, P; Venturi, V; Vilchinski, S; Villa, M; Vincke, H; Vincke, H; Visone, C; Vlasik, K; Volkov, A; Voronkov, R; van Waasen, S; Wanke, R; Wertelaers, P; Woo, JK; Wurm, M; Xella, S; Yilmaz, D; Yilmazer, AU; Yoon, CS; Zarubin, P; Zarubina, I; Zaytsev, Y

    JOURNAL OF INSTRUMENTATION   14 巻 ( 3 )   2019年3月

     詳細を見る

    出版者・発行元:Journal of Instrumentation  

    The Search for Hidden Particles (SHiP) Collaboration has shown that the CERN SPS accelerator with its 400 GeV/c proton beam offers a unique opportunity to explore the Hidden Sector [1-3]. The proposed experiment is an intensity frontier experiment which is capable of searching for hidden particles through both visible decays and through scattering signatures from recoil of electrons or nuclei. The high-intensity experimental facility developed by the SHiP Collaboration is based on a number of key features and developments which provide the possibility of probing a large part of the parameter space for a wide range of models with light long-lived super-weakly interacting particles with masses up to (10) GeV/c2 in an environment of extremely clean background conditions. This paper describes the proposal for the experimental facility together with the most important feasibility studies. The paper focuses on the challenging new ideas behind the beam extraction and beam delivery, the proton beam dump, and the suppression of beam-induced background.

    DOI: 10.1088/1748-0221/14/03/P03025

    Web of Science

    Scopus

  35. 原子核乾板技術の進化と展開~デジカメ時代を生き抜くアナログフィルム

    福田 努, 中野 敏行, 六條 宏紀, 佐藤 修

    放射線化学   第107 号 巻   頁: 35 - 48   2019年

     詳細を見る

  36. Latest results of the OPERA experiment on nu-tau appearance in the CNGS neutrino beam

    Agafonova N., Alexandrov A., Anokhina A., Aoki S., Ariga A., Ariga T., Bertolin A., Bozza C., Brugnera R., Buonaura A., Buontempo S., Chernyavskiy M., Chukanov A., Consiglio L., D'Ambrosio N., De Lellis G., De Serio M., del Amo Sanchez P., Di Crescenzo A., Di Ferdinando D., Di Marco N., Dmitrievsky S., Dracos M., Duchesneau D., Dusini S., Dzhatdoev T., Ebert J., Ereditato A., Favier J., Fini R.A., Fornari F., Fukuda T., Galati G., Garfagnini A., Gentile V., Goldberg J., Gorbunov S., Gornushkin Y., Grella G., Guler A.M., Gustavino C., Hagner C., Hara T., Hayakawa T., Hollnagel A., Ishiguro K., Iuliano A., Jakovcic K., Jollet C., Kamiscioglu C., Kamiscioglu M., Kim S.H., Kitagawa N., Klicek B., Kodama K., Komatsu M., Kose U., Kreslo I., Laudisio F., Lauria A., Longhin A., Loverre P., Malenica M., Malgin A., Mandrioli G., Matsuo T., Matveev V., Mauri N., Medinaceli E., Meregaglia A., Mikado S., Miyanishi M., Mizutani F., Monacelli P., Montesi M.C., Morishima K., Muciaccia M.T., Naganawa N., Naka T., Nakamura M., Nakano T., Niwa K., Ogawa S., Olchevsky A., Okateva N., Ozaki K., Paoloni A., Paparella L., Park B.D., Pasqualini L., Pastore A., Patrizii L., Pessard H., Pistillo C., Podgrudkov D., Polukhina N., Pozzato M., Pupilli F., Roda M., Roganova T.

    Physical Review Letters   ( 1 )   2019年

     詳細を見る

    出版者・発行元:Physical Review Letters  

    OPERA is a long-baseline experiment designed to search for νμ → ντ oscillations in appearance mode. It was based at the INFN Gran Sasso laboratory (LNGS) and took data from 2008 to 2012 with the CNGS neutrino beam from CERN. After the discovery of ντ appearance in 2015, with 5.1σ significance, the criteria to select ντ candidates have been extended and a multivariate approach has been used for events identification. In this way the statistical uncertainty in the measurement of the oscillation parameters and of ντ properties has been improved. Results are reported.

    DOI: 10.21468/SciPostPhysProc.1.028

    Scopus

  37. Gamma-ray imaging performance of nuclear emulsion telescope in GRAINE-2018 balloon experiment

    Rokujo H., Komiyama M., Nakamura Y., Yamamoto S.

    Proceedings of Science   358 巻   2019年

     詳細を見る

    担当区分:筆頭著者, 責任著者   記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:Proceedings of Science  

    Since 2008, the Large Area Telescope onboard the Fermi Gamma-ray Space Tele- scope (Fermi-LAT) has surveyed the sub-GeV/GeV gamma-ray sky and achieved high statistics measurements. However, observation at low galactic latitudes remains difficult owing to the lack of the angular resolution, and new issues following the operation of Fermi-LAT have arisen. We devised a precise gamma-ray observation project, Gamma-Ray Astro-Imager with Nuclear Emulsion (GRAINE), using balloon-borne emulsion gamma-ray telescopes to realize high angular resolution, polarization-sensitive, and large-aperture observations in the 0.01-100 GeV energy region. On April 26, 2018, the 3rd balloon experiment of the GRAINE project was conducted in Alice Springs, Australia, to detect celestial gamma-ray sources and to demonstrate the overall performance of the middle-sized emulsion telescope (aperture area of 0.4 m2). The balloon floated at the altitude of 36-38 km for 15 h, and the telescope observed the target object, Vela pulsar, for 6 h. Following the recovery and the photofinishing, the data acquisition by the emulsion scanning system were completed, and then the flight data analysis has been performed using reconstructed gamma-ray events. In this presentation, the in-flight performance focusing on the converter part of the emulsion telescope employed in the GRAINE 2018 balloon experiment is reported.

    Scopus

    researchmap

  38. GRAINE project: precise gamma-ray observations with balloon-borne emulsion telescope

    Rokujo, H

    XX INTERNATIONAL SYMPOSIUM ON VERY HIGH ENERGY COSMIC RAY INTERACTIONS (ISVHECRI 2018)   208 巻   2019年

  39. Study of charged hadron multiplicities in charged-current neutrino-lead interactions in the OPERA detector (vol 78, 62, 2018)

    Agafonova, N; Aleksandrov, A; Anokhina, A; Aoki, S; Ariga, A; Ariga, T; Bertolin, A; Bodnarchuk, I; Bozza, C; Brugnera, R; Buonaura, A; Buontempo, S; Chernyavskiy, M; Chukanov, A; Consiglio, L; D'Ambrosio, N; De Lellis, G; De Serio, M; Sanchez, PD; Di Crescenzo, A; Di Ferdinando, D; Di Marco, N; Dmitrievski, S; Dracos, M; Duchesneau, D; Dusini, S; Dzhatdoev, T; Ebert, J; Ereditato, A; Fini, RA; Fornari, F; Fukuda, T; Galati, G; Garfagnini, A; Gentile, V; Goldberg, J; Gornushkin, Y; Gorbunov, S; Grella, G; Guler, AM; Gustavino, C; Hagner, C; Hara, T; Hayakawa, T; Hollnagel, A; Hosseini, B; Ishiguro, K; Jakovcic, K; Jollet, C; Kamiscioglu, C; Kamiscioglu, M; Kim, SH; Kitagawa, N; Klicek, B; Kodama, K; Komatsu, M; Kose, U; Kreslo, I; Laudisio, F; Lauria, A; Ljubicic, A; Longhin, A; Loverre, P; Malgin, A; Malenica, M; Mandrioli, G; Matsuo, T; Matveev, V; Mauri, N; Medinaceli, E; Meregaglia, A; Mikado, S; Miyanishi, M; Mizutani, F; Monacelli, P; Montesi, MC; Morishima, K; Muciaccia, MT; Naganawa, N; Naka, T; Nakamura, M; Nakano, T; Niwa, K; Okateva, N; Ogawa, S; Ozaki, K; Paoloni, A; Paparella, L; Park, BD; Pasqualini, L; Pastore, A; Patrizii, L; Pessard, H; Podgrudkov, D; Polukhina, N; Pozzato, M; Pupilli, F; Roda, M; Roganova, T; Rokujo, H; Rosa, G; Ryazhskaya, O; Sato, O; Schembri, A; Shakirianova, I; Shchedrina, T; Shibuya, H; Shibayama, E; Shiraishi, T; Simone, S; Sirignano, C; Sirri, G; Sotnikov, A; Spinetti, M; Stanco, L; Starkov, N; Stellacci, SM; Stipcevic, M; Strolin, P; Takahashi, S; Tenti, M; Terranova, F; Tioukov, V; Vasina, S; Vilain, P; Voevodina, E; Votano, L; Vuilleumier, JL; Wilquet, G; Wonsak, B; Yoon, CS

    EUROPEAN PHYSICAL JOURNAL C   78 巻 ( 9 )   2018年9月

     詳細を見る

    出版者・発行元:European Physical Journal C  

    Section Analysis, line 9: sub-sample of 818 events becomes sub-sample of 817 events.

    DOI: 10.1140/epjc/s10052-018-6223-0

    Web of Science

    Scopus

  40. Final results of the search for <i>v</i><sub>μ</sub> → <i>v</i><sub>e</sub> oscillations with the OPERA detector in the CNGS beam

    Agafonova, N; Aleksandrov, A; Anokhina, A; Aoki, S; Ariga, A; Ariga, T; Bertolin, A; Bozza, C; Brugnera, R; Buonaura, A; Buontempo, S; Chernyavskiy, M; Chukanov, A; Consiglio, L; D'Ambrosio, N; De Lellis, G; De Serio, M; Sanchez, PD; Di Crescenzo, A; Di Ferdinando, D; Di Marco, N; Dmitrievsky, S; Dracos, M; Duchesneau, D; Dusini, S; Dzhatdoev, T; Ebert, J; Ereditato, A; Favier, J; Fini, RA; Fornari, F; Fukuda, T; Galati, G; Garfagnini, A; Gentile, V; Goldberg, J; Gornushkin, Y; Gorbunov, S; Grella, G; Guler, AM; Gustavino, C; Hagner, C; Hara, T; Hayakawa, T; Hollnagel, A; Hosseini, B; Ishiguro, K; Iuliano, A; Jakovcic, K; Jollet, C; Kamiscioglu, C; Kamiscioglu, M; Kim, SH; Kitagawa, N; Klicek, B; Kodama, K; Komatsu, M; Kose, U; Kreslo, I; Laudisio, F; Lauria, A; Ljubicic, A; Longhin, A; Loverre, P; Malgin, A; Malenica, M; Mandrioli, G; Matsuo, T; Matveev, V; Mauri, N; Medinaceli, E; Meisel, F; Meregaglia, A; Mikado, S; Miyanishi, M; Mizutani, F; Monacelli, P; Montesi, MC; Morishima, K; Muciaccia, MT; Naganawa, N; Naka, T; Nakamura, M; Nakano, T; Niwa, K; Okateva, N; Ogawa, S; Ozaki, K; Paoloni, A; Paparella, L; Park, BD; Pasqualini, L; Pastore, A; Patrizii, L; Pessard, H; Podgrudkov, D; Polukhina, N; Pozzato, M; Pupilli, F; Roda, M; Roganova, T; Rokujo, H; Rosa, G; Ryazhskaya, O; Sato, O; Schembri, A; Shakiryanova, I; Shchedrina, T; Shibuya, H; Shibayama, E; Shiraishi, T; Simone, S; Sirignano, C; Sirri, G; Sotnikov, A; Spinetti, M; Stanco, L; Starkov, N; Stellacci, SM; Stipcevic, M; Strolin, P; Takahashi, S; Tenti, M; Terranova, F; Tioukov, V; Vasina, S; Vilain, P; Voevodina, E; Votano, L; Vuilleumier, JL; Wilquet, G; Yoon, CS

    JOURNAL OF HIGH ENERGY PHYSICS   2018 巻 ( 6 )   2018年6月

     詳細を見る

    出版者・発行元:Journal of High Energy Physics  

    The OPERA experiment has discovered the tau neutrino appearance in the CNGS muon neutrino beam, in agreement with the 3 neutrino flavour oscillation hypothesis. The OPERA neutrino interaction target, made of Emulsion Cloud Chambers, was particularly efficient in the reconstruction of electromagnetic showers. Moreover, thanks to the very high granularity of the emulsion films, showers induced by electrons can be distinguished from those induced by π0s, thus allowing the detection of charged current interactions of electron neutrinos. In this paper the results of the search for electron neutrino events using the full dataset are reported. An improved method for the electron neutrino energy estimation is exploited. Data are compatible with the 3 neutrino flavour mixing model expectations and are used to set limits on the oscillation parameters of the 3+1 neutrino mixing model, in which an additional mass eigenstate m4 is introduced. At high Δm412 (≳0.1 eV2), an upper limit on sin2 2θμe is set to 0.021 at 90% C.L. and Δm412 ≳ 4 × 10− 3 eV2 is excluded for maximal mixing in appearance mode.[Figure not available: see fulltext.].

    DOI: 10.1007/JHEP06(2018)151

    Web of Science

    Scopus

  41. First demonstration of gamma-ray imaging using a balloon-borne emulsion telescope 査読有り

    Rokujo, H; Aoki, S; Hamada, K; Hara, T; Inoue, T; Ishiguro, K; Iyono, A; Kawahara, H; Kodama, K; Komatani, R; Komatsu, M; Kosaka, T; Miyanishi, M; Mizutani, F; Morishima, K; Morishita, M; Naganawa, N; Nakamura, M; Nakano, T; Nishio, A; Niwa, K; Otsuka, N; Ozaki, K; Sato, O; Shibayama, E; Suzuki, A; Takahashi, S; Tanaka, R; Tateishi, Y; Tawa, S; Yabu, M; Yamada, K; Yamamoto, S; Yoshimoto, M

    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS   2018 巻 ( 6 )   2018年6月

     詳細を見る

    担当区分:筆頭著者, 責任著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Progress of Theoretical and Experimental Physics  

    We describe the precise gamma-ray observation project Gamma-RayAstro-Imager with Nuclear Emulsion (GRAINE), which uses balloon-borne emulsion gamma-ray telescopes. The emulsion telescope realizes observations with high angular resolution, polarization sensitivity, and large aperture area in the 0.01-100 GeV energy region. We report on the data analysis of emulsion tracks and the first demonstration of gamma-ray imaging via an emulsion telescope by using the flight data from the balloon experiment performed in 2015 (GRAINE 2015). The emulsion films were scanned by the latest read-out system for a total area of 41m2 in three months, and then the gamma-ray event selection was automatically processed. Millions of electronpair events are accumulated in the balloon-borne emulsion telescope. The emulsion telescope detected signals from a calibration source (gamma rays from the interaction of cosmic rays with an aluminum plate) with a high significance during the balloon observation and created a gammaray image consistent with the source size and the expected angular resolution in the energy range of 100-300MeV. The flight performance obtained in the GRAINE 2015 experiment proves that balloon-borne emulsion telescope experiments with larger area are feasible while maintaining the expected imaging performance.

    DOI: 10.1093/ptep/pty056

    Web of Science

    Scopus

    researchmap

  42. Final Results of the OPERA Experiment on ν<sub>τ </sub>Appearance In the CNGS Neutrino Beam

    Agafonova, N; Alexandrov, A; Anokhina, A; Aoki, S; Ariga, A; Ariga, T; Bertolin, A; Bozza, C; Brugnera, R; Buonaura, A; Buontempo, S; Chernyavskiy, M; Chukanov, A; Consiglio, L; D'Ambrosio, N; De Lellis, G; De Serio, M; Sanchez, PD; Di Crescenzo, A; Di Ferdinando, D; Di Marco, N; Dmitrievsky, S; Dracos, M; Duchesneau, D; Dusini, S; Dzhatdoev, T; Ebert, J; Ereditato, A; Favier, J; Fini, RA; Fornari, F; Fukuda, T; Galati, G; Garfagnini, A; Gentile, V; Goldberg, J; Gorbunov, S; Gornushkin, Y; Grella, G; Guler, AM; Gustavino, C; Hagner, C; Hara, T; Hayakawa, T; Hollnagel, A; Ishiguro, K; Iuliano, A; Jakovcic, K; Jollet, C; Kamiscioglu, C; Kamiscioglu, M; Kim, SH; Kitagawa, N; Klicek, B; Kodama, K; Komatsu, M; Kose, U; Kreslo, I; Laudisio, F; Lauria, A; Ljubicic, A; Longhin, A; Loverre, P; Malenica, M; Malgin, A; Mandrioli, G; Matsuo, T; Matveev, V; Mauri, N; Medinaceli, E; Meregaglia, A; Mikado, S; Miyanishi, M; Mizutani, F; Monacelli, P; Montesi, MC; Morishima, K; Muciaccia, MT; Naganawa, N; Naka, T; Nakamura, M; Nakano, T; Niwa, K; Ogawa, S; Okateva, N; Olchevsky, A; Ozaki, K; Paoloni, A; Paparella, L; Park, BD; Pasqualini, L; Pastore, A; Patrizii, L; Pessard, H; Pistillo, C; Podgrudkov, D; Polukhina, N; Pozzato, M; Pupilli, F; Roda, M; Roganova, T; Rokujo, H; Rosa, G; Ryazhskaya, O; Sadovsky, A; Sato, O; Schembri, A; Shakiryanova, I; Shchedrina, T; Shibayama, E; Shibuya, H; Shiraishi, T; Simone, S; Sirignano, C; Sirri, G; Sotnikov, A; Spinetti, M; Stanco, L; Starkov, N; Stellacci, SM; Stipcevic, M; Strolin, P; Takahashi, S; Tenti, M; Terranova, F; Tioukov, V; Tufanli, S; Ustyuzhanin, A; Vasina, S; Vilain, P; Voevodina, E; Votano, L; Vuilleumier, JL; Wilquet, G; Wonsak, B; Yoon, CS

    PHYSICAL REVIEW LETTERS   120 巻 ( 21 ) 頁: 211801   2018年5月

     詳細を見る

    記述言語:英語   出版者・発行元:Physical Review Letters  

    The OPERA experiment was designed to study νμ→ντ oscillations in the appearance mode in the CERN to Gran Sasso Neutrino beam (CNGS). In this Letter, we report the final analysis of the full data sample collected between 2008 and 2012, corresponding to 17.97×1019 protons on target. Selection criteria looser than in previous analyses have produced ten ντ candidate events, thus reducing the statistical uncertainty in the measurement of the oscillation parameters and of ντ properties. A multivariate approach for event identification has been applied to the candidate events and the discovery of ντ appearance is confirmed with an improved significance level of 6.1σ. |Δm322| has been measured, in appearance mode, with an accuracy of 20%. The measurement of the ντ charged-current cross section, for the first time with a negligible contamination from ντ, and the first direct evidence for the ντ lepton number are also reported.

    DOI: 10.1103/PhysRevLett.120.211801

    Web of Science

    Scopus

    PubMed

  43. Study of charged hadron multiplicities in charged-current neutrino-lead interactions in the OPERA detector 査読有り

    Agafonova, N; Aleksandrov, A; Anokhina, A; Aoki, S; Ariga, A; Ariga, T; Bertolin, A; Bodnarchuk, I; Bozza, C; Brugnera, R; Buonaura, A; Buontempo, S; Chernyavskiy, M; Chukanov, A; Consiglio, L; D'Ambrosio, N; De Lellis, G; De Serio, M; Sanchez, PD; Di Crescenzo, A; Di Ferdinando, D; Di Marco, N; Dmitrievski, S; Dracos, M; Duchesneau, D; Dusini, S; Dzhatdoev, T; Ebert, J; Ereditato, A; Fini, RA; Fornari, F; Fukuda, T; Galati, G; Garfagnini, A; Gentile, V; Goldberg, J; Gornushkin, Y; Gorbunov, S; Grella, G; Guler, AM; Gustavino, C; Hagner, C; Hara, T; Hayakawa, T; Hollnagel, A; Hosseini, B; Ishiguro, K; Jakovcic, K; Jollet, C; Kamiscioglu, C; Kamiscioglu, M; Kim, SH; Kitagawa, N; Klicek, B; Kodama, K; Komatsu, M; Kose, U; Kreslo, I; Laudisio, F; Lauria, A; Ljubicic, A; Longhin, A; Loverre, P; Malgin, A; Malenica, M; Mandrioli, G; Matsuo, T; Matveev, V; Mauri, N; Medinaceli, E; Meregaglia, A; Mikado, S; Miyanishi, M; Mizutani, F; Monacelli, P; Montesi, MC; Morishima, K; Muciaccia, MT; Naganawa, N; Naka, T; Nakamura, M; Nakano, T; Niwa, K; Okateva, N; Ogawa, S; Ozaki, K; Paoloni, A; Paparella, L; Park, BD; Pasqualini, L; Pastore, A; Patrizii, L; Pessard, H; Podgrudkov, D; Polukhina, N; Pozzato, M; Pupilli, F; Roda, M; Roganova, T; Rokujo, H; Rosa, G; Ryazhskaya, O; Sato, O; Schembri, A; Shakirianova, I; Shchedrina, T; Shibuya, H; Shibayama, E; Shiraishi, T; Simone, S; Sirignano, C; Sirri, G; Sotnikov, A; Spinetti, M; Stanco, L; Starkov, N; Stellacci, SM; Stipcevic, M; Strolin, P; Takahashi, S; Tenti, M; Terranova, F; Tioukov, V; Vasina, S; Vilain, P; Voevodina, E; Votano, L; Vuilleumier, JL; Wilquet, G; Wonsak, B; Yoon, CS

    EUROPEAN PHYSICAL JOURNAL C   78 巻 ( 1 ) 頁: P05011   2018年1月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:European Physical Journal C  

    The OPERA experiment was designed to search for νμ→ ντ oscillations in appearance mode through the direct observation of tau neutrinos in the CNGS neutrino beam. In this paper, we report a study of the multiplicity of charged particles produced in charged-current neutrino interactions in lead. We present charged hadron average multiplicities, their dispersion and investigate the KNO scaling in different kinematical regions. The results are presented in detail in the form of tables that can be used in the validation of Monte Carlo generators of neutrino–lead interactions.

    DOI: 10.1140/epjc/s10052-017-5509-y

    Web of Science

    Scopus

    researchmap

  44. GRAINE Project: Analysis Status of Balloon Experiment in 2015

    MIZUTANI Fukashi, AOKI Shigeki, HAMADA Kaname, HARA Toshio, IYONO Atsushi, KAWAHARA Hiroaki, KODAMA Koichi, KOMATANI Ryosuke, KOMATSU Masahiro, KURETSUBO Kenji, MARUSHIMA Toshitsugu, MATSUMOTO Haruka, MIYANISHI Motoaki, MORISHIMA Kunihiro, MORISHITA Misaki, NAGANAWA Naotaka, NAKAMURA Mitsuhiro, NAKANO Toshiyuki, NISHIO Akira, NIWA Kimio, OTSUKA Naoto, OZAKI Keita, ROKUJO Hiroki, SATO Osamu, SHIBAYAMA Emi, SUZUKI Atsumu, TAKAHASHI Satoru, TATEISHI Yurie, YABU Misato, YAMADA Kyohei, YAMAMOTO Saya, YOSHIMOTO Masahiro

    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN   16 巻 ( 6 ) 頁: 464 - 469   2018年

     詳細を見る

    記述言語:英語   出版者・発行元:THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES  

    <p>Cosmic gamma-ray observation provides much information on high energy objects and phenomena in space. Sub-GeV/GeV gamma-ray astronomy has been developed by projects such as EGRET, AGILE, and Fermi; however, many problems have yet to be solved. Not only high statistics observation but also high quality observation are required to advance gamma-ray astronomy. Therefore, we promote the GRAINE project, of which the aim is precise and polarization observations with an emulsion gamma-ray telescope. The balloon flight was performed in Australia during 2015. We aimed for the detection of the Vela pulsar and verification of the overall performance of the telescope. In this paper, we report the analysis status of the balloon flight during 2015.</p>

    DOI: 10.2322/tastj.16.464

    CiNii Research

  45. More results from the OPERA experiment

    Galati G., Agafonova N., Aleksandrov A., Anokhina A., Aoki S., Ariga A., Ariga T., Bender D., Bertolin A., Bodnarchuk I., Bozza C., Brugnera R., Buonaura A., Buontempo S., Büttner B., Chernyavskiy M., Chukanov A., Consiglio L., D'Ambrosio N., De Lellis G., De Serio M., Del Amo Sanchez P., Di Crescenzo A., Di Ferdinando D., Di Marco N., Dmitrievski S., Dracos M., Duchesneau D., Dusini S., Dzhatdoev T., Ebert J., Ereditato A., Fini R.A., Fornari F., Fukuda T., Garfagnini A., Goldberg J., Gornushkin Y., Grella G., Guler A.M., Gustavino C., Hagner C., Hara T., Hayakawa H., Hollnagel A., Hosseini B., Ishiguro K., Jakovcic K., Jollet C., Kamiscioglu C., Kamiscioglu M., Kim S.H., Kitagawa N., Klicek B., Kodama K., Komatsu M., Kose U., Kreslo I., Laudisio F., Lauria A., Ljubicic A., Longhin A., Loverre P.F., Malenica M., Malgin A., Mandrioli G., Matsuo T., Matveev V., Mauri N., Medinaceli E., Meregaglia A., Mikado S., Miyanishi M., Mizutani F., Monacelli P., Montesi M.C., Morishima K., Muciaccia M.T., Naganawa N., Naka T., Nakamura M., Nakano T., Niwa K., Ogawa S., Omura T., Osaki K., Paoloni A., Paparella L., Park B.D., Pasqualini L., Pastore A., Patrizii L., Pessard H., Podgrudkov D., Polukhina N., Pozzato M., Pupilli F., Roda M., Roganova T., Rokujo H.

    Nuovo Cimento della Societa Italiana di Fisica C   40 巻 ( 5 )   2017年9月

     詳細を見る

    出版者・発行元:Nuovo Cimento della Societa Italiana di Fisica C  

    The OPERA experiment reached its main goal by proving the appearance of vτ in the CNGS vμ beam. Five vτ candidates were detected with a S/B ratio of ∼ 10, allowing to reject the null hypothesis at 5.1σ. The search has been extended by loosening the selection criteria in order to improve the statistical uncertainty. One of the vτ candidates selected with the new strategy shows a double vertex topology and, after a dedicated multivariate analysis, is compatible with being a vTτ interaction with charm production. Based on the enlarged data sample the estimation of Δm223 in appearance mode is being performed. The search for ve interactions has been extended over the full data set with a more than twofold increase in statistics: data are compatible with the non-oscillation hypothesis in the three-flavour mixing model. The implications of the electron neutrino sample in the framework of the 3+1 sterile mode will lead to exclusion limits on sin2 2θμe. Finally, the analysis of the annual modulation of cosmic muons is introduced.

    DOI: 10.1393/ncc/i2017-17160-0

    Scopus

  46. Latest nuclear emulsion technology 査読有り

    Rokujo H., Kawahara H., Komatani R., Morishita M., Nakano T., Otsuka N., Yoshimoto M.

    EPJ Web of Conferences   145 巻   2017年6月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:EPJ Web of Conferences  

    Nuclear emulsion is a extremely high-resolution 3D tracking detector. Since the discovery of the pion by C.F. Powell et al. in 1946, experiments with nuclear emulsions have contributed to the development of particle physics. (e.g. the OPERA collaboration reported the discovery of νμ ∗ ντ oscillations in appearance mode in 2015) The technology of nuclear emulsion still keeps making progress. Since 2010, we have introduced a system of nuclear emulsion gel production to our laboratory in Nagoya University, and have started self-development of the new gel, instead of from the photographic film companies. Moreover, a faster automated emulsion scanning system is developed. Its scanning speed reaches 4000 cm2/h, and the load for analyzing becomes more and more lighter. In this presentation, we report the status of nuclear emulsion technologies for cosmic ray experiments.

    DOI: 10.1051/epjconf/201614519020

    Scopus

    researchmap

  47. GRAINE balloon experiment in 2015: Precise observations of cosmic gamma rays by a high-resolution emulsion telescope

    Rokujo H.

    EPJ Web of Conferences   145 巻   2017年6月

     詳細を見る

    出版者・発行元:EPJ Web of Conferences  

    Observations of cosmic gamma rays are important for studying high energy phenomena in the universe. Since 2008, the Large Area Telescope on the Fermi satellite has surveyed the whole gamma-ray sky in the sub-GeV/GeV energy region, and accumurated a large amount of data. However, observations at the low galactic latitude remains difficult because of a lack of angular resolution, increase of background flux originating from galactic diffuse gamma rays, etc. The Gamma-Ray Astro-Imager with Nuclear Emulsion (GRAINE) is a gamma-ray observation project with a new balloon-borne emulsion gamma-ray telescope. Nuclear emulsion is a high-resolution 3D tracking device. It determines the incident angle with 0.1? resolution for 1 GeV gamma rays (1.0? for 100 MeV), and has linear polarization sensitivity. GRAINE aims at precise observation of gamma-ray sources, especially in the galactic plane, by repeating long-duration balloon flights with large-aperture-area (10 m2) high-resolution emulsion telescopes. In May 2015, we performed a balloon-borne experiment in Alice Springs, Australia, in order to demonstrate the imaging performance of our telescope. The emulsion telescope that has an aperture area of 0.4 m2 was employed in this experiment. It observed the Vela pulsar (the brightest gamma-ray source in the GeV sky) at an altitude of 37 km for 6 hours out of the flight duration of 14 hours. In this presentation, we will report the latest results and the status of the GRAINE project.

    DOI: 10.1051/epjconf/201614506002

    Scopus

  48. First neutrino event detection with nuclear emulsion at J-PARC neutrino beamline 査読有り

    Fukuda, T; Aoki, S; Cao, S; Chikuma, N; Fukuzawa, Y; Gonin, M; Hayashino, T; Hayato, Y; Hiramoto, A; Hosomi, F; Ishiguro, K; Iori, S; Inoh, T; Kawahara, H; Kim, H; Kitagawa, N; Koga, T; Komatani, R; Komatsu, M; Matsushita, A; Mikado, S; Minamino, A; Mizusawa, H; Morishima, K; Matsuo, T; Matsumoto, T; Morimoto, Y; Morishita, M; Nakamura, K; Nakamura, M; Nakamura, Y; Naganawa, N; Nakano, T; Nakaya, T; Nakatsuka, Y; Nishio, A; Ogawa, S; Oshima, H; Quilain, B; Rokujo, H; Sato, O; Seiya, Y; Shibuya, H; Shiraishi, T; Suzuki, Y; Tada, S; Takahashi, S; Yamada, K; Yoshimoto, M; Yokoyama, M

    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS   2017 巻 ( 6 ) 頁: 063C02   2017年6月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Progress of Theoretical and Experimental Physics  

    Precise neutrino-nucleus interaction measurements in the sub-multi-GeV region are important to reduce the systematic uncertainty in future neutrino oscillation experiments. Furthermore, an excess of ν e interactions, as a possible interpretation of the existence of a sterile neutrino, has been observed in such an energy region. The nuclear emulsion technique can measure all the final state particles with low energy threshold for a variety of targets (Fe, C, H 2 O, and so on). Its sub-μm position resolution allows measurements of the ν e cross-section with good electron/gamma separation capability.We started a new experiment at J-PARC to study sub-multi-GeV neutrino interactions by introducing the nuclear emulsion technique. The J-PARC T60 experiment has been implemented as a first step in such a project. Systematic neutrino event analysis with full scanning data in the nuclear emulsion detector was performed for the first time. The first neutrino event detection and its analysis are described in this paper.

    DOI: 10.1093/ptep/ptx077

    Web of Science

    Scopus

    researchmap

  49. First demonstration of an emulsion multi-stage shifter for accelerator neutrino experiments in J-PARC T60 査読有り

    Yamada, K; Aoki, S; Cao, S; Chikuma, N; Fukuda, T; Fukuzawa, Y; Gonin, M; Hayashino, T; Hayato, Y; Hiramoto, A; Hosomi, F; Inoh, T; Iori, S; Ishiguro, K; Kawahara, H; Kim, H; Kitagawa, N; Koga, T; Komatani, R; Komatsu, M; Matsushita, A; Mikado, S; Minamino, A; Mizusawa, H; Matsumoto, T; Matsuo, T; Morimoto, Y; Morishima, K; Morishita, M; Naganawa, N; Nakamura, K; Nakamura, M; Nakamura, Y; Nakano, T; Nakatsuka, Y; Nakaya, T; Nishio, A; Ogawa, S; Oshima, H; Quilain, B; Rokujo, H; Sato, O; Seiya, Y; Shibuya, H; Shiraishi, T; Suzuki, Y; Tada, S; Takahashi, S; Yokoyama, M; Yoshimoto, M

    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS   2017 巻 ( 6 )   2017年6月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Progress of Theoretical and Experimental Physics  

    We describe the first ever implementation of a clock-based, multi-stage emulsion shifter in an accelerator neutrino experiment. The system was installed in the neutrino monitoring building at the Japan Proton Accelerator Research Complex as part of a test experiment, T60, and stable operation was maintained for a total of 126.6 days. By applying time information to emulsion films, various results were obtained. Time resolutions of 5.3-14.7 s were evaluated in an operation spanning 46.9 days (yielding division numbers of 1.4-3.8×10 5 ). By using timing and spatial information, reconstruction of coincident events consisting of high-multiplicity and vertex-contained events, including neutrino events, was performed. Emulsion events were matched to events observed by INGRID, one of the on-axis near detectors of the T2K experiment, with high reliability (98.5%), and hybrid analysis of the emulsion and INGRID events was established by means of the multi-stage shifter. The results demonstrate that the multi-stage shifter can feasibly be used in neutrino experiments.

    DOI: 10.1093/ptep/ptx083

    Web of Science

    Scopus

    researchmap

  50. The active muon shield in the SHiP experiment 査読有り

    Akmete, A; Alexandrov, A; Anokhina, A; Aoki, S; Atkin, E; Azorskiy, N; Back, JJ; Bagulya, A; Baranov, A; Barker, GJ; Bay, A; Bayliss, V; Bencivenni, G; Berdnikov, AY; Berdnikov, YA; Bertani, M; Betancourt, C; Bezshyiko, I; Bezshyyko, O; Bick, D; Bieschke, S; Blanco, A; Boehm, J; Bogomilov, M; Bondarenko, K; Bonivento, WM; Boyarsky, A; Brenner, R; Breton, D; Brundler, R; Bruschi, M; Büscher, V; Buonaura, A; Buontempo, S; Cadeddu, S; Calcaterra, A; Campanelli, M; Chauveau, J; Chepurnov, A; Chernyavsky, M; Choi, KY; Chumakov, A; Ciambrone, P; Dallavalle, GM; D'Ambrosio, N; D'Appollonio, G; De Lellis, G; De Roeck, A; De Serio, M; Dedenko, L; Di Crescenzo, A; Di Marco, N; Dib, C; Dijkstra, H; Dmitrenko, V; Domenici, D; Donskov, S; Dubreuil, A; Ebert, J; Enik, T; Etenko, A; Fabbri, F; Fabbri, L; Fedin, O; Fedorova, G; Felici, G; Ferro-Luzzi, M; Fini, RA; Fonte, P; Franco, C; Fukuda, T; Galati, G; Gavrilov, G; Gerlach, S; Golinka-Bezshyyko, L; Golubkov, D; Golutvin, A; Gorbunov, D; Gorbunov, S; Gorkavenko, V; Gornushkin, Y; Gorshenkov, M; Grachev, V; Graverini, E; Grichine, V; Guler, AM; Guz, Y; Hagner, C; Hakobyan, H; van Herwijnen, E; Hollnagel, A; Hosseini, B; Hushchyn, M; Iaselli, G; Iuliano, A; Jacobsson, R; Jonker, M; Kadenko, I; Kamiscioglu, C; Kamiscioglu, M; Khabibullin, M; Khaustov, G; Khotyantsev, A; Kim, SH; Kim, V; Kim, YG; Kitagawa, N; Ko, JW; Kodama, K; Kolesnikov, A; Kolev, DI; Kolosov, V; Komatsu, M; Konovalova, N; Korkmaz, MA; Korol, I; Korol'ko, I; Korzenev, A; Kovalenko, S; Krasilnikova, I; Krivova, K; Kudenko, Y; Kurochka, V; Kuznetsova, E; Lacker, HM; Lai, A; Lanfranchi, G; Lantwin, O; Lauria, A; Lebbolo, H; Lee, KY; Lévy, JM; Lopes, L; Lyubovitskij, V; Maalmi, J; Magnan, A; Maleev, V; Malinin, A; Mefodev, A; Mermod, P; Mikado, S; Mikhaylov, Y; Milstead, DA; Mineev, O; Montanari, A; Montesi, MC; Morishima, K; Movchan, S; Naganawa, N; Nakamura, M; Nakano, T; Novikov, A; Obinyakov, B; Ogawa, S; Okateva, N; Owen, PH; Paoloni, A; Park, BD; Paparella, L; Pastore, A; Patel, M; Pereyma, D; Petrenko, D; Petridis, K; Podgrudkov, D; Poliakov, V; Polukhina, N; Prokudin, M; Prota, A; Rademakers, A; Ratnikov, F; Rawlings, T; Razeti, M; Redi, F; Ricciardi, S; Roganova, T; Rogozhnikov, A; Rokujo, H; Rosa, G; Rovelli, T; Ruchayskiy, O; Ruf, T; Samoylenko, V; Saputi, A; Sato, O; Savchenko, ES; Schmidt-Parzefall, W; Serra, N; Shakin, A; Shaposhnikov, M; Shatalov, P; Shchedrina, T; Shchutska, L; Shevchenko, V; Shibuya, H; Shustov, A; Silverstein, SB; Simone, S; Skorokhvatov, M; Smirnov, S; Sohn, JY; Sokolenko, A; Starkov, N; Storaci, B; Strolin, P; Takahashi, S; Timiryasov, I; Tioukov, V; Tosi, N; Treille, D; Tsenov, R; Ulin, S; Ustyuzhanin, A; Uteshev, Z; Vankova-Kirilova, G; Vannucci, F; Venkova, P; Vilchinski, S; Villa, M; Vlasik, K; Volkov, A; Voronkov, R; Wanke, R; Woo, JK; Wurm, M; Xella, S; Yilmaz, D; Yilmazer, AU; Yoon, CS; Zaytsev, Y

    JOURNAL OF INSTRUMENTATION   12 巻 ( 5 ) 頁: P05011   2017年5月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Journal of Instrumentation  

    The SHiP experiment is designed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/c proton beam dump at the CERN SPS. An essential task for the experiment is to keep the Standard Model background level to less than 0.1 event after 2× 1020 protons on target. In the beam dump, around 1011 muons will be produced per second. The muon rate in the spectrometer has to be reduced by at least four orders of magnitude to avoid muon-induced combinatorial background. A novel active muon shield is used to magnetically deflect the muons out of the acceptance of the spectrometer. This paper describes the basic principle of such a shield, its optimization and its performance.

    DOI: 10.1088/1748-0221/12/05/P05011

    Web of Science

    Scopus

    researchmap

  51. GRAINE Project: A balloon-borne emulsion gamma-ray telescope

    Rokujo H.

    Proceedings of Science   2017-January 巻   2017年

     詳細を見る

    出版者・発行元:Proceedings of Science  

    Observations of cosmic gamma rays emitted from black holes, pulsars, super nova remnants, etc. are important to understand such high-energy objects or phenomena in the universe. Some gamma-ray telescopes loaded on satellites have surveyed the sub-GeV/GeV gamma-ray sky, and contributed to the development of gamma-ray astronomy. On the other hand, new issues have come to light. Especially, observations at the low galactic latitude remain difficult because of a lack of angular resolution. The Gamma-Ray Astro-Imager with Nuclear Emulsion (GRAINE) project aims at precise observations of gamma-ray sources by a balloon-borne gamma-ray tele- scope. The high-angular resolution gamma-ray telescope, called emulsion telescope, consists of nuclear emulsion films. Its angular resolution is 0.9? at 100 MeV or 0.1? at 1 GeV. Our second balloon experiment, GRAINE 2015, was performed in 2015 to detect gamma-ray sources, and demonstrate the imaging performance of the emulsion telescope in the 100 MeV energy region. Currently the flight data analysis is on going. In this paper, we checked the imaging performance of the emulsion telescope with an external calibration source. In the energy range above 100 MeV, we verified that the emulsion telescope in the flight had the expected angular resolution.

    Scopus

  52. GRAINE balloon experiment in 2015 Precise observations of cosmic gamma rays by a high-resolution emulsion telescope

    Rokujo, H

    ISVHECRI 2016 - XIX INTERNATIONAL SYMPOSIUM ON VERY HIGH ENERGY COSMIC RAY INTERACTIONS   145 巻   2017年

  53. GRAINE balloon-borne experiment in 2015: Observations with a high angular resolution gamma-ray telescope

    Rokujo H.

    Proceedings of Science     2017年

     詳細を見る

    出版者・発行元:Proceedings of Science  

    Aichi University of Education, ISAS/JAXA, Utsunomiya University, Okayama University of Science, Kobe University, and Nagoya University Observations of cosmic gamma rays are important to promote an understanding of such high-energy objects and phenomena in the universe. Since 2008, the Large Area Telescope on the Fermi satellite has surveyed the whole gamma-ray sky in the sub-GeV/GeV energy region, and accumulated a large amount of data. However, observations at low galactic latitudes remain difficult because of a lack of angular resolution, an increase of background flux originating from galactic diffuse gamma rays, etc. The Gamma-Ray Astro-Imager with Nuclear Emulsion (GRAINE) is a gamma-ray observation project with a new balloon-borne emulsion gamma-ray telescope. Nuclear emulsion is a high-resolution 3D tracking device. It determines the incident angle with 0.1° resolution for 1 GeV gamma rays (1.0° for 100 MeV), and has polarization sensitivity. The goal of the GRAINE is to achieve precise observations of gamma-ray sources, especially in the galactic plane, by repeating long-duration balloon flights with large-aperture-area (10 m2) high-resolution emulsion telescopes. In May 2015, we performed a balloon-borne experiment in Alice Springs, Australia, in order to demonstrate the imaging performance of our telescope. The emulsion telescope that has an aperture area of 0.4 m2 was employed in this experiment. It observed the Vela pulsar (the brightest gamma-ray source in the GeV sky) at an altitude of 37 km for 6 hours out of the flight duration of 14 hours. In this paper, we report the data analysis, especially evaluations of the detector performance in the GRAINE 2015 experiment by observing an external calibration source.

    DOI: 10.22323/1.301.0695

    Scopus

▼全件表示

MISC 3

  1. 気球搭載型エマルション望遠鏡による宇宙高エネルギーガンマ線精密観測計画GRAINE

    青木 茂樹, 高橋 覚, 六條 宏紀  

    RADIOISOTOPES68 巻 ( 12 ) 頁: 877 - 891   2019年

     詳細を見る

    記述言語:日本語   出版者・発行元:公益社団法人 日本アイソトープ協会  

    <p>我々は,世界最高角度分解能(0.08 degree @ 1–2 GeV),世界初偏光有感,世界最大口径面積(~10 m<sup>2</sup>)を実現するエマルションガンマ線望遠鏡の長時間気球フライト繰り返しによる宇宙高エネルギーガンマ線(10 MeV–100 GeV)精密観測計画GRAINE(Gamma-Ray Astro-Imager with Nuclear Emulsion)を推し進めている。本計画の概要や現状及び展望について紹介する。</p>

    DOI: 10.3769/radioisotopes.68.877

    CiNii Books

    CiNii Research

    researchmap

  2. 原子核乾板技術の進化と展開~デジカメ時代を生き抜くアナログフィルム~

    長縄直崇, 福田努, 北川暢子, 小松雅宏, 森島邦博, 中竜大, 中野敏行, 西尾晃, 六條宏紀, 佐藤修, 木村充宏, 歳藤利行  

    放射線化学(Web) ( 107 )   2019年

     詳細を見る

  3. Study of tau-neutrino production at the CERN SPS

    S. Aoki, A. Ariga, T. Ariga, E. Firu, T. Fukuda, Y. Gornushkin, A.M. Guler, M. Haiduc, K. Kodama, M.A. Korkmaz, U. Kose, M. Nakamura, T. Nakano, A.T. Neagu, H. Rokujo, O. Sato, S. Vasina, M. Vladymyrov, M. Yoshimoto  

    CERN Document Server (Scientific Committee Paper), CERN-SPSC-2017-029, SPSC-P-354   2017年8月

     詳細を見る

    記述言語:英語   掲載種別:機関テクニカルレポート,技術報告書,プレプリント等  

    researchmap

講演・口頭発表等 5

  1. Overview on emulsion detector technique 招待有り

    Hiroki Rokujo, Toshiyuki Nakano

    The XXX International Conference on Neutrino Physics and Astrophysics (Neutrino 2022), virtual Seoul, Korea 

     詳細を見る

    開催年月日: 2022年5月 - 2022年6月

    会議種別:口頭発表(招待・特別)  

    researchmap

  2. Nuclear Emulsion Facilities in Tokai National Higher Education and Research System 招待有り

    Hiroki Rokujo

    International Conference on Materials and Systems for Sustainability, Nagoya University 

     詳細を見る

    開催年月日: 2021年11月

    会議種別:口頭発表(招待・特別)  

    researchmap

  3. 大面積・高解像 原子核乾板ガンマ線望遠鏡 実現のための研究開発 招待有り

    六條宏紀

    2022 年度 日本写真学会オンライン年次大会 

     詳細を見る

    会議種別:口頭発表(招待・特別)  

    researchmap

  4. GRAINE Project: High-angular Resolution, Polarimetry Observation of Sub-GeV/GeV Gamma Rays with Balloon-borne Emulsion Telescopes 招待有り

    Hiroki Rokujo

    Frontier Research in Astrophysics - IV (FRAPWS2024), Palermo, Italy  2024年9月14日 

     詳細を見る

    会議種別:口頭発表(招待・特別)  

    researchmap

  5. Sub-GeV Gamma-ray Imaging of the Vela Pulsar with Balloon-borne Emulsion Telescope in GRAINE 2018 Experiment 招待有り

    Hiroki Rokujo

    Frontier Research in Astrophysics - IV (FRAPWS2024), Palermo, Italy  2024年9月12日 

     詳細を見る

    会議種別:口頭発表(招待・特別)  

    researchmap

科研費 6

  1. 最高解像度宇宙ガンマ線観測で暗黒物質を探る~世界最大口径原子核乾板望遠鏡の開発~

    研究課題/研究課題番号:24K00661  2024年4月 - 2027年3月

    日本学術振興会  科学研究費助成事業  基盤研究(B)

    六條 宏紀, 伊代野 淳, 中村 悠哉, 山本 紗矢

      詳細を見る

    担当区分:研究代表者 

    配分額:18460000円 ( 直接経費:14200000円 、 間接経費:4260000円 )

    フェルミガンマ線宇宙望遠鏡が提供する高統計の観測データは、ガンマ線天文学を大きく前進させた。一方で、暗黒物質が高密度に存在すると期待される銀河中心では特異なガンマ線の超過が見つかり、混乱を招いている。我々は原子核乾板を用いた望遠鏡によってフェルミ衛星の角度分解能を1桁更新する宇宙ガンマ線精密撮像観測を提案し、気球実験による科学観測開始を目指して開発を続けてきた。本研究では、気球フライトデータ解析および次期気球実験の準備開発を進め、銀河中心GeVガンマ線等の世界最高解像度でのイメージングを実現し、観測の質的な改善を目指すとともに宇宙ガンマ線による暗黒物質間接探索研究に新たな展開をもたらす。

    researchmap

  2. LHC超前方における高エネルギー3世代ニュートリノの研究

    研究課題/研究課題番号:22H01233  2022年4月 - 2025年3月

    日本学術振興会  科学研究費助成事業  基盤研究(B)

    有賀 智子, 六條 宏紀, 音野 瑛俊, 中野 敏行

      詳細を見る

    担当区分:研究分担者  資金種別:競争的資金

    本研究では現在の加速器によって生成できる最高エネルギーのニュートリノを測定する。CERNにてLHC陽子衝突点の超前方にニュートリノ検出器(FASERnu)を設置し、3世代ニュートリノの反応を検出する。2022-2024年の実験により約10000事象のニュートリノ反応を蓄積して解析し、未踏のエネルギー領域での3世代ニュートリノの荷電カレント反応断面積の測定を実施する。中性カレント反応の測定も可能であり、非標準相互作用への制限を与えられる。また、反応断面積測定とは別に、チャーム起因の電子ニュートリノ反応の測定により、未知の超前方領域のチャーム生成について初めてのデータを提供する。
    本研究では、欧州原子核研究機構(CERN)に設置されている世界最大のハドロン衝突型加速器LHCを用いて、LHC陽子・陽子衝突に起因する高エネルギーニュートリノ測定を実施している。陽子・陽子衝突点からビーム軸上約480m離れた地下トンネル内にエマルションフィルムを用いたニュートリノ検出器を設置することで、数100GeVから数TeVのニュートリノ反応を各フレーバーについて測定できる。2022年3月に物理ランを開始し、その後のエマルション検出器の運用のために、共同実験者および他実験の使用者とともに国際協力のもとにCERNに暗室ファシリティを構築した。それを活用して、7月と9月にエマルション検出器の入れ換えを実施した。検出器モジュールの組み立てでは、スイスや諸外国の共同研究者と暗室ファシリティにおいて作業を行い、日本グループは2022年の3度の検出器組み立てを主導した。入れ換えで取り出したフィルムは現像後に日本へ輸送し、高速読み出し装置を用いてフィルム全面の読み出しを実施している。ニュートリノ反応の検出および荷電カレント反応で生じるレプトンの識別に取り組み、高エネルギー電子ニュートリノ反応候補の検出に成功した。
    2022年3月から物理ランとなる実験を開始し、エマルションフィルムは荷電粒子の飛跡を蓄積し続けるため、毎年3回検出器の設置・交換を実施してきた。エマルションフィルムの製造・性能の管理は日本において行っている。製造後のフィルムを高湿度環境(95%, 30℃)に置くことにより長期的なフィルムの性能を向上できることを確認し(リセット処理と呼ぶ)、2022年は名古屋大学の恒温恒湿槽を用いてリセット処理を実施してきた。2023年以降の実験に用いるエマルションフィルムについては九州大学でこの処理を行うため、恒温恒湿槽を購入し、2023年初旬に新たに暗室設備を構築した。2023年2月から九州大学の暗室においてこの処理を実施している。その後CERNへ輸送して暗室にて検出器モジュールを組み立て後、地下トンネルに検出器を設置してビーム照射を行っている。数か月後の入れ換えで取り出してフィルムを現像し、現像後のフィルムを日本へ輸送、高速読み出し装置にて飛跡データの読み出しを行い、九州大学をはじめとする共同研究機関で共有してデータの解析を行っている。
    2023年のCERNでの照射実験の実施と高エネルギーニュートリノ反応の解析を進める。FASERnu検出器は、エマルションフィルムと1mm厚のタングステン板の積層構造の検出器、FASERスペクトロメータとの接続を可能にするためのインターフェースシリコン検出器から成る。本年度のニュートリノ照射実験に向けて、分担者らと名古屋大学にてエマルションフィルムを製造している。製造したフィルムをカットした後、九州大学へ輸送し、新たに構築した暗室ファシリティにて恒温恒湿器を用いたリセット処理により性能の改善と調湿を行ってからCERNへ輸送する。2023年最初のエマルションモジュールは3月にCERNの暗室で組み立てトンネル内に設置した。今後、2023年6月と8月にその取り出しと新たなモジュールの設置を予定している。取り出したフィルムを現像して輸送し、分担者が開発している読み出し装置を用いてフィルム全面の高速読み出しを実施する。読み出したデータに対し、ニュートリノ反応点を再構成する。本年度は、電子ニュートリノ反応およびミューニュートリノ反応を中心とした解析を実施するとともに、タウニュートリノ反応の検出に向けた研究を進める。分担者ら が運用を担当しているFASERスペクトロメータへのインターフェース検出器を用いてミューオンの電荷測定を実施し、正/反ミューニュートリノを識別した測定も行う。

    researchmap

  3. 銀河中心ガンマ線の最高解像度観測を実現する大口径エマルション望遠鏡の開発

    研究課題/研究課題番号:20H01915  2020年4月 - 2023年3月

    日本学術振興会  科学研究費助成事業  基盤研究(B)

    六條 宏紀, 伊代野 淳

      詳細を見る

    担当区分:研究代表者 

    配分額:17810000円 ( 直接経費:13700000円 、 間接経費:4110000円 )

    フェルミγ線宇宙望遠鏡が提供する高統計観測データはγ線天文学を大きく前進させた。一方で銀河中心で特異な超過が報告されるなど未解決課題も浮かび上がっている。今後は観測データの質的改善が求められる。我々は原子核乾板を用いたγ線望遠鏡によってフェルミ望遠鏡の角度分解能を約1桁更新するγ線天体精密観測を提案し、気球実験による科学観測を目指して開発を続けてきた。本研究では次期気球実験(2021年春)に向け、望遠鏡口径面積を拡張する開発を行い、世界に先駆けてGeV帯域宇宙γ線の高解像観測データの提示を目指す。
    本研究では次期気球実験(コロナによる2年延期、2023年春実施予定)に向け、原子核乾板からなる世界最高解像度のガンマ線望遠鏡の口径面積拡張を実現する以下の開発を行った。1)量産型原子核乳剤製造装置の開発と名大への新設・導入。2) ロールtoロール原子核乾板塗布装置の開発と名大への新設・導入。3) 乗鞍山頂での大気ガンマ線観測リハーサルを通じた性能実証。4) 電子対生成事象の精密測定手法開発 5) 新ファシリティ連続安定稼働による原子核乾板の量産と大口径コンバーターの作成。6) 全長5m与圧容器ゴンドラの開発。7)溶解物理現像手法の開発と実験への導入 8) 豪州気球実験の最終準備完了。
    2008年より観測を続けるフェルミγ線宇宙望遠鏡が提供する高統計観測データはγ線天文学を大きく前進させた。一方で銀河中心で特異な超過が報告されるなど未解決課題も浮かび上がっている。今後は観測データの質的改善が求められる。本研究開発により実現する原子核乾板を用いたγ線望遠鏡によってフェルミ望遠鏡の角度分解能を約1桁更新するγ線天体精密観測を可能にする。2023年に実施する気球実験により銀河中心領域1GeV帯域の世界最高解像度でのイメージングデータ提示が期待される。

    researchmap

  4. エマルション望遠鏡によるガンマ線天体高解像観測の実現

    研究課題/研究課題番号:18K13562  2018年4月 - 2020年3月

    日本学術振興会  科学研究費助成事業  若手研究

    六條 宏紀

      詳細を見る

    担当区分:研究代表者 

    配分額:4160000円 ( 直接経費:3200000円 、 間接経費:960000円 )

    本研究では、subGeV-GeVγ線に対して高い角度分解能を有する原子核乾板を用いた新たなγ線望遠鏡を開発し、気球実験による宇宙γ線精密観測の実現を目的とする。2018年4月、豪州アリススプリングスにて口径面積0.38平米の望遠鏡を放球し、気球の飛翔、測定器の安定運用を達成した。回収した原子核乾板から飛跡データを収集し、気球高度での観測性能評価・校正を順次行った。解析の結果、高輝度天体Velaパルサーから統計的有意なγ線信号を検出した。本実験の目標として掲げていた気球搭載原子核乾板による天体の初検出および100MeVエネルギー帯域で世界最高解像度でのイメージングに成功した。
    宇宙観測分野では望遠鏡の性能が向上するごとに新たな発見がなされて来たが、宇宙γ線観測において今後推し進めるべき指針はイメージの高画質化である。他波長に比べてγ線天体の画像は桁違いに粗く、どの天体も月の大きさ程度にボケてしまう。本研究において、現状のGeVγ線観測装置と比べ、約1桁優れた撮像性能を持つエマルション望遠鏡での天体観測が実証された。今後、口径面積・観測時間の拡大を図り、科学観測を推し進めることで、高エネルギー宇宙の新たな姿が明らかになるだろう。

    researchmap

  5. 気球搭載型エマルション望遠鏡による宇宙ガンマ線未解決課題の解明

    研究課題/研究課題番号:17H06132  2017年5月 - 2022年3月

    日本学術振興会  科学研究費助成事業  基盤研究(S)

    青木 茂樹, 中野 敏行, 六條 宏紀

      詳細を見る

    担当区分:研究分担者 

    空間分解能に優れたエマルションフィルムを用い、大面積かつ広視野角(天頂から天頂角45度まで)のガンマ線望遠鏡を実現し、科学観測気球に搭載して大気最上層で飛翔させ、宇宙から飛来するガンマ線の観測を行った。
    2018年に開口面積0.38平米の望遠鏡を用いてオーストラリアで行った観測では、既知の高輝度ガンマ線天体Velaパルサーのイメージングに成功し、現在NASAが運用しているFermi-LAT検出器の角度分解能較べて投影角で1桁(立体角で2桁)改善できることを実天体データで検証した。さらに、1.25平米望遠鏡ユニットを複数搭載して大面積化する望遠鏡を開発・実現し、2023年に科学観測に着手した。
    ガンマ線天文学は、NASAが2008年に打上げ現在も運用が続いているFermi-LAT検出器によって飛躍的に進歩したが、他の波長域に較べて角度分解能が充分でないことから、放射域の形状比較が困難があったり、天体が密集する銀河中心方向や銀河面に沿った領域の観測で他の波長域で同定されいる天体との対応付けが困難などの課題が残っている。銀河中心方向からのGeV帯域ガンマ線について、既知の天体からの放射だけでは説明しきれない過剰成分の可能性など、Fermi-LAT検出器の観測量を増やすだけでは解決の見込みが立たない課題に対して、高角度分解能での観測による質的に新しいデータ提供の見通しが得られた。

    researchmap

  6. エマルション望遠鏡気球フライトデータの解析~γ線天体最高解像度イメージング~

    研究課題/研究課題番号:16K17691  2016年4月 - 2018年3月

    日本学術振興会  科学研究費助成事業  若手研究(B)

    六條 宏紀

      詳細を見る

    担当区分:研究代表者 

    配分額:3900000円 ( 直接経費:3000000円 、 間接経費:900000円 )

    2015年5月に実施した気球実験で得られたガンマ線データを使い、エマルション望遠鏡のイメージング性能を評価した。 望遠鏡の4.4m上方に固定されていた“放球プレート”は、気球高度において入射する宇宙線(陽子)と反応し2次γ線を放出するため、望遠鏡の結像性能等のキャリブレーションに利用できる。100-300MeV帯域で結像した放球プレートのγ線イメージは、角度分解能(1° @100 MeV)から期待される広がりを示しており、エマルション望遠鏡がかつてない優れた結像性能を持つことを実証した。この成果は、エマルション望遠鏡による大面積かつ高解像観測が実現可能であることを示す重要な実績となった。

    researchmap

▼全件表示

 

社会貢献活動 1

  1. 研究者・大学院生との懇談会

    役割:講師

    岐阜県立多治見北高等学校  2016年7月

メディア報道 1

  1. 世界最高解像度の気球望遠鏡が宇宙ガンマ線を観測 インターネットメディア

    アストロアーツ  2023年5月

     詳細を見る