2024/04/02 更新

写真a

チャン アーロン ケイ ヤム
CHAN Aaron Kay Yam
CHAN Aaron Kay Yam
所属
大学院多元数理科学研究科 多元数理科学専攻 基幹数理 助教
大学院担当
大学院多元数理科学研究科
学部担当
理学部 数理学科
職名
助教

学位 1

  1. Master in Mathematics ( 2010年7月   University of Cambridge (UK) ) 

研究キーワード 1

  1. representation theory; finite dimensional algebras

研究分野 2

  1. 自然科学一般 / 代数学  / Representation theory of finite dimensional algebras

  2. 自然科学一般 / 代数学

現在の研究課題とSDGs 2

  1. Representation theory of finite dimensional algebras

  2. 2-representation theory of finitary categories

経歴 3

  1. 名古屋大学   多元数理科学研究科   学振外国人特別研究員

    2017年4月 - 2019年3月

      詳細を見る

    国名:日本国

  2. 名古屋大学   多元数理科学研究科   助教授

    2016年8月 - 2017年3月

      詳細を見る

    国名:日本国

  3. Uppsala University   Department of Mathematics   Post-doctoral researcher

    2014年10月 - 2016年3月

      詳細を見る

    国名:スウェーデン王国

学歴 2

  1. University of Aberdeen   Faculty of Science Department of Mathematics   Mathematical Science

    2010年9月 - 2014年7月

      詳細を見る

    国名: グレートブリテン・北アイルランド連合王国(英国)

  2. University of Cambridge   Faculty of Mathematics   Mathematical Science

    2006年10月 - 2010年7月

      詳細を見る

    国名: グレートブリテン・北アイルランド連合王国(英国)

 

論文 11

  1. On representation-finite gendo-symmetric algebras with only one non-injective projective module 査読有り

    Aihara Takuma, Chan Aaron, Honma Takahiro

    JOURNAL OF ALGEBRA   603 巻   頁: 61 - 88   2022年8月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Journal of Algebra  

    Motivated by the relation between Schur algebra and the group algebra of a symmetric group, along with other similar examples in algebraic Lie theory, Min Fang and Steffen Koenig [15,16] addressed some behaviour of the endomorphism algebra of a generator over a symmetric algebra, which they called gendo-symmetric algebra. Continuing this line of works, we classify in this article the representation-finite gendo-symmetric algebras that have precisely one isomorphism class of indecomposable non-injective projective module. We also determine their almost ν-stable derived equivalence classes in the sense of Wei Hu and Changchang Xi [21]. It turns out that a representative can be chosen as the quotient of a representation-finite symmetric algebra by the socle of a certain indecomposable projective module.

    DOI: 10.1016/j.jalgebra.2022.04.002

    Web of Science

    Scopus

  2. COIDEMPOTENT SUBCOALGEBRAS AND SHORT EXACT SEQUENCES OF FINITARY 2-REPRESENTATIONS 査読有り 国際共著

    Chan Aaron, Miemietz Vanessa

    NAGOYA MATHEMATICAL JOURNAL   243 巻   頁: 316 - 341   2021年9月

     詳細を見る

    記述言語:日本語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Nagoya Mathematical Journal  

    In this article, we study short exact sequences of finitary 2-representations of a weakly fiat 2-category. We provide a correspondence between such short exact sequences with fixed middle term and coidempotent subcoalgebras of a coalgebra 1-morphism defining this middle term. We additionally relate these to recollements of the underlying abelian 2-representations.

    DOI: 10.1017/nmj.2020.1

    Web of Science

    Scopus

  3. Irreducible representations of the symmetric groups from slash homologies of p-complexes

    Aaron Chan

    Algebraic Combinatorics     2021年2月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

  4. On simple-minded systems and tau-periodic modules of self-injective algebras

    Chan Aaron, Liu Yuming, Zhang Zhen

    JOURNAL OF ALGEBRA   560 巻   頁: 416 - 441   2020年10月

     詳細を見る

    記述言語:日本語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Journal of Algebra  

    Let A be a finite-dimensional self-injective algebra over an algebraically closed field, C a stably quasi-serial component (i.e. its stable part is a tube) of rank n of the Auslander-Reiten quiver of A, and S be a simple-minded system of the stable module category mod_A. We show that the intersection S∩C is of size strictly less than n, and consists only of modules with quasi-length strictly less than n. In particular, all modules in the homogeneous tubes of the Auslander-Reiten quiver of A cannot be in any simple-minded system.

    DOI: 10.1016/j.jalgebra.2020.05.024

    Web of Science

    Scopus

  5. Auslander-Gorenstein algebras from Serre-formal algebras via replication 査読有り

    Chan Aaron, Iyama Osamu, Marczinzik Rene

    ADVANCES IN MATHEMATICS   345 巻   頁: 222 - 262   2019年3月

     詳細を見る

    記述言語:日本語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Advances in Mathematics  

    We introduce a new family of algebras, called Serre-formal algebras. They are Iwanaga–Gorenstein algebras for which applying any power of the Serre functor on any indecomposable projective module, the result remains a stalk complex. Typical examples are given by (higher) hereditary algebras and self-injective algebras; it turns out that other interesting algebras such as (higher) canonical algebras are also Serre-formal. Starting from a Serre-formal algebra, we consider a series of algebras – called the replicated algebras – given by certain subquotients of its repetitive algebra. We calculate the self-injective dimension and dominant dimension of all such replicated algebras and determine which of them are minimal Auslander–Gorenstein, i.e. when the two dimensions are finite and equal to each other. In particular, we show that there exist infinitely many minimal Auslander–Gorenstein algebras in such a series if, and only if, the Serre-formal algebra is twisted fractionally Calabi–Yau. We apply these results to a construction of algebras from Yamagata [29], called SGC extensions, given by iteratively taking the endomorphism ring of the smallest generator-cogenerator. We give a sufficient condition so that the SGC extensions and replicated algebras coincide. Consequently, in such a case, we obtain explicit formulae for the self-injective dimension and dominant dimension of the SGC extension algebras.

    DOI: 10.1016/j.aim.2019.01.010

    Web of Science

    Scopus

  6. On Representation-Finite Gendo-Symmetric Biserial Algebras 査読有り

    Chan Aaron, Marczinzik Rene

    ALGEBRAS AND REPRESENTATION THEORY   22 巻 ( 1 ) 頁: 141 - 176   2019年2月

     詳細を見る

    記述言語:日本語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Algebras and Representation Theory  

    Gendo-symmetric algebras were introduced by Fang and Koenig (Trans. Amer. Math. Soc., 7:5037–5055, 2016) as a generalisation of symmetric algebras. Namely, they are endomorphism rings of generators over a symmetric algebra. This article studies various algebraic and homological properties of representation-finite gendo-symmetric biserial algebras. We show that the associated symmetric algebras for these gendo-symmetric algebras are Brauer tree algebras, and classify the generators involved using Brauer tree combinatorics. We also study almost ν-stable derived equivalences, introduced in Hu and Xi (I. Nagoya Math. J., 200:107–152, 2010), between representation-finite gendo-symmetric biserial algebras. We classify these algebras up to almost ν-stable derived equivalence by showing that the representative of each equivalence class can be chosen as a Brauer star with some additional combinatorics. We also calculate the dominant, global, and Gorenstein dimensions of these algebras. In particular, we found that representation-finite gendo-symmetric biserial algebras are always Iwanaga-Gorenstein algebras.

    DOI: 10.1007/s10468-017-9760-6

    Web of Science

    Scopus

  7. Diagrams and discrete extensions for finitary 2-representations 査読有り

    Chan, A., Mazorchuk, V.

    Mathematical Proceedings of the Cambridge Philosophical Society   166 巻 ( 2 ) 頁: 325 - 352   2019年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    DOI: 10.1017/S0305004117000858

    Scopus

  8. Classification of two-term tilting complexes over Brauer graph algebras 査読有り

    Adachi Takahide, Aihara Takuma, Chan Aaron

    MATHEMATISCHE ZEITSCHRIFT   290 巻 ( 1-2 ) 頁: 1 - 36   2018年10月

     詳細を見る

    記述言語:日本語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Mathematische Zeitschrift  

    Using only the combinatorics of its defining ribbon graph, we classify the two-term tilting complexes, as well as their indecomposable summands, of a Brauer graph algebra. As an application, we determine precisely the class of Brauer graph algebras which are tilting-discrete.

    DOI: 10.1007/s00209-017-2006-9

    Web of Science

    Scopus

  9. Simple-minded systems, configurations and mutations for representation-finite self-injective algebras

    Aaron CHAN, Steffen KOENIG, Yuming LIU

    Journal of Pure and Applied Algebra   219 巻 ( 6 ) 頁: 1940-1961   2014年8月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

  10. Two-term tilting complexes and simple-minded systems of self-injective Nakayama algebras

    Aaron CHAN

    Algebra and Representation theory   18 巻 ( 1 ) 頁: 183-203   2014年6月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

  11. Some homological properties of tensor and wreath products of quasi-hereditary algebras

    Aaron CHAN

    Communication in Algebras   42 巻 ( 6 ) 頁: 2368-2379   2014年2月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

▼全件表示

MISC 1

  1. A geometric model of Brauer graph algebras

    Takahide Adachi, Aaron Chan  

    Proceedings of the 51st Symposium on Ring Theory and Representation Theory   2019年2月

講演・口頭発表等 3

  1. Rings and representation theory

    Aaron CHAN

    49th Japan Ring Symposium 

     詳細を見る

    開催年月日: 2016年8月 - 2016年9月

    記述言語:英語   会議種別:口頭発表(一般)  

    国名:日本国  

  2. Representation theory 国際会議

    Aaron CHAN

    Workshop on Brauer graph algebras 

     詳細を見る

    開催年月日: 2016年3月

    記述言語:英語   会議種別:口頭発表(一般)  

    国名:ドイツ連邦共和国  

  3. Representation theory

    Aaron CHAN

    39th ARTIN meeting 

     詳細を見る

    開催年月日: 2014年3月

    記述言語:英語   会議種別:口頭発表(一般)  

    国名:グレートブリテン・北アイルランド連合王国(英国)  

共同研究・競争的資金等の研究課題 1

  1. Koszul algebra and Koszul duality

    2022年3月

    Ryo Kanda, Hiroyuki Minamoto

      詳細を見る

    担当区分:研究代表者 

    配分額:50000円 ( 直接経費:50000円 )

科研費 2

  1. Tilting theory of gentle algebras via surface combinatorics

    2019年10月 - 2020年10月

    Grant-in-Aid for Scientific Research 

      詳細を見る

    担当区分:研究代表者 

  2. Tilting theory of gentle algebras via surface combinatorics

    研究課題/研究課題番号:19K23401  2019年8月 - 2023年3月

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Research Activity Start-up

      詳細を見る

    担当区分:研究代表者 

    配分額:2860000円 ( 直接経費:2200000円 、 間接経費:660000円 )