Updated on 2023/09/10

写真a

 
GOSHIMA, Gohta
 
Organization
Graduate School of Science Professor
Graduate School
Graduate School of Science
Undergraduate School
School of Science
Title
Professor

Degree 1

  1. 博士(理学) ( 2002.3 ) 

Research Interests 3

  1. スピンドル

  2. 微小管

  3. 細胞分裂

Research Areas 1

  1. Others / Others  / Cell Biology

Education 1

  1. Kyoto University   Graduate School, Division of Natural Science

    1999.4 - 2002.3

      More details

    Country: Japan

Professional Memberships 2

  1. 日本細胞生物学会

  2. 日本分子生物学会

Awards 3

  1. 第15回(平成30年度)日本学術振興会賞

    2019.2   独立行政法人 日本学術振興会  

     More details

    Country:Japan

  2. 井上リサーチアウォード

    2010.2   井上科学振興財団  

     More details

    Country:Japan

  3. HFSP Career Development Award

    2008   HFSPO  

 

Papers 64

  1. Draft Genome Sequences of Two Dothideomycetes Strains, NU30 and NU200, Derived from the Marine Environment around Sugashima, Japan

    Kurita Gakuho, Goshima Gohta, Uesaka Kazuma

    MICROBIOLOGY RESOURCE ANNOUNCEMENTS   Vol. 12 ( 5 )   2023.5

  2. Armadillo repeat-containing kinesin represents the versatile plus-end-directed transporter in Physcomitrella

    Yoshida Mari W., Hakozaki Maya, Goshima Gohta

    NATURE PLANTS   Vol. 9 ( 5 ) page: 733 - +   2023.5

  3. Control of Plant Cell Growth and Proliferation by MO25A, a Conserved Major Component of the Mammalian Sterile 20–Like Kinase Pathway Reviewed International coauthorship

    Plant and Cell Physiology   Vol. 64 ( 3 ) page: 336 - 351   2023.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1093/pcp/pcad005

    Web of Science

  4. Spindle motility skews division site determination during asymmetric cell division in Physcomitrella

    Kozgunova Elena, Yoshida Mari W., Reski Ralf, Goshima Gohta

    NATURE COMMUNICATIONS   Vol. 13 ( 1 )   2022.5

     More details

  5. Mitotic spindle formation in the absence of Polo kinase Invited Reviewed

    Kim J, Goshima G.

    Proc Natl Acad Sci USA   Vol. 119 ( 12 ) page: e2114429119   2022.3

     More details

    Authorship:Last author, Corresponding author   Language:English  

    DOI: 10.1073/pnas.2114429119

    Web of Science

  6. Division site determination during asymmetric cell division in plants Reviewed

    Yi Peishan, Goshima Gohta

    PLANT CELL   Vol. 34 ( 6 ) page: 2120 - 2139   2022.3

     More details

    Language:Japanese  

    DOI: 10.1093/plcell/koac069

    Web of Science

  7. Physical properties of the cytoplasm modulate the rates of microtubule polymerization and depolymerization Reviewed

    Molines Arthur T., Lemiere Joel, Gazzola Morgan, Steinmark Ida Emilie, Edrington Claire H., Hsu Chieh-Ting, Real-Calderon Paula, Suhling Klaus, Goshima Gohta, Holt Liam J., Thery Manuel, Brouhard Gary J., Chang Fred

    DEVELOPMENTAL CELL   Vol. 57 ( 4 ) page: 466 - +   2022.2

     More details

  8. Growth and division mode plasticity is dependent on cell density in marine-derived black yeasts Reviewed

    GENES TO CELLS   Vol. 27 ( 2 ) page: 124 - 137   2022.2

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:English  

    DOI: 10.1111/gtc.12916

    Web of Science

  9. Fifteen compelling open questions in plant cell biology Reviewed

    Roeder Adrienne H. K., Otegui Marisa S., Dixit Ram, Anderson Charles T., Faulkner Christine, Zhang Yan, Harrison Maria J., Kirchhelle Charlotte, Goshima Gohta, Coate Jeremy E., Doyle Jeff J., Hamant Olivier, Sugimoto Keiko, Dolan Liam, Meyer Heather, Ehrhardt David W., Boudaoud Arezki, Messina Carlos

    PLANT CELL   Vol. 34 ( 1 ) page: 72 - 102   2022.1

     More details

    Language:English  

    DOI: 10.1093/plcell/koab225

    Web of Science

  10. Cell tip growth underlies injury response of marine macroalgae Invited Reviewed

    Shirae-Kurabayashi M, Edzuka T, Suzuki M, Goshima G.

    PLoS ONE   Vol. 17 ( 3 ) page: e0264827   2022

     More details

  11. SS Microtubule-associated proteins promote microtubule generation in the absence of gamma-tubulin in human colon cancer cells Reviewed

    Tsuchiya Kenta, Goshima Gohta

    JOURNAL OF CELL BIOLOGY   Vol. 220 ( 12 )   2021.12

     More details

    Authorship:Last author, Corresponding author   Language:English  

    DOI: 10.1083/jcb.202104114

    Web of Science

  12. The 3D architecture and molecular foundations of de novo centriole assembly via bicentrioles Reviewed

    Pereira Sonia Gomes, Sousa Ana Laura, Nabais Catarina, Paixao Tiago, Holmes Alexander J., Schorb Martin, Goshima Gohta, Tranfield Erin M., Becker Jorg D., Bettencourt-Dias Monica

    CURRENT BIOLOGY   Vol. 31 ( 19 ) page: 4340 - +   2021.10

     More details

  13. Plant stem cell research is uncovering the secrets of longevity and persistent growth Reviewed

    Umeda Masaaki, Ikeuchi Momoko, Ishikawa Masaki, Ito Toshiro, Nishihama Ryuichi, Kyozuka Junko, Torii Keiko U., Satake Akiko, Goshima Gohta, Sakakibara Hitoshi

    PLANT JOURNAL   Vol. 106 ( 2 ) page: 326 - 335   2021.4

     More details

    Language:English  

    DOI: 10.1111/tpj.15184

    Web of Science

  14. Ran-GTP Is Non-essential to Activate NuMA for Mitotic Spindle-Pole Focusing but Dynamically Polarizes HURP Near Chromosomes Reviewed International journal

    Tsuchiya Kenta, Hayashi Hisato, Nishina Momoko, Okumura Masako, Sato Yoshikatsu, Kanemaki Masato T., Goshima Gohta, Kiyomitsu Tomomi

    CURRENT BIOLOGY   Vol. 31 ( 1 ) page: 115 - +   2021.1

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.cub.2020.09.091

    Web of Science

  15. Rho of Plants GTPases and Cytoskeletal Elements Control Nuclear Positioning and Asymmetric Cell Division during Physcomitrella patens Branching Reviewed International journal

    Yi Peishan, Goshima Gohta

    CURRENT BIOLOGY   Vol. 30 ( 14 ) page: 2860 - +   2020.7

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.cub.2020.05.022

    Web of Science

  16. Transient cotransformation of CRISPR/Cas9 and oligonucleotide templates enables efficient editing of target loci in Physcomitrella patens Reviewed International journal

    Yi Peishan, Goshima Gohta

    PLANT BIOTECHNOLOGY JOURNAL   Vol. 18 ( 3 ) page: 599 - 601   2020.3

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

    DOI: 10.1111/pbi.13238

    Web of Science

  17. Kinesin-13 and Kinesin-8 Function during Cell Growth and Division in the Moss Physcomitrella patens([OPEN]) Reviewed International journal

    Leong Shu Yao, Edzuka Tomoya, Goshima Gohta, Yamada Moe

    PLANT CELL   Vol. 32 ( 3 ) page: 683 - 702   2020.3

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

    DOI: 10.1105/tpc.19.00521

    Web of Science

  18. A versatile microfluidic device for highly inclined thin illumination microscopy in the moss Physcomitrella patens Reviewed International journal

    Kozgunova Elena, Goshima Gohta

    SCIENTIFIC REPORTS   Vol. 9   2019.10

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/s41598-019-51624-9

    Web of Science

  19. Editorial overview: Cell division - from molecules to tissues Invited International coauthorship International journal

    Goshima Gohta, Bellaiche Yohanns

    CURRENT OPINION IN CELL BIOLOGY   Vol. 60   page: III - V   2019.10

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.ceb.2019.06.006

    Web of Science

  20. Kinetochore protein depletion underlies cytokinesis failure and somatic polyploidization in the moss Physcomitrella patens Reviewed International journal

    Kozgunova Elena, Nishina Momoko, Goshima Gohta

    ELIFE   Vol. 8   2019.3

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.7554/eLife.43652

    Web of Science

  21. Drosophila kinesin-8 stabilizes the kinetochore-microtubule interaction Reviewed International journal

    Edzuka Tomoya, Goshima Gohta

    JOURNAL OF CELL BIOLOGY   Vol. 218 ( 2 ) page: 474 - 488   2019.2

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1083/jcb.201807077

    Web of Science

  22. Moss Kinesin-14 KCBP Accelerates Chromatid Motility in Anaphase Reviewed International journal

    Yoshida Mari W., Yamada Moe, Goshima Gohta

    CELL STRUCTURE AND FUNCTION   Vol. 44 ( 2 ) page: 95 - 104   2019

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

    DOI: 10.1247/csf.19015

    Web of Science

  23. Identification of 15 New Bypassable Essential Genes of Fission Yeast Reviewed International coauthorship International journal

    Takeda Aoi, Saitoh Shigeaki, Ohkura Hiroyuki, Sawin Kenneth E., Goshima Gohta

    CELL STRUCTURE AND FUNCTION   Vol. 44 ( 2 ) page: 113 - 119   2019

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

    DOI: 10.1247/csf.19025

    Web of Science

  24. Microtubule nucleation and organization without centrosomes Invited Reviewed International journal

    Yi Peishan, Goshima Gohta

    CURRENT OPINION IN PLANT BIOLOGY   Vol. 46   page: 1 - 7   2018.12

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.pbi.2018.06.004

    Web of Science

  25. The KCH Kinesin Drives Nuclear Transport and Cytoskeletal Coalescence to Promote Tip Cell Growth in Physcomitrella patens

    Yamada Moe, Goshima Gohta

    PLANT CELL   Vol. 30 ( 7 ) page: 1496-1510   2018.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1105/tpc.18.00038

    Web of Science

  26. SPIRAL2 Stabilises Endoplasmic Microtubule Minus Ends in the Moss Physcomitrella patens Reviewed International journal

    Leong Shu Yao, Yamada Mot, Yanagisawa Naoki, Goshima Gohta

    CELL STRUCTURE AND FUNCTION   Vol. 43 ( 1 ) page: 53 - 60   2018

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1247/csf.18001

    Web of Science

  27. Human microcephaly ASPM protein is a spindle pole-focusing factor that functions redundantly with CDK5RAP2

    Tungadi Elsa A., Ito Ami, Kiyomitsu Tomomi, Goshima Gohta

    JOURNAL OF CELL SCIENCE   Vol. 130 ( 21 ) page: 3676-3684   2017.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1242/jcs.203703

    Web of Science

  28. Cytoplasmic MTOCs control spindle orientation for asymmetric cell division in plants

    Kosetsu Ken, Murata Takashi, Yamadaa Moe, Nishina Momoko, Boruc Joanna, Hasebe Mitsuyasu, Van Damme Daniel, Goshima Gohta

    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA   Vol. 114 ( 42 ) page: E8847-E8854   2017.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1073/pnas.1713925114

    Web of Science

  29. 14-3-3 regulation of Ncd reveals a new mechanism for targeting proteins to the spindle in oocytes

    Beaven Robin, Bastos Ricardo Nunes, Spanos Christos, Rome Pierre, Cullen C. Fiona, Rappsilber Juri, Giet Regis, Goshima Gohta, Ohkura Hiroyuki

    JOURNAL OF CELL BIOLOGY   Vol. 216 ( 10 ) page: 3029-3039   2017.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1083/jcb.201704120

    Web of Science

  30. Multiple kinesin-14 family members drive microtubule minus end-directed transport in plant cells

    Yamada Moe, Tanaka-Takiguchi Yohko, Hayashi Masahito, Nishina Momoko, Goshima Gohta

    JOURNAL OF CELL BIOLOGY   Vol. 216 ( 6 ) page: 1705-1714   2017.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1083/jcb.201610065

    Web of Science

  31. Mitotic Spindle Assembly in Land Plants: Molecules and Mechanisms Invited Reviewed International journal

    Yamada Moe, Goshima Gohta

    BIOLOGY-BASEL   Vol. 6 ( 1 )   2017.3

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.3390/biology6010006

    Web of Science

  32. Shortening of Microtubule Overlap Regions Defines Membrane Delivery Sites during Plant Cytokinesis

    de Keijzer Jeroen, Kieft Henk, Ketelaar Tijs, Goshima Gohta, Janson Marcel E.

    CURRENT BIOLOGY   Vol. 27 ( 4 ) page: 514-520   2017.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.cub.2016.12.043

    Web of Science

  33. Intra-spindle Microtubule Assembly Regulates Clustering of Microtubule-Organizing Centers during Early Mouse Development Reviewed

    Watanabe S, Shioi G, Furuta Y, Goshima G.

    Cell Rep   Vol. 15   page: 54-60   2016.4

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  34. Augmin shapes the anaphase spindle for efficient cytokinetic furrow ingression and abscission Reviewed

    Uehara R, Kamasaki T, Hiruma S, Poser I, Yoda K, Yajima J, Gerlich DW, Goshima G.

    Mol Biol Cell   Vol. 27   page: 812-27   2016.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  35. Live Cell Microscopy-Based RNAi Screening in the Moss Physcomitrella patens Invited

    Miki T, Nakaoka Y, Goshima G.

    Methods Mol Biol   Vol. 1470   page: 225-46   2016

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  36. Imaging Mitosis in the Moss Physcomitrella patens Invited

    Yamada M, Miki T, Goshima G.

    Methods Mol Biol   Vol. 1413   page: 263-82   2016

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  37. Five factors can reconstitute all three phases of microtubule polymerization dynamics Reviewed

    Moriwaki T, Goshima G

    J Cell Biol   Vol. 215 ( 3 ) page: 357   2016

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  38. The microtubule catastrophe promoter Sentin delays stable kinetochore-microtubule attachment in oocytes. Reviewed

    Głuszek AA, Cullen CF, Li W, Battaglia RA, Radford SJ, Costa MF, McKim KS, Goshima G, Ohkura H.

    J Cell Biol   Vol. 211   page: 1113-20   2015.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  39. Microcephaly protein Asp focuses the minus ends of spindle microtubules at the pole and within the spindle. Reviewed

    Ito A, Goshima G.

    J. Cell Biol.   Vol. 211   page: 999-1009   2015.12

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  40. Clustering of a kinesin-14 motor enables processive retrograde microtubule-based transport in plants

    Jonsson E, Yamada M, Vale RD, Goshima G.

    Nature Plants   Vol. 1   page: 15087   2015.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  41. RNAi screening identifies the armadillo repeat-containing kinesins responsible for microtubule-dependent nuclear positioning in Physcomitrella patens.

    Miki T, Nishina M, Goshima G.

    Plant Cell Physiol.   Vol. 56 ( 4 ) page: 737-749   2015.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  42. Cytoplasmic nucleation and atypical branching nucleation generate endoplasmic microtubules in Physcomitrella patens Reviewed

    Nakaoka Y, Kimura A, Tani T, Goshima G.

    Plant Cell   Vol. 27 ( 1 ) page: 228-242   2015.1

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  43. NACK kinesin is required for metaphase chromosome alignment and cytokinesis in the moss Physcomitrella patens.

    Naito H, Goshima G.

    Cell Structure and Function.   Vol. 40 ( 1 ) page: 31-41   2015

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  44. Gohta Goshima: questing for answers on the mitotic spindle

    Goshima G, Sedwick C.

    J Cell Biol     2014.7

     More details

    Language:English  

    DOI: 10.1083/jcb.2062pi

  45. Identification of the augmin complex in the filamentous fungus Aspergillus nidulans.

    Edzuka T, Yamada L, Kanamaru K, Sawada H, Goshima G.

    PLoS One     2014.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1371/journal.pone.0101471

  46. Endogenous localizome identifies 43 mitotic kinesins in a plant cell

    Miki T, Naito H, Nishina M, Goshima G.

    Proc Natl Acad Sci U S A     2014.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1073/pnas.1311243111

  47. Friction on MAP determines its traveling direction on microtubules.

        2014.4

     More details

    Language:English  

    DOI: 10.1016/j.devcel.2014.03.022

  48. Genes involved in centrosome-independent mitotic spindle assembly in Drosophila S2 cells

    Proc Natl Acad Sci U S A   Vol. 110 ( 49 ) page: 19808-13   2013.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  49. Loss of a Rho-Regulated Actin Nucleator, mDia2, Impairs cytokinesis during mouse fetal erythropoiesis.

    Watanabe S, De Zan T, Ishizaki T, Yasuda S, Kamijo H, Yamada D, Aoki T, Kiyonari H, Kaneko H, Shimizu R, Yamamoto M, Goshima G, Narumiya S.

      Vol. 5 ( 4 ) page: 926-32   2013.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  50. MICROTUBULE-ASSOCIATED PROTEIN65 is essential for maintenance of phragmoplast bipolarity and formation of the cell plate in Physcomitrella patens.

    Kosetsu K, de Keijzer J, Janson ME, Goshima G.

    Plant Cell     2013.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1105/tpc.113.117432

  51. Augmin-dependent microtubule nucleation at microtubule walls in the spindle. Reviewed

    Kamasaki T, O'Toole E, Kita S, Osumi M, Usukura J, McIntosh JR, Goshima G.

    J. Cell Biol.   Vol. 202 ( 1 ) page: 25-33   2013

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  52. Aurora B and Kif2A control microtubule length for assembly of a functional central spindle during anaphase. Reviewed

    Uehara R, Tsukada Y, Kamasaki T, Poser I, Yoda K, Gerlich DW, Goshima G.

      Vol. 202 ( 4 ) page: 623-36   2013

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  53. An inducible RNA interference system in Physcomitrella patens reveals a dominant role of augmin in phragmoplast microtubule generation Reviewed

    Nakaoka Y, Miki T, Fujioka R, Uehara R, Tomioka A, Obuse C, Kubo M, Hiwatashi Y, Goshima G.

    Plant Cell   Vol. 24 ( 4 ) page: 1478-93   2012.4

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  54. Reconstitution of dynamic microtubules with Drosophila XMAP215, EB1, and Sentin Reviewed

    Li W, Moriwaki T, Tani T, Watanabe T, Kaibuchi K, Goshima G.

    J. Cell Biol.   Vol. 199 ( 5 ) page: 849-62   2012

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  55. Identification of a TPX2-like microtubule-associated protein in Drosophila. Reviewed

    Goshima G.

    PLoS One   Vol. 6   page: e28120   2011.11

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  56. EB1 promotes microtubule dynamics by recruiting Sentin in Drosophila cells. Reviewed

    Li W, Miki T, Watanabe T, Kakeno M, Sugiyama I, Kaibuchi K, Goshima G.

    J Cell Biol.   Vol. 193 ( 6 ) page: 973-983   2011.6

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  57. Control of mitotic spindle length. Invited Reviewed

    Goshima G, Scholey JM.

    Annu Rev Cell Dev Biol   Vol. 26   page: 21-57   2010.11

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  58. Functional central spindle assembly requires de novo microtubule generation in the interchromosomal region during anaphase. Reviewed

    Uehara R, Goshima G.

    Journal of Cell Biology   Vol. 191   page: 259-267   2010.10

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  59. Determinants of myosin II cortical localization during cytokinesis. Reviewed

    Uehara R, Goshima G, Mabuchi I, Vale RD, Spudich JA, Griffis ER.

    Current Biology   Vol. 22   page: 1080-1085   2010.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  60. *New look inside the spindle: microtubule-dependent microtuble generation within the spindle. Invited Reviewed

    Goshima G, Kimura A

    Current Opinion in Cell Biology   Vol. Epub   2010.2

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  61. *The augmin complex plays a critical role in spindle microtubule generation for mitotic progression and cytokinesis in human cells. Reviewed

    Uehara R, Nozawa RS, Tomioka A, Petry S, Vale RD, Obuse C, Goshima G.

    Proc Natl Acad Sci U S A.   Vol. 106   page: 6998-7003   2009.4

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  62. *Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle Reviewed

    Gohta Goshima, Mirjam Mayer, Nan Zhang, Nico Stuurman, Ronald D. Vale

    Journal of Cell Biology   Vol. 181   page: 421-429   2008.5

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    Since the discovery of gamma-tubulin, attention has focused on its involvement as a microtubule nucleator at the centrosome. However, mislocalization of gamma-tubulin away from the centrosome does not inhibit mitotic spindle formation in Drosophila melanogaster, suggesting that a critical function for gamma-tubulin might reside elsewhere. A previous RNA interference (RNAi) screen identified five genes (Dgt2-6) required for localizing gamma-tubulin to spindle microtubules. We show that the Dgt proteins interact, forming a stable complex. We find that spindle microtubule generation is substantially reduced after knockdown of each Dgt protein by RNAi. Thus, the Dgt complex that we name "augmin" functions to increase microtubule number. Reduced spindle microtubule generation after augmin RNAi, particularly in the absence of functional centrosomes, has dramatic consequences on mitotic spindle formation and function, leading to reduced kinetochore fiber formation, chromosome misalignment, and spindle bipolarity defects. We also identify a functional human homologue of Dgt6. Our results suggest that an important mitotic function for gamma-tubulin may lie within the spindle, where augmin and gamma-tubulin function cooperatively to amplify the number of microtubules.

  63. Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Reviewed

    Guo Y, Walther TC, Rao M, Stuurman N, Goshima G, Terayama K, Wong JS, Vale RD, Walter P, Farese RV.

    Nature   Vol. 453 ( 7195 ) page: 657-661   2008.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Eukaryotic cells store neutral lipids in cytoplasmic lipid droplets enclosed in a monolayer of phospholipids and associated proteins. These dynamic organelles serve as the principal reservoirs for storing cellular energy and for the building blocks for membrane lipids. Excessive lipid accumulation in cells is a central feature of obesity, diabetes and atherosclerosis, yet remarkably little is known about lipid-droplet cell biology. Here we show, by means of a genome-wide RNA interference (RNAi) screen in Drosophila S2 cells that about 1.5% of all genes function in lipid-droplet formation and regulation. The phenotypes of the gene knockdowns sorted into five distinct phenotypic classes. Genes encoding enzymes of phospholipid biosynthesis proved to be determinants of lipid-droplet size and number, suggesting that the phospholipid composition of the monolayer profoundly affects droplet morphology and lipid utilization. A subset of the Arf1-COPI vesicular transport proteins also regulated droplet morphology and lipid utilization, thereby identifying a previously unrecognized function for this machinery. These phenotypes are conserved in mammalian cells, suggesting that insights from these studies are likely to be central to our understanding of human diseases involving excessive lipid storage.

  64. *Genes required for mitotic spindle assembly in Drosophila S2 cells Reviewed

    Gohta Goshima, Roy Wollman, Sarah S. Goodwin, Nan Zhang, Jonathan M. Scholey, Ronald D. Vale and Nico Stuurman.

    Science   Vol. 316 ( 5823 ) page: 417-421   2007.7

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    The formation of a metaphase spindle, a bipolar microtubule array with centrally aligned chromosomes, is a prerequisite for the faithful segregation of a cell's genetic material. Using a full-genome RNA interference screen of Drosophila S2 cells, we identified about 200 genes that contribute to spindle assembly, more than half of which were unexpected. The screen, in combination with a variety of secondary assays, led to new insights into how spindle microtubules are generated; how centrosomes are positioned; and how centrioles, centrosomes, and kinetochores are assembled.

▼display all

Books 2

  1. Assessment of mitotic spindle phenotypes in Drosophila S2 cells.

    Gohta Goshima( Role: Sole author)

    Methods Cell Biol.  2010 

     More details

    Language:English

  2. RNAi in Drosophila S2 cells as a tool for studying cell cycle progression

    Bettencourt-Dias M, Goshima G.( Role: Joint author)

    Methods Mol Biol.  2009 

     More details

    Language:English

Presentations 10

  1. Microtubule and motors in plants Invited International conference

     More details

    Event date: 2023.2

    Language:English   Presentation type:Public lecture, seminar, tutorial, course, or other speech  

    Country:France  

  2. Evolutionary replacement of genes required for cell division and intracellular transport. Invited International conference

     More details

    Event date: 2023.2

    Language:English   Presentation type:Public lecture, seminar, tutorial, course, or other speech  

    Country:Switzerland  

  3. Convention and novelty - studying typical cellular processes in atypical cell models Invited International conference

    2022.11.30 

     More details

    Event date: 2022.11 - 2022.12

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  4. 細胞分裂の宝探し Invited

    五島剛太

    細胞分裂研究会  2022.7.28 

     More details

    Event date: 2022.7

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  5. Growth and division mode plasticity is dependent on in marine-derived black yeasts

    2021.12.2 

     More details

    Event date: 2021.12

    Presentation type:Oral presentation (general)  

    Country:Japan  

  6. Microtubule generation within the spindle International conference

    FASEB meeting “Mitotic spindle assembly and function" 

     More details

    Event date: 2009.9

    Language:English   Presentation type:Oral presentation (general)  

  7. Genome-wide RNAi Screen Identifies Genes Required for Mitotic Spindle Formation in Animal Cells International conference

    9th EMBL-NIBB joint symposium on Functional Imaging 

     More details

    Event date: 2009.4

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  8. Microtubule generation within the mitotic spindle

    2nd International Symposium on Bio-nanosystems 

     More details

    Event date: 2008.11

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  9. Roles of Dgt-dependent microtubule generation in mitosis

     More details

    Event date: 2007.12

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  10. Mechanisms of Microtubule Generation during Mitotic Spindle Assembly International conference

    Gordon Research Conference (Motile and Contractile Systems) 

     More details

    Event date: 2007.7

    Language:English   Presentation type:Oral presentation (invited, special)  

    Multiple mechanisms of microtubule generation during mitotic spindle assembly were discussed.

▼display all

Research Project for Joint Research, Competitive Funding, etc. 2

  1. Plasticity of non-centrosomal microtubule networks

    2011.10 - 2014.9

      More details

    Grant type:Competitive

  2. 細胞分裂装置が働く仕組みの研究

    2011.2 - 2014.3

    最先端・次世代研究開発プログラム 

      More details

    Grant type:Competitive

KAKENHI (Grants-in-Aid for Scientific Research) 16

  1. 「モデル海藻」確立

    Grant number:22K19308  2022.6 - 2025.3

    科学研究費助成事業  挑戦的研究(萌芽)

    五島 剛太

      More details

    Authorship:Principal investigator 

    Grant amount:\6370000 ( Direct Cost: \4900000 、 Indirect Cost:\1470000 )

    動物・植物・酵母の方法論を適用し、海藻の分子細胞生物学の基盤確立に挑戦する。もし研究が成功すれば、モデル動植物で日常的に行われている実験が可能になる系が初めて立ち上がることになり、波及効果は大きい。海藻の発生、細胞生理、環境応答、受精などの知見の蓄積を加速させるなど、これまでの海藻の生物学の体系を大きく変革させる潜在性を有する。また、モデル海藻と共生細菌から生理活性物質「海藻ホルモン」を見つけ出すことで創薬分野などへの貢献が見込めるなど、研究成果の多分野への波及が見込める。

  2. 細胞分裂面決定を司る新機構の解明

    Grant number:22H02644  2022.4 - 2026.3

    科学研究費助成事業  基盤研究(B)

    五島 剛太

      More details

    Authorship:Principal investigator 

    Grant amount:\17290000 ( Direct Cost: \13300000 、 Indirect Cost:\3990000 )

    細胞が対称あるいは非対称に分裂し、同一のあるいは互いに異なる性質を持つ娘細胞を作り出すことは、多細胞生物の発生に必要である。娘細胞の性質の差異には、細胞分裂面がどこにできるかが鍵となる。ヒメツリガネゴケの幹細胞で細胞分裂研究を展開してきた。そして最近、この系では分裂中に分裂面が決定されること強く示唆するデータを得た。本研究では、この独自に見出した分裂面決定過程がどのタンパク質のどのような働きにより駆動されるのかを明らかにする。さらに、見出した機構が他の細胞種で保存されているか、検証する。

  3. 微小管系輸送モーターの働きによる周期的な分枝形成機構

    Grant number:22H04717  2022.4 - 2024.3

    科学研究費助成事業  新学術領域研究(研究領域提案型)

    五島 剛太

      More details

    Authorship:Principal investigator 

    Grant amount:\7800000 ( Direct Cost: \6000000 、 Indirect Cost:\1800000 )

    分枝、分岐は細胞壁を有する生物一般の代表的な成長様式の一つで、しばしば周期性を示す。本研究では、周期的な分枝形成の原理の解明を目指す。最近、微小管系輸送モーター・キネシンの1種の変異により、通常は細胞あたり一度に一つしかできない分枝が複数生じ、ヒメツリガネゴケ原糸体の分枝周期性が変調することを見出した。そこで、キネシンにより何が運ばれるかを突き止め、次の仮説を検証する。「キネシンは分枝成長に必要な物質を運び続け他の場所への物質集積を防ぐことで分枝を一箇所だけに限定させる。」

  4. ライブ顕微イメージングを通した海生真菌類の多様性と表現型可塑性の研究

    Grant number:22H04884  2022.4 - 2024.3

    科学研究費助成事業  新学術領域研究(研究領域提案型)

    五島 剛太

      More details

    Authorship:Principal investigator 

    Grant amount:\8320000 ( Direct Cost: \6400000 、 Indirect Cost:\1920000 )

    海には多様な真菌類(糸状菌、酵母)が生息しているが、同じ微生物のバクテリアと比べても、生態系は全く掴めていないのが現状である。さらに、最近、実験所の前の海で採集した海生酵母数種について、増殖表現型に可塑性があることを発見した。これまで実験室でプレート培養し記載されてきた成長や分裂の様式は、再検討が必要である。本研究では、海生真菌類の多様性の把握に加え、海生真菌類はどのような様式で増殖しているのかをライブ顕微鏡観察により明らかにすること、そして、表現型の可塑性の基盤となる分子機構の解明を目指す。

  5. 必須遺伝子ロスを補う潜在的代替機構の網羅的探索

    Grant number:19K22383  2019.6 - 2023.3

    科学研究費助成事業  挑戦的研究(萌芽)

    五島 剛太

      More details

    Authorship:Principal investigator 

    Grant amount:\6500000 ( Direct Cost: \5000000 、 Indirect Cost:\1500000 )

    分裂酵母を材料に、通常の培養条件で増殖に必須であることが知られている遺伝子を完全に失った細胞の増殖能力を実験的に回復させることを試みる。そして、増殖機能が回復した要因を分子レベルで突き止めることで、その必須遺伝子のロスを代替するサブ機構を明らかにする。多くの遺伝子を解析することで、必須遺伝子を失うという生物進化上のイベントについて、その一般的仕組みを考察する。たとえば、現在の主要機構が発達したのは必然だったのか、あるいは別の進化の方向性もあり得たのか、議論する。
    近年、モデル生物種では生育に必須であると示された遺伝子が、別の種では進化の過程で失われるという例が数多く認められた。これは、生物種によっては、必要不可欠と思われていた遺伝子がなくとも増殖可能であることを意味しており、その生物種には必須遺伝子がなくとも増殖を可能にする未発見の仕組みが存在することを示唆している。本研究では、真核細胞内の必須活動には、よく知られた「主要機構」だけでなく、これまで見逃されてきた「サブ機構」が存在し、特定の細胞種や環境下ではサブ機構が極めて重要な役割を担うという仮説を立てる。そして単細胞真核生物・分裂酵母を用いてこの機構の網羅的同定に挑み、細胞の備わった機構の全貌を解明する基盤の確立を目指している。
    19年度に、92の必須遺伝子のうち、20もの遺伝子について、他の遺伝子を人為的に変異させることで、本来なら増殖不可能な酵母の増殖能を回復させられた。一部のケースについて酵母ゲノムのDNA配列を解析したとこと、未知だった代替機能が亢進した可能性が示唆された(Takeda et al. 2019)。20年度からは、細胞分裂期の初期から最終盤にかけて幅広く重要な働きするとされてきたキナーゼ(Polo)を完全に欠失した分裂酵母が、複数のサプレッサー変異により生存率を回復することを見出したため、詳しい解析を行った。興味深いことに、サプレッサー変異の中には、この遺伝子産物の下流で働くとされてきた微小管生成因子やグルコース代謝に関する遺伝子が含まれ、さらには、生存を回復するために別のキナーゼ(CK1)が機能する必要があることを発見した。すなわち、CK1はサブ機構を担っていた(Kim and Goshima. 2022)。
    当初の目的に合致した研究成果をひとつ論文として発表できたため。
    今回見つけた「サブ機構」を担う遺伝子は他にも存在することがわかったため、それを明らかにすべく実験を進める。

  6. Revealing the mechanism of intracellular positioning of the nucleus using cutting-edge microscopes

    Grant number:18KK0202  2018.10 - 2023.3

    Grants-in-Aid for Scientific Research  Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))

      More details

    Authorship:Coinvestigator(s) 

  7. 植物幹細胞の新生・維持に必要な非対称分裂機構の解明

    Grant number:17H06471  2017.6 - 2022.3

    科学研究費助成事業  新学術領域研究(研究領域提案型)

    五島 剛太, 佐藤 豊

      More details

    Authorship:Principal investigator 

    Grant amount:\152360000 ( Direct Cost: \117200000 、 Indirect Cost:\35160000 )

    幹細胞の新生と維持にはしばしば「非対称分裂」(=2つの娘細胞が異なる性質を呈するような細胞分裂様式)を伴う。本計画研究班は、植物細胞が行う非対称分裂の一連の過程、すなわち「細胞極性の確立・分裂・分化と維持」機構の解明を通じて、植物生存の永続性を支える基盤となる植物幹細胞の新生と維持の分子基盤に迫るとともに、植物幹細胞生物学分野の創生に貢献することを目指している。
    最近確立したヒメツリガネゴケの新しい遺伝子編集技術(Yi and Goshima. 2020a)とライブイメージングを駆使して、幹細胞新生のための細胞の分枝と分裂の仕組みを明らかにした(Yi and Goshima. 2020b)。これは、植物が分枝によって効率よく自らの占める空間を広げていく仕組みについての新知見の提供となった。また、佐藤(分担)の同定した球状型イネ胚形成突然変異体の原因遺伝子のコケオルソログについて、3種類の変異体が得られ、著しい植物体成長異常が認められた。中でも、原糸体の分枝過程において、分枝や非対称分裂は起こるものの、娘細胞の成長が著しく遅延しているように見受けられ、幹細胞化過程に欠損があるという仮説が生まれた。
    イネのシュート部分を欠失する変異体の初期胚を用いて、野生型と遺伝子発現プロファイルを比較し幹細胞形成に関わる候補遺伝子として24種類の転写制御因子を明らかにした。計画代表の五島とともに解析しているイネ球状胚型変異について、イネ初期胚における遺伝子発現プロファイルの比較を野生型と変異型胚で行ったところ、胚発生の進行が発生過程で大きく遅れることが明らかになった。このことから、この球状型胚突然変異原因遺伝子が発生の進行速度を制御する新たな因子である可能性が示唆された。
    原著論文の発表や執筆に至ったことに加え、共同研究として進めているシグナル伝達関連因子について、ヒメツリガネゴケとイネでパラレルに表現型解析を進め、発生の進行速度を制御する共通機能があるという仮説を得ることができたため。
    (1)ヒメツリガネゴケ
    微小管結合因子、キネシンモーター、シグナル伝達分子、極性化に重要な役割を果たすことが濃厚な因子の破壊株を網羅的に作出する逆遺伝学を継続するとともに、見つかった興味深い遺伝子について、細胞内動態解析を行う。特に、佐藤と共同で進めているシグナル伝達関連因子の欠損表現型の定量的かつ長期的な観察実験は、観察法の改良も含めて精力的に進める。
    (2)イネ
    イネ胚形成過程で新規に構築される幹細胞の形成機構を明らかにすることを目指して以下の研究を行う。胚形成過程でシュートを欠失する突然変異系統由来の胚と野生型胚の遺伝子発現プロファイル解析により同定した必要な24の転写因子候補のうち幹細胞形成に必須に機能する遺伝子セットを明らかにするために、これら24遺伝子をランダムな複数セットに振り分けてカルスに同時発現させ、カルスからの再分化における幹細胞形成を向上させる遺伝子セットを同定する。

  8. Principles of pluripotent stem cells underlying plant vitality

    Grant number:17H06470  2017.6 - 2022.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

    Umeda Masaaki

      More details

    Authorship:Coinvestigator(s) 

    Our project aimed to understand the characteristics of plant stem cells, which support plant longevity and vitality, especially by focusing on their proliferative activity and pluripotency. To activate organic cooperation between research groups, we supported various activities including those involving animal scientists, thereby promoting collaborations. Besides, we conducted public relations activities to disseminate our research progress to Japan and abroad through international symposiums and via the homepage and newsletters.

  9. 系統的破壊を通じた巨大有糸分裂装置・スピンドルの分子モデル構築

    Grant number:17H01431  2017.4 - 2022.3

    科学研究費助成事業  基盤研究(A)

    五島 剛太, 清光 智美

      More details

    Authorship:Principal investigator 

    Grant amount:\41990000 ( Direct Cost: \32300000 、 Indirect Cost:\9690000 )

    本研究では、遺伝情報を姉妹細胞へ継承するのに必須の細胞分裂装置・スピンドル総体の分子モデルを構築することを目標に定めた。近年、多くのスピンドル形成因子が報告され、またスピンドル形成の各過程には複数の機構が存在することも示されたが、遺伝子解析法の不完全さにより相矛盾する報告も多く、分子モデルの構築には至っていない。本研究では、ロバストな遺伝子破壊法を用い、スピンドル形成因子候補の役割を逐一詳細に突き止めることを目的とした。
    ヒトHCT116培養細胞を用い、スピンドル微小管が生成する仕組みに焦点を絞って研究した。微小管を生み出すには、構成タンパク質の重合を開始させる必要があり、この反応にはこれまで、gamma-チューブリンタンパク質が重要であることが知られていた。微小管生成因子であるgamma-チューブリン遺伝子を欠失させると、細胞の分裂は異常になり、致死となる。我々は、ヒト培養細胞において、gamma-チューブリンをほぼ完全になくした状態でも微小管が生み出される様子を観察することに成功した。実験に用いたのはCRISPR/Cas9法とAID法で、これにより、細胞分裂直前に急速に内在性のgamma-チューブリンの分解を誘導した。細胞内でgamma-チューブリンに依存しない微小管が生成されることを見出し、さらには、RNAi法を用いて生成を促進する候補因子として、微小管結合タンパク質のCLASP1とTPX2を見出した。
    当初は中心小体を欠失させたヒト培養細胞を用いる計画だったが予想外の表現型が出たため、gamma-チューブリンに絞った研究に若干の軌道修正をした。微小管生成過程の可視化と候補因子選抜まで到達したため、「おおむね順調」と自己評価した。
    ヒト培養細胞、植物細胞(ヒメツリガネゴケ原糸体幹細胞、茎葉体幹細胞)、酵母細胞を用いた遺伝子機能阻害プロジェクトを継続する。各種のタンパク質分解(欠失)系とライブセルイメージングを組み合わせ、これまでに得られた候補因子の役割を決定し、複数の論文を発表することを目指す。

  10. オーロラキナーゼシグナル伝達の数理・遺伝学的解析

    Grant number:17H06000  2017.4 - 2018.3

    新学術領域研究(研究領域提案型)

    五島 剛太

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\11700000 ( Direct Cost: \9000000 、 Indirect Cost:\2700000 )

    本研究では、細胞分裂制御の鍵キナーゼ・オーロラによるリン酸化シグナルを通じた分裂制御機構の解明を目指した。
    オーロラは細胞分裂に必須のキナーゼであり、その制御の破綻は癌化を引き起こす可能性が示唆されている。申請者らは数年前、細胞実験と数理シミュレーションにより、ヒトの細胞分裂装置・スピンドルにおいて、「オーロラキナーゼの濃度勾配が、基質である微小管脱重合酵素KIF2Aの活性勾配を規定し、これによりスピンドル長が決定される」とのシンプルなモデルを発表した (J Cell Biol. 2013)。ここでは、オーロラキナーゼが中央紡錘体微小管の先端付近に集積することで濃度勾配を形成するという知見が基となっている。
    本研究では、まず、精製した微小管、オーロラ、KIF2Aによるスピンドル長制御の試験管内再構成を通じてモデルを定性的に検証することを目指した。次に、各因子の挙動、スピンドル長変化を測定し、その定量データを数理シミュレーションに組み入れて挙動を比較し、定量的な数理モデルを完成させることを目標とした。あるいは未知の因子の存在を予言する結果が得られる可能性もあると考えた。
    研究開始後、微小管プラス端局在タンパク質EB1と融合したオーロラキナーゼの精製に成功し、試験管内でオーロラキナーゼが細胞内と同様、微小管のプラス端に集積する様子を観察した。さらに、この融合キナーゼによるKIF2Aのリン酸化にも成功した。
    研究は順調に開始されたが、重複制限により、本研究課題は廃止となった。
    29年度が最終年度であるため、記入しない。
    29年度が最終年度であるため、記入しない。

  11. 染色体分配装置の再構成

    Grant number:15KT0077  2015.7 - 2018.3

    五島 剛太

      More details

    Authorship:Principal investigator 

    Grant amount:\18070000 ( Direct Cost: \13900000 、 Indirect Cost:\4170000 )

    キネシン8は真核生物において保存されたモータータンパク質で、動原体微小管先端に局在し動原体微小管の長さ制御および染色体整列に重要な働きをする。しかし、このタンパク質によってどのように染色体整列が制御されるかについての詳細な機構はよく分かっていない。生化学的活性についても定まっていなかった。例えばヒトのキネシン8は微小管脱重合活性があるとする報告と、微小管伸縮を抑制するという報告がある。
    本研究では前年度までに、ショウジョウバエにひとつだけ存在するキネシン8の生化学的活性を決定した。すなわち、キネシン8タンパク質全長を精製し、試験管内において伸び縮みする動的な微小管と反応させると、微小管の伸長から短縮に移行する「カタストロフ」と呼ばれる現象の頻度が上昇し、微小管の長さを制限した。さらに精製したキネシン8は微小管の短縮速度を減少させ、伸長、短縮いずれも起こらない、「ポーズ」と呼ばれる現象や、短縮から伸長に移行する「レスキュー」と呼ばれる現象の頻度を上昇させた。
    今年度は、これらの活性がキネシン8の動原体機能にどう関与するかを明らかにすることを目指した。ショウジョウバエS2細胞においてキネシン8を欠損させると異常に長い動原体微小管が観察されるが、S2細胞においてキネシン8を欠損させ、さらに微小管重合阻害剤であるコルセミドを加え微小管の長さを制限したが、染色体整列異常の表現型をレスキューできなかった。このことから、キネシン8のカタストロフを促進する以外の機能も染色体整列に重要なことが示唆された。そこで、ショウジョウバエS2細胞においてキネシン8を欠損させ、動原体-微小管の結合を詳細に観察することにした。
    研究は順調に進んだが、重複制限により、本研究課題は廃止となった。

  12. Searching for the "plant dynein"

    Grant number:15K14540  2015.4 - 2018.3

    Goshima Gohta

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\3900000 ( Direct Cost: \3000000 、 Indirect Cost:\900000 )

    In animal cells, the retrograde transport of intracellular cargo along microtubules is executed by the cytoplasmic dynein motor (retrograde transport is transport towards the minus end of the microtubule). Interestingly, however, land plants have lost the cytoplasmic dynein gene, despite that they execute retrograde transport. In this research, we aim to identify the motor(s) responsible for retrograde transport in plants. Using he moss Physcomitrella patens, we identified three kinesin-14 motor proteins (KCBP, KCH, ATK) that were required for retrograde transport of the nucleus, chloroplast, and microtubule itself in the moss cytoplasm.

  13. Microtubule generation independent of centrosomes

    Grant number:26711012  2014.4 - 2018.3

    Goshima Gohta

      More details

    Authorship:Principal investigator 

    Grant amount:\24050000 ( Direct Cost: \18500000 、 Indirect Cost:\5550000 )

    This research project aimed to understand the mechanism of centrosome-independent microtubule generation. The major outcomes are as follows: (1) The augmin complex has been shown required for centrosome-independent microtubule nucleation within the mitotic spindle in animal and plant cells. Here, we identified augmin in the filamentous fungus, elucidating the evolutionary conservation of this protein complex. (2) We generated knockout mice of a critical augmin subunit, and identified a defect in MTOC clustering during early embryonic division. (3) Microtubule nucleation independent of centrosomes or augmin was identified in the moss Physcomitrella patens.

  14. 中心体に依存しない微小管生成機構

    2014.4 - 2017.3

    科学研究費補助金  若手研究(A)

      More details

    Authorship:Principal investigator 

  15. 細胞内における微小管生成機構とその役割の解明

    2008.4 - 2011.3

    科学研究費補助金  若手研究(A),課題番号:20687013

    五島 剛太

      More details

    Authorship:Principal investigator 

  16. 動原体の核内配置機構とその役割の解明                      

    2008.4 - 2009.3

    科学研究費補助金  萌芽研究,課題番号:20657002

    五島 剛太

      More details

    Authorship:Principal investigator 

▼display all