Updated on 2024/09/17

写真a

 
HISAMOTO, Naoki
 
Organization
Graduate School of Science Professor
Graduate School
Graduate School of Science
Undergraduate School
School of Science Department of Biological Science
Title
Professor
Contact information
メールアドレス

Degree 1

  1. Doctor of Science ( 1995.3   Nagoya University ) 

Research Interests 2

  1. axon regeneration

  2. Signal Transduction

Current Research Project and SDGs 2

  1. Regulation of axon regeneration using C. elegans

  2. 線虫C.エレガンスをモデルとしたシグナル伝達機構の解析

Education 2

  1. Nagoya University   Graduate School, Division of Natural Science

    - 1995

      More details

    Country: Japan

  2. Kyushu University   Faculty of Science

    - 1990

      More details

    Country: Japan

Professional Memberships 3

  1. The Molecular Biology Society of Japan

  2. Society of Neuroscience   member

  3. Japan Neuroscience Society

 

Papers 75

  1. A cytidine deaminase regulates axon regeneration by modulating the functions of the <i>Caenorhabditis elegans</i> HGF/plasminogen family protein SVH-1

    Shimizu, T; Nomachi, T; Matsumoto, K; Hisamoto, N

    PLOS GENETICS   Vol. 20 ( 7 ) page: e1011367   2024.7

     More details

  2. Rhotekin regulates axon regeneration through the talin-Vinculin-Vinexin axis in <i>Caenorhabditis elegans</i>

    Sakai, Y; Shimizu, T; Tsunekawa, M; Hisamoto, N; Matsumoto, K

    PLOS GENETICS   Vol. 19 ( 12 ) page: e1011089   2023.12

     More details

  3. LRRK1 functions as a scaffold for PTP1B-mediated EGFR sorting into ILVs at the ER-endosome contact site Reviewed

    Hanafusa, H; Fujita, K; Kamio, M; Iida, S; Tamura, Y; Hisamoto, N; Matsumoto, K

    JOURNAL OF CELL SCIENCE   Vol. 136 ( 6 )   2023.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1242/jcs.260566

    Web of Science

    PubMed

  4. Histidine dephosphorylation of the Gβ protein GPB-1 promotes axon regeneration in C. elegans Reviewed

    Yoshiki Sakai, Hiroshi Hanafusa, Naoki Hisamoto, Kunihiro Matsumoto

    EMBO Reports   Vol. 23 ( 12 ) page: e55076   2022.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.15252/embr.202255076

    Web of Science

    PubMed

  5. The ULK complex-LRRK1 axis regulates Parkin-mediated mitophagy via Rab7 Ser-72 phosphorylation Reviewed

    Fujita, K; Kedashiro, S; Yagi, T; Hisamoto, N; Matsumoto, K; Hanafusa, H

    JOURNAL OF CELL SCIENCE   Vol. 135 ( 23 )   2022.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1242/jcs.260395

    Web of Science

    PubMed

  6. LRRK1-mediated NDEL1 phosphorylation promotes cilia disassembly via dynein-2-driven retrograde intraflagellar transport Reviewed

    Hanafusa, H; Kedashiro, S; Gotoh, M; Saitoh, KH; Inaba, H; Nishioka, T; Kaibuchi, K; Inagaki, M; Hisamoto, N; Matsumoto, K

    JOURNAL OF CELL SCIENCE   Vol. 135 ( 21 )   2022.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1242/jcs.259999

    Web of Science

    PubMed

  7. Chemical Signaling Regulates Axon Regeneration via the GPCR-Gqa Pathway in Caenorhabditis elegans Reviewed International coauthorship

    Shimizu Tatsuhiro, Sugiura Kayoko, Sakai Yoshiki, Dar Abdul R., Butcher Rebecca A., Matsumoto Kunihiro, Hisamoto Naoki

    JOURNAL OF NEUROSCIENCE   Vol. 42 ( 5 ) page: 720 - 730   2022.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1523/JNEUROSCI.0929-21.2021

    Web of Science

    PubMed

  8. A Microfluidic Device with Check Valves to Detect Cancer using <i>Caenorhabditis elegans</i>

    Shiga, H; Takeuchi, M; Kim, E; Hisamoto, N; Ishikawa, T; Fukuda, T

    2022 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII 2022)     page: 969 - 970   2022

     More details

  9. UNC-16 alters DLK-1 localization and negatively regulates actin and microtubule dynamics in <i>Caenorhabditis elegans</i> regenerating neurons Reviewed International coauthorship

    Kulkarni, SS; Sabharwal, V; Sheoran, S; Basu, A; Matsumoto, K; Hisamoto, N; Ghosh-Roy, A; Koushika, SP

    GENETICS   Vol. 219 ( 3 )   2021.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1093/genetics/iyab139

    Web of Science

    PubMed

  10. ZSWIM8 is a myogenic protein that partly prevents C2C12 differentiation Reviewed

    Okumura, F; Oki, N; Fujiki, Y; Ikuta, R; Osaki, K; Hamada, S; Nakatsukasa, K; Hisamoto, N; Hara, T; Kamura, T

    SCIENTIFIC REPORTS   Vol. 11 ( 1 ) page: 20880   2021.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/s41598-021-00306-6

    Web of Science

    PubMed

  11. CDK14 Promotes Axon Regeneration by Regulating the Noncanonical Wnt Signaling Pathway in a Kinase-Independent Manner Reviewed

    Hisamoto, N; Sakai, Y; Ohta, K; Shimizu, T; Li, C; Hanafusa, H; Matsumoto, K

    JOURNAL OF NEUROSCIENCE   Vol. 41 ( 40 ) page: 8309 - 8320   2021.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1523/JNEUROSCI.0711-21.2021

    Web of Science

    PubMed

  12. The Integrin Signaling Network Promotes Axon Regeneration via the Src-Ephexin-RhoA GTPase Signaling Axis Reviewed

    Sakai, Y; Tsunekawa, M; Ohta, K; Shimizu, T; Pastuhov, SI; Hanafusa, H; Hisamoto, N; Matsumoto, K

    JOURNAL OF NEUROSCIENCE   Vol. 41 ( 22 ) page: 4754 - 4767   2021.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1523/JNEUROSCI.2456-20.2021

    Web of Science

    PubMed

  13. BRCA1-BARD1 Regulates Axon Regeneration in Concert with the Gqα-DAG Signaling Network Reviewed

    Sakai Y, Hanafusa H, Shimizu T, Pastuhov SI, Hisamoto N, Matsumoto K.

    Journal of Neuroscience   Vol. 41 ( 13 ) page: 2842 - 2853   2021.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1523/JNEUROSCI.1806-20.2021

    Web of Science

    PubMed

  14. Caenorhabditis elegans F-Box Protein Promotes Axon Regeneration by Inducing Degradation of the Mad Transcription Factor Reviewed

    Shimizu T, Pastuhov SI, Hanafusa H, Sakai Y, Todoroki Y, Hisamoto N, Matsumoto K.

    Journal of Neuroscience   Vol. 41 ( 11 ) page: 2373 - 2381   2021.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1523/JNEUROSCI.1024-20.2021

    Web of Science

    PubMed

  15. Engulfment Genes Promote Neuronal Regeneration inCaenorhabditis Elegans: Two Divergent But Complementary Views Invited Reviewed International coauthorship

    Chang Chieh, Hisamoto Naoki

    BIOESSAYS   Vol. 42 ( 8 ) page: e1900185   2020.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1002/bies.201900185

    Web of Science

    PubMed

  16. Factors regulating axon regeneration via JNK MAP kinase in Caenorhabditis elegans Invited Reviewed

    JOURNAL OF BIOCHEMISTRY   Vol. 167 ( 5 ) page: 433 - 439   2020.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1093/jb/mvaa020

    Web of Science

    PubMed

  17. TDP2 negatively regulates axon regeneration by inducing SUMOylation of an Ets transcription factor

    Sakai Yoshiki, Hanafusa Hiroshi, Pastuhov Strahil Iv, Shimizu Tatsuhiro, Li Chun, Hisamoto Naoki, Matsumoto Kunihiro

    EMBO REPORTS   Vol. 20 ( 10 ) page: e47517   2019.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.15252/embr.201847517

    Web of Science

    PubMed

  18. N-Glycosylation of the Discoidin Domain Receptor Is Required for Axon Regeneration in Caenorhabditis elegans

    Shimizu Tatsuhiro, Kato Yuka, Sakai Yoshiki, Hisamoto Naoki, Matsumoto Kunihiro

    GENETICS   Vol. 213 ( 2 ) page: 491 - 500   2019.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1534/genetics.119.302492

    Web of Science

    PubMed

  19. C. elegans Tensin Promotes Axon Regeneration by Linking the Met-like SVH-2 and Integrin Signaling Pathways Reviewed

    Hisamoto Naoki, Shimizu Tatsuhiro, Asai Kazuma, Sakai Yoshiki, Pastuhov Strahil I, Hanafusa Hiroshi, Matsumoto Kunihiro

    JOURNAL OF NEUROSCIENCE   Vol. 39 ( 29 ) page: 5662 - 5672   2019.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1523/JNEUROSCI.2059-18.2019

    Web of Science

    PubMed

  20. LRRK1 phosphorylation of Rab7 at S72 links trafficking of EGFR-containing endosomes to its effector RILP Reviewed

    Hanafusa Hiroshi, Yagi Takuya, Ikeda Haruka, Hisamoto Naoki, Nishioka Tomoki, Kaibuchi Kozo, Shirakabe Kyoko, Matsumoto Kunihiro

    JOURNAL OF CELL SCIENCE   Vol. 132 ( 11 )   2019.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1242/jcs.228809

    Web of Science

    PubMed

  21. The C. elegans BRCA2-ALP/Enigma Complex Regulates Axon Regeneration via a Rho GTPase-ROCK-MLC Phosphorylation Pathway Reviewed

    Shimizu Tatsuhiro, Pastuhov Strahil Iv, Hanafusa Hiroshi, Matsumoto Kunihiro, Hisamoto Naoki

    Cell reports   Vol. 24 ( 7 ) page: 1880 - 1889   2018.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.celrep.2018.07.049

    Web of Science

    PubMed

  22. Phosphatidylserine exposure mediated by ABC transporter activates the integrin signaling pathway promoting axon regeneration Reviewed

    Hisamoto Naoki, Tsuge Anna, Pastuhov Strahil Iv, Shimizu Tatsuhiro, Hanafusa Hiroshi, Matsumoto Kunihiro

    NATURE COMMUNICATIONS   Vol. 9 ( 1 ) page: 3099   2018.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/s41467-018-05478-w

    Web of Science

    PubMed

  23. UNC-16/JIP3 regulates early events in synaptic vesicle protein trafficking via LRK-1/LRRK2 and AP complexes

    Choudhary Bikash, Kamak Madhushree, Ratnakaran Neena, Kumar Jitendra, Awasthi Anjali, Li Chun, Nguyen Ken, Matsumoto Kunihiro, Hisamoto Naoki, Koushika Sandhya P.

    PLOS GENETICS   Vol. 13 ( 11 ) page: e1007100   2017.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1371/journal.pgen.1007100

    Web of Science

    PubMed

  24. Signal transduction cascades in axon regeneration: insights from C. elegans

    Hisamoto Naoki, Matsumoto Kunihiro

    CURRENT OPINION IN GENETICS & DEVELOPMENT   Vol. 44   page: 54 - 60   2017.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.gde.2017.01.010

    Web of Science

    PubMed

  25. Higher Precision Rotational Manipulation of C. elegans by Microchannel

    Nakajima Masahiro, Igarashi Yu, Takeuchi Masaru, Hisamoto Nagoki, Hasegawa Yasuhisa, Fukuda Toshio

    2017 IEEE 17TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO)     page: 297 - 298   2017

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Web of Science

  26. The C. elegans Discoidin Domain Receptor DDR-2 Modulates the Met-like RTK-JNK Signaling Pathway in Axon Regeneration. Reviewed

    Hisamoto N, Nagamori Y, Shimizu T, Pastuhov SI, Matsumoto K.

    PLoS Genetics   Vol. 12 ( 12 ) page: e1006475   2016.12

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. However, the signaling pathways that orchestrate axon regeneration are not well understood. In Caenorhabditis elegans, initiation of axon regeneration is positively regulated by SVH-2 Met-like growth factor receptor tyrosine kinase (RTK) signaling through the JNK MAPK pathway. Here we show that SVH-4/DDR-2, an RTK containing a discoidin domain that is activated by collagen, and EMB-9 collagen type IV regulate the regeneration of neurons following axon injury. The scaffold protein SHC-1 interacts with both DDR-2 and SVH-2. Furthermore, we demonstrate that overexpression of svh-2 and shc-1 suppresses the delay in axon regeneration observed in ddr-2 mutants, suggesting that DDR-2 functions upstream of SVH-2 and SHC-1. These results suggest that DDR-2 modulates the SVH-2-JNK pathway via SHC-1. We thus identify two different RTK signaling networks that play coordinated roles in the regulation of axonal regeneration.

    DOI: 10.1371/journal.pgen.1006475

  27. The core molecular machinery used for engulfment of apoptotic cells regulates the JNK pathway mediating axon regeneration in Caenorhabditis elegans. Reviewed

    Pastuhov, S.I., Fujiki, K., Tsuge, A., Asai, K., Ishikawa, S., Hirose, K., Matsumoto, K., Hisamoto, N.

    Journal of Neuroscience   Vol. 36 ( 37 ) page: 9710-9721   2016.9

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    The mechanisms that govern the ability of specific neurons to regenerate their axons after injury are not well understood. In Caenorhabditis elegans, the initiation of axon regeneration is positively regulated by the JNK-MAPK pathway. In this study, we identify two components functioning upstream of the JNK pathway: the Ste20-related protein kinase MAX-2 and the Rac-type GTPase CED-10. CED-10, when bound by GTP, interacts with MAX-2 and functions as its upstream regulator in axon regeneration. CED-10, in turn, is activated by axon injury via signals initiated from the integrin α-subunit INA-1 and the nonreceptor tyrosine kinase SRC-1 and transmitted via the signaling module CED-2/CrkII-CED-5/Dock180-CED-12/ELMO. This module is also known to regulate the engulfment of apoptotic cells during development. Our findings thus reveal that the molecular machinery used for engulfment of apoptotic cells also promotes axon regeneration through activation of the JNK pathway.

    DOI: 10.1523/JNEUROSCI.0453-16.2016

  28. Axotomy-induced HIF/serotonin signaling axis promotes axon regeneration in C. elegans. Reviewed

    Alam T, Maruyama H, Li C, Pastuhov SI, Nix P, Bastiani M, Hisamoto N, Matsumoto K.

    NATURE COMMUNICATIONS   Vol. 7   page: 10388   2016.1

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/ncomms10388

  29. Axon regeneration is regulated by Ets-C/EBP transcription complexes generated by activation of the cAMP/Ca2+-p38 MAPK signaling pathways. Reviewed

    Chun Li, Naoki Hisamoto, Kunihiro Matsumoto

    PLoS Genetics   Vol. 11   page: e1005603   2015.10

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1371/journal.pgen.1005603

  30. The C. elegans HGF/plasminogen-like protein SVH-1 has protease-dependent and -independent functions Reviewed

    Naoki Hisamoto, Chun Li, Motoki Yoshida, Kunihiro Matsumoto

    Cell reports     2014

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    脊椎動物の肝細胞増殖因子(HGF)とプラスミノーゲンは、それぞれ増殖因子と細胞外マトリクス(ECM)を切断するプロテアーゼという全く異なる機能を持つが、構造およびアミノ酸配列の類似性から、共通の祖先遺伝子から分岐したと考えられている。しかし、これらの因子が2つの機能を同時に持つ祖先遺伝子からそれぞれ機能分化したのか、それとも脊椎動物で増殖因子の機能が後発的に獲得されたのか、その進化的経緯は不明であった。我々は以前、線虫C. エレガンスにおいてHGF/プラスミノーゲン様因子SVH-1がHGF受容体ホモログであるSVH-2を介して神経軸索再生を制御することを報告した。今回、我々はSVH-1およびSVH-2遺伝子が他の無脊椎動物でも広く保存されていること、さらにSVH-1がSVH-2非依存的に幼虫の生育を制御することを見出した。SVH-1は機能的なプロテアーゼドメインを持ち、その活性は生育に必須であるが軸索再生には必須ではない。svh-1遺伝子の欠損はECMタンパク質FBL-1の咽頭筋への異常な蓄積を引き起こす。またsvh-1変異体の幼虫期での生育停止の表現型は、fbl-1遺伝子の欠損により部分的に抑圧された。以上の結果から、SVH-1は増殖因子かつプロテアーゼという2つの異なる機能を持った因子であること、またHGFとプラスミノーゲンは両方の機能を持つ祖先型から分岐した可能性が示唆された。

    DOI: http://dx.doi.org/10.1016/j.celrep.2014.10.056

  31. Endocannabinoid-Goα signalling inhibits axon regeneration in Caenorhabditis elegans by antagonizing Gqα-PKC-JNK signalling Reviewed

    Strahil Iv. Pastuhov, Kota Fujiki, Paola Nix, Shuka Kanao, Michael Bastiani, Kunihiro Matsumoto and Naoki Hisamoto

    Nature Communications     2012.10

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    The ability of neurons to regenerate their axons after injury is determined by a balance between cellular pathways that promote and those that inhibit regeneration. In Caenorhabditis elegans, axon regeneration is positively regulated by the c-Jun N-terminal kinase mitogen activated protein kinase pathway, which is activated by growth factor-receptor tyrosine kinase signalling. Here we show that fatty acid amide hydrolase-1, an enzyme involved in the degradation of the endocannabinoid anandamide (arachidonoyl ethanolamide), regulates the axon regeneration response of γ-aminobutyric acid neurons after laser axotomy. Exogenous arachidonoyl ethanolamide inhibits axon regeneration via the Goα subunit GOA-1, which antagonizes the Gqα subunit EGL-30. We further demonstrate that protein kinase C functions downstream of Gqα and activates the MLK-1-MEK-1-KGB-1 c-Jun N-terminal kinase pathway by phosphorylating MLK-1. Our results show that arachidonoyl ethanolamide induction of a G protein signal transduction pathway has a role in the inhibition of post-development axon regeneration.

    DOI: 10.1038/ncomms2136

  32. C. elegans growth factor-receptor tyrosine kinase signaling regulates axon regeneration. Reviewed

    Li C, Hisamoto N, Nix P, Kanao S, Mizuno T, Bastiani M and Matsumoto K.

    Nature Neuroscience   Vol. 15 ( 4 ) page: 551-557   2012.4

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    The ability of neurons to undergo regenerative growth after injury is governed by cell-intrinsic and cell-extrinsic regeneration pathways. These pathways represent potential targets for therapies to enhance regeneration. However, the signaling pathways that orchestrate axon regeneration are not well understood. In Caenorhabditis elegans, the Jun N-terminal kinase (JNK) and p38 MAP kinase (MAPK) pathways are important for axon regeneration. We found that the C. elegans SVH-1 growth factor and its receptor, SVH-2 tyrosine kinase, regulate axon regeneration. Loss of SVH-1-SVH-2 signaling resulted in a substantial defect in the ability of neurons to regenerate, whereas its activation improved regeneration. Furthermore, SVH-1-SVH-2 signaling was initiated extrinsically by a pair of sensory neurons and functioned upstream of the JNK-MAPK pathway. Thus, SVH-1-SVH-2 signaling via activation of the MAPK pathway acts to coordinate neuron regeneration response after axon injury.

    DOI: 10.1038/nn.3052

  33. Heavy Metal Stress Assay of Caenorhabditis elegans

    Pastuhov Strahil Iv, Shimizu Tatsuhiro, Hisamoto Naoki

    BIO-PROTOCOL   Vol. 7 ( 11 ) page: e2312   2017.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.21769/BioProtoc.2312

    Web of Science

    PubMed

  34. Endocannabinoid signaling regulates regenerative axon navigation in Caenorhabditis elegans via the GPCRs NPR-19 and NPR-32. Reviewed

    Pastuhov SI, Matsumoto K, Hisamoto N.

    Genes to Cells   Vol. 21 ( 7 ) page: 696-705   2016.7

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1111/gtc.12377

  35. The chaperone complex BAG2-HSC70 regulates localization of C. elegans Leucine-rich repeat kinase LRK-1 in the Golgi Reviewed

    Fukuzono T, Pastuhov SI, Fukushima O, Li C, Hattori A, Iemura S, Natsume T, Shibuya H, Hanafusa H, Matsumoto K, Hisamoto N.

    Genes to Cells     page: in press   2016

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: doi: 10.1111/gtc.12338

  36. MAP kinase cascades regulating axon regeneration in C. elegans. Invited Reviewed

    Pastuhov SI, Hisamoto N., Matsumoto K.

    Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci.   Vol. 91   page: 63-75   2015

     More details

    Language:English  

    DOI: 10.2183/pjab.91.63.

  37. he Caenorhabditis elegans JNK Signaling Pathway Activates Expression of Stress Response Genes by Derepressing the Fos/HDAC Repressor Complex Reviewed

    Hattori A, Mizuno T, Akamatsu M, Hisamoto N, Matsumoto K.

    PLoS Genetics   Vol. 9   page: e1003315   2013.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1371/journal.pgen.1003315

  38. Forgetting in C. elegans is accelerated by neuronal communication via the TIR-1/JNK-1 pathway. Reviewed

    Inoue A, Sawatari E, Hisamoto N, Kitazono T, Teramoto T, Fujiwara M, Matsumoto K, Ishihara T.

    Cell Reports   Vol. 3   page: 808-816   2013.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The control of memory retention is important for proper responses to constantly changing environments, but the regulatory mechanisms underlying forgetting have not been fully elucidated. Our genetic analyses in C. elegans revealed that mutants of the TIR-1/JNK-1 pathway exhibited prolonged retention of olfactory adaptation and salt chemotaxis learning. In olfactory adaptation, conditioning induces attenuation of odor-evoked Ca(2+) responses in olfactory neurons, and this attenuation is prolonged in the TIR-1/JNK-1-pathway mutant animals. We also found that a pair of neurons in which the pathway functions is required for the acceleration of forgetting, but not for sensation or adaptation, in wild-type animals. In addition, the neurosecretion from these cells is important for the acceleration of forgetting. Therefore, we propose that these neurons accelerate forgetting through the TIR-1/JNK-1 pathway by sending signals that directly or indirectly stimulate forgetting.

    DOI: 10.1016/j.celrep.2013.02.019

  39. Dysregulated LRRK2 signaling in response to endoplasmic reticulum stress leads to dopaminergic neuron degeneration in C. elegans. Reviewed

    Yuan Y, Cao P, Smith MA, Kramp K, Huang Y, Hisamoto N, Matsumoto K, Hatzoglou M, Jin H, Feng Z.

    PLoS One   Vol. 6 ( 8 ) page: e22354   2011.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  40. Axon regeneration requires coordinate activation of p38 and JNK MAPK pathways. Reviewed

    Nix P, Hisamoto N, Matsumoto K, Bastiani M.

    Proceedings of the National Academy of Sciences of the United States of America   Vol. 108 ( 26 ) page: 10738-10743   2011.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  41. Regulation of Anoxic Death in Caenorhabditis elegans by Mammalian Apoptosis Signal-Regulating Kinase (ASK) Family Proteins. Reviewed

    Hayakawa T, Kato K, Hayakawa R, Hisamoto N, Matsumoto K, Takeda K, Ichijo H.

    Genetics   Vol. 187 ( 3 ) page: 785-792   2011.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  42. The C. elegans JIP3 protein UNC-16 functions as an adaptor to link kinesin-1 with cytoplasmic dynein. Reviewed

    Arimoto M, Koushika SP, Choudhary B, Li C, Matsumoto K, Hisamoto N.

    Journal of Neuroscience   Vol. 31   page: 2216-2224   2011.2

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  43. The ERK-MAPK pathway regulates longevity through SKN-1 and insulin-like signaling in Caenorhabditis elegans. Reviewed

    Okuyama T, Inoue H, Ookuma S, Satoh T, Kano K, Honjoh S, Hisamoto N, Matsumoto K, Nishida E.

    Journal of Biological Chemistry   Vol. 285 ( 39 ) page: 30274-30281   2010.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    It has not been determined yet whether the ERK-MAPK pathway regulates longevity of metazoans. Here, we show that the Caenorhabditis elegans ERK cascade promotes longevity through the two longevity-promoting transcription factors, SKN-1 and DAF-16. We find that RNAi of three genes, which constitute the ERK cascade (lin-45/RAF1, mek-2/MEK1/2, and mpk-1/ERK1/2), results in reduction of life span. Moreover, RNAi of lip-1, the gene encoding a MAPK phosphatase that inactivates MPK-1, increases life span. Epistasis analyses show that the ERK (MPK-1) cascade-mediated life span extension requires SKN-1, whose function is mediated, at least partly, through DAF-2/DAF-16 insulin-like signaling. MPK-1 phosphorylates SKN-1 on the key sites that are required for SKN-1 nuclear accumulation. Our results also show that one mechanism by which SKN-1 regulates insulin-like signaling is through the regulation of expression of insulin-like peptides. Our findings thus identify a novel ERK-MAPK-mediated signaling pathway that promotes longevity.

  44. Phosphorylation of the conserved transcription factor ATF-7 by PMK-1 p38 MAPK regulates innate immunity in Caenorhabditis elegans. Reviewed

    Shivers RP, Pagano DJ, Kooistra T, Richardson CE, Reddy KC, Whitney JK, Kamanzi O, Matsumoto K, Hisamoto N, Kim DH

    PLoS Genetics   Vol. 6 ( 4 ) page: e1000892   2010.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Innate immunity in Caenorhabditis elegans requires a conserved PMK-1 p38 mitogen-activated protein kinase (MAPK) pathway that regulates the basal and pathogen-induced expression of immune effectors. The mechanisms by which PMK-1 p38 MAPK regulates the transcriptional activation of the C. elegans immune response have not been identified. Furthermore, in mammalian systems the genetic analysis of physiological targets of p38 MAPK in immunity has been limited. Here, we show that C. elegans ATF-7, a member of the conserved cyclic AMP-responsive element binding (CREB)/activating transcription factor (ATF) family of basic-region leucine zipper (bZIP) transcription factors and an ortholog of mammalian ATF2/ATF7, has a pivotal role in the regulation of PMK-1-mediated innate immunity. Genetic analysis of loss-of-function alleles and a gain-of-function allele of atf-7, combined with expression analysis of PMK-1-regulated genes and biochemical characterization of the interaction between ATF-7 and PMK-1, suggest that ATF-7 functions as a repressor of PMK-1-regulated genes that undergoes a switch to an activator upon phosphorylation by PMK-1. Whereas loss-of-function mutations in atf-7 can restore basal expression of PMK-1-regulated genes observed in the pmk-1 null mutant, the induction of PMK-1-regulated genes by pathogenic Pseudomonas aeruginosa PA14 is abrogated. The switching modes of ATF-7 activity, from repressor to activator in response to activated PMK-1 p38 MAPK, are reminiscent of the mechanism of regulation mediated by the corresponding ancestral Sko1p and Hog1p proteins in the yeast response to osmotic stress. Our data point to the regulation of the ATF2/ATF7/CREB5 family of transcriptional regulators by p38 MAPK as an ancient conserved mechanism for the control of innate immunity in metazoans, and suggest that ATF2/ATF7 may function in a similar manner in the regulation of mammalian innate immunity.

  45. The Caenorhabditis elegans Ste20-related kinase and Rac-type small GTPaseregulate the JNK signaling pathway mediating the stress response. Reviewed

    Fujiki K, Mizuno T, Hisamoto N, Matsumoto K.

    Molecular and Cellular Biology   Vol. 30 ( 4 ) page: 995-1003   2010.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Mitogen-activated protein kinases (MAPKs) are integral to the mechanisms by which cells respond to physiological stimuli and a wide variety of environmental stresses. In Caenorhabditis elegans, the stress response is controlled by a JNK-like MAPK signaling pathway, which is regulated by MLK-1 MAPKKK, MEK-1 MAPKK and KGB-1 JNK-like MAPK. In this study, we identify the max-2 gene encoding a C. elegans Ste20-related protein kinase as a component functioning upstream of the MLK-1-MEK-1-KGB-1 pathway. The max-2 loss-of-function mutation is defective in activation of KGB-1, resulting in hypersensitivity to heavy metals. Biochemical analysis reveals that MAX-2 activates MLK-1 through direct phosphorylation of a specific residue in the activation loop of the MLK-1 kinase domain. Our genetic data presented here also show that MIG-2 small GTPase functions upstream of MAX-2 in the KGB-1 pathway. These results suggest that MAX-2 and MIG-2 play a crucial role in mediating the heavy metal stress response regulated by the KGB-1 pathway.

  46. The germinal center kinase GCK-1 Is a negative regulator of MAP kinase activation and apoptosis in the C. elegans germline. Reviewed

    Schouest KR, Kurasawa Y, Furuta T, Hisamoto N, Matsumoto K, Schumacher JM.

    PLos One   Vol. 4 ( 10 ) page: e7450   2009.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The germinal center kinases (GCK) constitute a large, highly conserved family of proteins that has been implicated in a wide variety of cellular processes including cell growth and proliferation, polarity, migration, and stress responses. Although diverse, these functions have been attributed to an evolutionarily conserved role for GCKs in the activation of ERK, JNK, and p38 MAP kinase pathways. In addition, multiple GCKs from different species promote apoptotic cell death. In contrast to these paradigms, we found that a C. elegans GCK, GCK-1, functions to inhibit MAP kinase activation and apoptosis in the C. elegans germline. In the absence of GCK-1, a specific MAP kinase isoform is ectopically activated and oocytes undergo abnormal development. Moreover, GCK-1- deficient animals display a significant increase in germ cell death. Our results suggest that individual germinal center kinases act in mechanistically distinct ways and that these functions are likely to depend on organ- and developmental-specific contexts.

  47. Caenorhabditis elegans FOS-1 and JUN-1 regulate plc-1 expression in the spermatheca to control ovulation. Reviewed

    Hiatt SM, Duren HM, Shyu YJ, Ellis RE, Hisamoto N, Matsumoto K, Kariya K, Kerppola TK, Hu CD.

    Molecular Biology of the Cell   Vol. 20 ( 17 ) page: 3888-95   2009.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Fos and Jun are components of activator protein-1 (AP-1) and play crucial roles in the regulation of many cellular, developmental, and physiological processes. Caenorhabditis elegans fos-1 has been shown to act in uterine and vulval development. Here, we provide evidence that C. elegans fos-1 and jun-1 control ovulation, a tightly regulated rhythmic program in animals. Knockdown of fos-1 or jun-1 blocks dilation of the distal spermathecal valve, a critical step for the entry of mature oocytes into the spermatheca for fertilization. Furthermore, fos-1 and jun-1 regulate the spermathecal-specific expression of plc-1, a gene that encodes a phospholipase C (PLC) isozyme that is rate-limiting for inositol triphosphate production and ovulation, and overexpression of PLC-1 rescues the ovulation defect in fos-1(RNAi) worms. Unlike fos-1, regulation of ovulation by jun-1 requires genetic interactions with eri-1 and lin-15B, which are involved in the RNA interference pathway and chromatin remodeling, respectively. At least two isoforms of jun-1 are coexpressed with fos-1b in the spermatheca, and different AP-1 dimers formed between these isoforms have distinct effects on the activation of a reporter gene. These findings uncover a novel role for FOS-1 and JUN-1 in the reproductive system and establish C. elegans as a model for studying AP-1 dimerization.

  48. LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans. Reviewed

    Saha S, Guillily MD, Ferree A, Lanceta J, Chan D, Ghosh J, Hsu CH, Segal L, Raghavan K, Matsumoto K, Hisamoto N, Kuwahara T, Iwatsubo T, Moore L, Goldstein L, Cookson M, Wolozin B.

    Journal of Neuroscience   Vol. 29 ( 29 ) page: 9210-8   2009.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Mutations in leucine-rich repeat kinase 2 (LRRK2) cause autosomal-dominant familial Parkinson's disease. We generated lines of Caenorhabditis elegans expressing neuronally directed human LRRK2. Expressing human LRRK2 increased nematode survival in response to rotenone or paraquat, which are agents that cause mitochondrial dysfunction. Protection by G2019S, R1441C, or kinase-dead LRRK2 was less than protection by wild-type LRRK2. Knockdown of lrk-1, the endogenous ortholog of LRRK2 in C. elegans, reduced survival associated with mitochondrial dysfunction. C. elegans expressing LRRK2 showed rapid loss of dopaminergic markers (DAT::GFP fluorescence and dopamine levels) beginning in early adulthood. Loss of dopaminergic markers was greater for the G2019S LRRK2 line than for the wild-type line. Rotenone treatment induced a larger loss of dopamine markers in C. elegans expressing G2019S LRRK2 than in C. elegans expressing wild-type LRRK2; however, loss of dopaminergic markers in the G2019S LRRK2 nematode lines was not statistically different from that in the control line. These data suggest that LRRK2 plays an important role in modulating the response to mitochondrial inhibition and raises the possibility that mutations in LRRK2 selectively enhance the vulnerability of dopaminergic neurons to a stressor associated with Parkinson's disease.

  49. *C. elegans WNK-STE20 pathway regulates tube formation by modulating ClC channel activity Reviewed

    Naoki Hisamoto, Tetsuo Moriguchi, Seiichi Urushiyama, Shohei Mitani, Hiroshi Shibuya, Kunihiro Matsumoto

    EMBO reports   Vol. 9   page: 70-75   2008

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    WNK kinases comprise a small group of unique serine/threonine protein kinases conserved among multicellular organisms. Mutations in WNK1/4 cause pseudohypoaldosteronism type II, a form of hypertension. WNKs have been linked to the STE20 kinases and ion carriers, but the underlying molecular mechanisms by which WNKs regulate cellular processes in whole animals are unknown. The C. elegans WNK-like kinase WNK-1 interacts with and phosphorylates GCK-3, a STE20-like kinase that is known to inactivate CLH-3, a CIC chloride channel. The wnk-1 or gck-3 deletion mutation causes an Exc phenotype, a defect in the tubular extension of excretory canals. Expression of the activated form of GCK-3 or the clh-3 deletion mutation can partially suppress wnk-1 or gck-3 defects, respectively. These results suggest that WNK-1 controls the tubular formation of excretory canals by activating GCK-3, resulting in downregulation of CIC channel activity.

  50. Role of the C. elegans Shc adaptor protein in the JNK signaling pathway. Reviewed

    Mizuno T, Fujiki K, Sasakawa A, Hisamoto N, Matsumoto K.

    Molecular and Cellular Biology   Vol. in press   2008

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  51. *LRK-1, a C. elegans PARK8-related kinase, regulates axonal-dendritic polarity of SV proteins Reviewed

    Sakaguchi-Nakashima A, Meir JY, Jin Y, Matsumoto K, Hisamoto N.

    Current biology   Vol. 17 ( 7 ) page: 592-598   2007.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Neurons are polarized cells that contain distinct sets of proteins in their axons and dendrites. Synaptic vesicles (SV) and many SV proteins are exclusively localized in the presynaptic regions but not in dendrites. Despite their fundamental importance, the mechanisms underlying the polarized localization of SV proteins remain unclear. The transparent nematode Caenorhabditis elegans can be used to examine sorting and transport of SV proteins in vivo. Here, we identify a novel protein kinase LRK-1, a C. elegans homolog of the familial Parkinsonism gene PARK8/LRRK2 that is required for polarized localization of SV proteins. In lrk-1 deletion mutants, SV proteins are localized to both presynaptic and dendritic endings in neurons. This aberrant localization of SV proteins in the dendrites is dependent on the AP-1 mu1 clathrin adaptor UNC-101, which is involved in polarized dendritic transport, but not on UNC-104 kinesin, which is required for the transport of SV to presynaptic regions. The LRK-1 proteins are localized in the Golgi apparatus. These results suggest that the LRK-1 protein kinase determines polarized sorting of SV proteins to the axons by excluding SV proteins from the dendrite-specific transport machinery in the Golgi.

  52. ?WNK1 regulates phosphorylation of cation-chloride-coupled cotransporters via the STE20-related kinases, SPAK and OSR1. Reviewed

    Moriguchi T, Urushiyama S, Hisamoto N, Iemura S, Uchida S, Natsume T, Matsumoto K, Shibuya H.

    Journal of Biological Chemistry   Vol. 280 ( 52 ) page: 42685-42693   2005.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The WNK1 and WNK4 genes have been found to be mutated in some patients with hyperkalemia and hypertension caused by pseudohypoaldosteronism type II. The clue to the pathophysiology of pseudohypoaldosteronism type II was its striking therapeutic response to thiazide diuretics, which are known to block the sodium chloride cotransporter (NCC). Although this suggests a role for WNK1 in hypertension, the precise molecular mechanisms are largely unknown. Here we have shown that WNK1 phosphorylates and regulates the STE20-related kinases, Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1). WNK1 was observed to phosphorylate the evolutionary conserved serine residue located outside the kinase domains of SPAK and OSR1, and mutation of the OSR1 serine residue caused enhanced OSR1 kinase activity. In addition, hypotonic stress was shown to activate SPAK and OSR1 and induce phosphorylation of the conserved OSR1 serine residue, suggesting that WNK1 may be an activator of the SPAK and OSR1 kinases. Moreover, SPAK and OSR1 were found to directly phosphorylate the N-terminal regulatory regions of cation-chloride-coupled cotransporters including NKCC1, NKCC2, and NCC. Phosphorylation of NCC was induced by hypotonic stress in cells. These results suggested that WNK1 and SPAK/OSR1 mediate the hypotonic stress signaling pathway to the transporters and may provide insights into the mechanisms by which WNK1 regulates ion balance.

  53. Regulation of the Caenorhabditis elegans oxidative stress defense protein SKN-1 by glycogen synthase kinase-3. Reviewed

    An JH, Vranas K, Lucke M, Inoue H, Hisamoto N, Matsumoto K, Blackwell TK.

    Proceedings of the National Academy of Sciences of the United States of America   Vol. 102 ( 45 ) page: 16275-16280   2005.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Oxidative stress plays a central role in many human diseases and in aging. In Caenorhabditis elegans the SKN-1 protein induces phase II detoxification gene transcription, a conserved oxidative stress response, and is required for oxidative stress resistance and longevity. Oxidative stress induces SKN-1 to accumulate in intestinal nuclei, depending on p38 mitogen-activated protein kinase signaling. Here we show that, in the absence of stress, phosphorylation by glycogen synthase kinase-3 (GSK-3) prevents SKN-1 from accumulating in nuclei and functioning constitutively in the intestine. GSK-3 sites are conserved in mammalian SKN-1 orthologs, indicating that this level of regulation may be conserved. If inhibition by GSK-3 is blocked, background levels of p38 signaling are still required for SKN-1 function. WT and constitutively nuclear SKN-1 comparably rescue the skn-1 oxidative stress sensitivity, suggesting that an inducible phase II response may provide optimal stress protection. We conclude that (i) GSK-3 inhibits SKN-1 activity in the intestine, (ii) the phase II response integrates multiple regulatory signals, and (iii), by inhibiting this response, GSK-3 may influence redox conditions.

  54. ?The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Reviewed

    Inoue H, Hisamoto N, An JH, Oliveira RP, Nishida E, Blackwell TK, Matsumoto K.

    Genes and Development   Vol. 19 ( 19 ) page: 2278-2283   2005.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The evolutionarily conserved p38 mitogen-activated protein kinase (MAPK) cascade is an integral part of the response to a variety of environmental stresses. Here we show that the Caenorhabditis elegans PMK-1 p38 MAPK pathway regulates the oxidative stress response via the CNC transcription factor SKN-1. In response to oxidative stress, PMK-1 phosphorylates SKN-1, leading to its accumulation in intestine nuclei, where SKN-1 activates transcription of gcs-1, a phase II detoxification enzyme gene. These results delineate the C. elegans p38 MAPK signaling pathway leading to the nucleus that responds to oxidative stress.

  55. The Caenorhabditis elegans UNC-14 RUN domain protein binds to the kinesin-1 and UNC-16 complex and regulates synaptic vesicle localization. Reviewed

    Sakamoto R, Byrd DT, Brown HM, Hisamoto N, Matsumoto K, Jin Y.

    Molecular Biology of the Cell   Vol. 16 ( 2 ) page: 483-496   2005.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Kinesin-1 is a heterotetramer composed of kinesin heavy chain (KHC) and kinesin light chain (KLC). The Caenorhabditis elegans genome has a single KHC, encoded by the unc-116 gene, and two KLCs, encoded by the klc-1 and klc-2 genes. We show here that UNC-116/KHC and KLC-2 form a complex orthologous to conventional kinesin-1. KLC-2 also binds UNC-16, the C. elegans JIP3/JSAP1 JNK-signaling scaffold protein, and the UNC-14 RUN domain protein. The localization of UNC-16 and UNC-14 depends on kinesin-1 (UNC-116 and KLC-2). Furthermore, mutations in unc-16, klc-2, unc-116, and unc-14 all alter the localization of cargos containing synaptic vesicle markers. Double mutant analysis is consistent with these four genes functioning in the same pathway. Our data support a model whereby UNC-16 and UNC-14 function together as kinesin-1 cargos and regulators for the transport or localization of synaptic vesicle components.

  56. Integration of Caenorhabditis elegans MAPK pathways mediating immunity and stress resistance by MEK-1 MAPK kinase and VHP-1 MAPK phosphatase. Reviewed

    Kim DH, Liberati NT, Mizuno T, Inoue H, Hisamoto N, Matsumoto K, Ausubel FM.

    Proceedings of the National Academy of Sciences of the United States of America   Vol. 101 ( 30 ) page: 10990-10994   2004.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The p38 and JNK classes of mitogen-activated protein kinases (MAPKs) have evolutionarily conserved roles in the control of cellular responses to microbial and abiotic stresses. The mechanisms by which crosstalk between distinct p38 and c-Jun N-terminal kinase (JNK) MAPK pathways occurs with resultant integration of signaling information have been difficult to establish, particularly in the context of whole organism physiology. In Caenorhabditis elegans a PMK-1 p38 MAPK pathway is required for resistance to bacterial infection, and a KGB-1 JNK-like MAPK pathway has recently been shown to mediate resistance to heavy metal stress. Here, we show that two components of the KGB-1 pathway, MEK-1 MAPK kinase (MAPKK), a homolog of mammalian MKK7, and VHP-1 MAPK phosphatase (MKP), a homolog of mammalian MKP7, also regulate pathogen resistance through the modulation of PMK-1 activity. The regulation of p38 and JNK-like MAPK pathways mediating immunity and heavy metal stress by common MAPKK and MKP signaling components suggests pivotal roles for MEK-1 and VHP-1 in the integration of diverse stress signals contributing to pathogen resistance in C. elegans. In addition, these data point to mechanisms in multicellular organisms by which signals transduced by distinct MAPK pathways may be subject to physiological integration at the level of regulation of MAPK activity by MAPKKs and MKPs.

  57. Roles of MAP kinase cascades in Caenorhabditis elegans. Invited

    Sakaguchi A, Matsumoto K, Hisamoto N.

    Journal of Biochemistry (Tokyo)   Vol. 136 ( 1 ) page: 7-11   2004.7

     More details

    Authorship:Lead author   Language:English  

    Mitogen-activated protein kinases (MAPKs) are serine/threonine protein kinases that are activated by diverse stimuli such as growth factors, cytokines, neurotransmitters and various cellular stresses. MAPK cascades are generally present as three-component modules, consisting of MAPKKK, MAPKK and MAPK. The precise molecular mechanisms by which these MAPK cascades transmit signals is an area of intense research, and our evolving understanding of these signal cascades has been facilitated in great part by genetic analyses in model organisms. One organism that has been commonly used for genetic manipulation and physiological characterization is the nematode Caenorhabditis elegans. Genes sequenced in the C. elegans genome project have furthered the identification of components involved in several MAPK pathways. Genetic and biochemical studies on these components have shed light on the physiological roles of MAPK cascades in the control of cell fate decision, neuronal function and immunity in C. elegans.

  58. The Caenorhabditis elegans MAPK phosphatase VHP-1 mediates a novel JNK-like signaling pathway in stress response. Reviewed

    Mizuno T, Hisamoto N, Terada T, Kondo T, Adachi M, Nishida E, Kim DH, Ausubel FM, Matsumoto K.

    EMBO Journal   Vol. 23 ( 11 ) page: 2226-2234   2004.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Mitogen-activated protein kinases (MAPKs) are integral to the mechanisms by which cells respond to physiological stimuli and to a wide variety of environmental stresses. MAPK cascades can be inactivated at the MAPK activation step by members of the MAPK phosphatase (MKP) family. However, the components that act in MKP-regulated pathways have not been well characterized in the context of whole organisms. Here we characterize the Caenorhabditis elegans vhp-1 gene, encoding an MKP that acts preferentially on the c-Jun N-terminal kinase (JNK) and p38 MAPKs. We found that animals defective in vhp-1 are arrested during larval development. This vhp-1 defect is suppressed by loss-of-function mutations in the kgb-1, mek-1, and mlk-1 genes encoding a JNK-like MAPK, an MKK7-type MAPKK, and an MLK-type MAPKKK, respectively. The genetic and biochemical data presented here demonstrate a critical role for VHP-1 in the KGB-1 pathway. Loss-of-function mutations in each component in the KGB-1 pathway result in hypersensitivity to heavy metals. These results suggest that VHP-1 plays a pivotal role in the integration and fine-tuning of the stress response regulated by the KGB-1 MAPK pathway.

  59. An NDPase links ADAM protease glycosylation with organ morphogenesis in C. elegans. Reviewed

    Nishiwaki K, Kubota Y, Chigira Y, Roy SK, Suzuki M, Schvarzstein M, Jigami Y, Hisamoto N, Matsumoto K.

    Nature Cell biology   Vol. 6 ( 1 ) page: 31-37   2004.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    In the nematode Caenorhabditis elegans, the gonad acquires two U-shaped arms through the directed migration of its distal tip cells (DTCs), which are located at the tip of the growing gonad arms. A member of the ADAM (a disintegrin and metalloprotease) family, MIG-17, regulates directional migration of DTCs: MIG-17 is synthesized and secreted from the muscle cells of the body wall, and diffuses to the gonad where it is required for DTC migration. The mig-23 mutation causes defective migration of DTCs and interacts genetically with mig-17. Here, we report that mig-23 encodes a membrane-bound nucleoside diphosphatase (NDPase) required for glycosylation and proper localization of MIG-17. Our findings indicate that an NDPase affects organ morphogenesis through glycosylation of the MIG-17 ADAM protease.

  60. SEK-1 MAPKK mediates Ca2+ signaling to determine neuronal asymmetric development in Caenorhabditis elegans. Reviewed

    EMBO Reports   Vol. 3 ( 1 ) page: 56-62   2002

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The mitogen-activated protein kinase (MAPK) pathway is a highly conserved signaling cascade that converts extracellular signals into various outputs. In Caenorhabditis elegans, asymmetric expression of the candidate odorant receptor STR-2 in either the left or the right of two bilaterally symmetrical olfactory AWC neurons is regulated by axon contact and Ca2+ signaling. We show that the MAPK kinase (MAPKK) SEK-1 is required for asymmetric expression in AWC neurons. Genetic and biochemical analyses reveal that SEK-1 functions in a pathway downstream of UNC-43 and NSY-1, Ca2+/calmodulin-dependent protein kinase II (CaMKII) and MAPK kinase kinase (MAPKKK), respectively. Thus, the NSY-1-SEK-1-MAPK cascade is activated by Ca2+ signaling through CaMKII and establishes asymmetric cell fate decision during neuronal development.

  61. A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Reviewed

    Science   Vol. 297 ( 5581 ) page: 623-626   2002

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    A genetic screen for Caenorhabditis elegans mutants with enhanced susceptibility to killing by Pseudomonas aeruginosa led to the identification of two genes required for pathogen resistance: sek-1, which encodes a mitogen-activated protein (MAP) kinase kinase, and nsy-1, which encodes a MAP kinase kinase kinase. RNA interference assays and biochemical analysis established that a p38 ortholog, pmk-1, functions as the downstream MAP kinase required for pathogen defense. These data suggest that this MAP kinase signaling cassette represents an ancient feature of innate immune responses in evolutionarily diverse species.

  62. *The CaMKII UNC-43 activates the MAPKKK NSY-1 to execute a lateral signaling decision required for asymmetric olfactory neuron fates. Reviewed

    Cell   Vol. 105 ( 2 ) page: (221-232)   2001

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    A stochastic cell fate decision mediated by axon contact and calcium signaling causes one of the two bilaterally symmetric AWC neurons, either AWCL or AWCR, to express the candidate olfactory receptor str-2. nsy-1 mutants express str-2 in both neurons, disrupting AWC asymmetry. nsy-1 encodes a homolog of the human MAP kinase kinase kinase (MAPKKK) ASK1, an activator of JNK and p38 kinases. Based on genetic epistasis analysis, nsy-1 appears to act downstream of the CaMKII unc-43, and NSY-1 associates with UNC-43, suggesting that UNC-43/CaMKII activates the NSY-1 MAP kinase cassette. Mosaic analysis demonstrates that UNC-43 and NSY-1 act primarily in a cell-autonomous execution step that represses str-2 expression in one AWC cell, downstream of the initial lateral signaling pathway that coordinates the fates of the two cells.

  63. An evolutionarily conserved motif in the TAB1 C-terminal region is necessary for interaction with and activation of TAK1 MAPKKK. Reviewed

    Journal of Biological Chemistry   Vol. 276 ( 26 ) page: 24396-24400   2001

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    TAK1, a member of the MAPKKK family, is involved in the intracellular signaling pathways mediated by transforming growth factor beta, interleukin 1, and Wnt. TAK1 kinase activity is specifically activated by the TAK1-binding protein TAB1. The C-terminal 68-amino acid sequence of TAB1 (TAB1-C68) is sufficient for TAK1 interaction and activation. Analysis of various truncated versions of TAB1-C68 defined a C-terminal 30-amino acid sequence (TAB1-C30) necessary for TAK1 binding and activation. NMR studies revealed that the TAB1-C30 region has a unique alpha-helical structure. We identified a conserved sequence motif, PYVDXA/TXF, in the C-terminal domain of mammalian TAB1, Xenopus TAB1, and its Caenorhabditis elegans homolog TAP-1, suggesting that this motif constitutes a specific TAK1 docking site. Alanine substitution mutagenesis showed that TAB1 Phe-484, located in the conserved motif, is crucial for TAK1 binding and activation. The C. elegans homolog of TAB1, TAP-1, was able to interact with and activate the C. elegans homolog of TAK1, MOM-4. However, the site in TAP-1 corresponding to Phe-484 of TAB1 is an alanine residue (Ala-364), and changing this residue to Phe abrogates the ability of TAP-1 to interact with and activate MOM-4. These results suggest that the Phe or Ala residue within the conserved motif of the TAB1-related proteins is important for interaction with and activation of specific TAK1 MAPKKK family members in vivo.

  64. UNC-16, a JNK-signaling scaffold protein, regulates vesicle transport in C. elegans. Reviewed

    Neuron   Vol. 32 ( 5 ) page: 787-800   2001

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Transport of synaptic components is a regulated process. Loss-of-function mutations in the C. elegans unc-16 gene result in the mislocalization of synaptic vesicle and glutamate receptor markers. unc-16 encodes a homolog of mouse JSAP1/JIP3 and Drosophila Sunday Driver. Like JSAP1/JIP3, UNC-16 physically interacts with JNK and JNK kinases. Deletion mutations in Caenorhabditis elegans JNK and JNK kinases result in similar mislocalization of synaptic vesicle markers and enhance weak unc-16 mutant phenotypes. unc-116 kinesin heavy chain mutants also mislocalize synaptic vesicle markers, as well as a functional UNC-16::GFP. Intriguingly, unc-16 mutations partially suppress the vesicle retention defect in unc-104 KIF1A kinesin mutants. Our results suggest that UNC-16 may regulate the localization of vesicular cargo by integrating JNK signaling and kinesin-1 transport.

  65. A putative GDP-GTP exchange factor is required for development of the excretory cell in Caenorhabditis elegans. Reviewed

    EMBO Reports   Vol. 2 ( 6 ) page: 530-535   2001

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The Caenorhabditis elegans excretory cell extends tubular processes, called canals, along the basolateral surface of the epidermis. Mutations in the exc-5 gene cause tubulocystic defects in this canal. Ultrastructural analysis suggests that exc-5 is required for the proper placement of cytoskeletal elements at the apical epithelial surface. exc-5 encodes a protein homologous to guanine nucleotide exchange factors and contains motif architecture similar to that of FGD1, which is responsible for faciogenital dysplasia. exc-5 interacts genetically with mig-2, which encodes Rho GTPase. These results suggest that EXC-5 controls the structural organization of the excretory canal by regulating Rho family GTPase activities.

  66. *A metalloprotease disintegrin that controls cell migration in Caenorhabditis elegans. Reviewed

    Science   Vol. 288 ( 5474 ) page: 2205-2208   2000

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    In Caenorhabditis elegans, the gonad acquires two U-shaped arms by the directed migration of its distal tip cells (DTCs) along the body wall basement membranes. Correct migration of DTCs requires the mig-17 gene, which encodes a member of the metalloprotease-disintegrin protein family. The MIG-17 protein is secreted from muscle cells of the body wall and localizes in the basement membranes of gonad. This localization is dependent on the disintegrin-like domain of MIG-17 and its catalytic activity. These results suggest that the MIG-17 metalloprotease directs migration of DTCs by remodeling the basement membrane.

  67. SPK-1, a C. elegans SR protein kinase homologue, is essential for embryogenesis and required for germline development Reviewed

    Mechanisms of Development   Vol. 99 ( 1-2 ) page: 51-64   2000

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    SR-protein kinases (SRPKs) and their substrates, serine/arginine-rich pre-mRNA splicing factors, are key components of splicing machinery and are well conserved across phyla. Despite extensive biochemical investigation, the physiological functions of SRPKs remain unclear. In the present study, cDNAs for SPK-1, a C. elegans SRPK homologue, and CeSF2, an SPK-1 substrate, were cloned. SPK-1 binds directly to and phosphorylates the RS domain of CeSF2 in vitro. Both spk-1 and CeSF2 are predominantly expressed in germlines. RNA interference (RNAi) experiments revealed that spk-1 and CeSF2 play an essential role at the embryonic stage of C. elegans. Furthermore, RNAi studies demonstrated that spk-1 is required for germline development in C. elegans. We provide evidence that RNAi, achieved by the soaking of L1 larvae, is beneficial in the study of gene function in post-embryonic germline development.

  68. MAP kinase and Wnt pathways converge to downregulate an HMG-domain repressor in Caenorhabditis elegans. Reviewed

    Nature   Vol. 399 ( 6738 ) page: 793-797   1999

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The signalling protein Wnt regulates transcription factors containing high-mobility-group (HMG) domains to direct decisions on cell fate during animal development. In Caenorhabditis elegans, the HMG-domain-containing repressor POP-1 distinguishes the fates of anterior daughter cells from their posterior sisters throughout development, and Wnt signalling downregulates POP-1 activity in one posterior daughter cell called E. Here we show that the genes mom-4 and lit-1 are also required to downregulate POP-1, not only in E but also in other posterior daughter cells. Consistent with action in a common pathway, mom-4 and lit-1 exhibit similar mutant phenotypes and encode components of the mitogen-activated protein kinase (MAPK) pathway that are homologous to vertebrate transforming-growth-factor-beta-activated kinase (TAK1) and NEMO-like kinase (NLK), respectively. Furthermore, MOM-4 and TAK1 bind related proteins that promote their kinase activities. We conclude that a MAPK-related pathway cooperates with Wnt signal transduction to downregulate POP-1 activity. These functions are likely to be conserved in vertebrates, as TAK1 and NLK can downregulate HMG-domain-containing proteins related to POP-1.

  69. Molecular cloning and expression of a stress-responsive mitogen-activated protein kinase-related kinase from Tetrahymena cells. Reviewed

    Journal of Biological Chemistry   Vol. 274 ( 15 ) page: 9976-83   1999

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    To identify genes responsive to cold stress, we employed the differential display mRNA analysis technique to isolate a novel gene from Tetrahymena thermophila which encodes a protein kinase of 430 amino acids. A homolog of this kinase with 90% amino acid sequence identity was also found in T. pyriformis. Both kinases contain 11 subdomains typical of protein kinases. Sequence analysis revealed that the predicted amino acid sequences resemble those of mitogen-activated protein kinase (MAPK), especially p38 and stress-activated protein kinase which are known to be involved in various stress responses. However, it should be noted that the tyrosine residue in the normally conserved MAPK phosphorylation site (Thr-X-Tyr) is replaced by histidine (Thr226-Gly-His228) in this MAPK-related kinase (MRK). The recombinant MRK expressed in Escherichia coli phosphorylated myelin basic protein (MBP) and became autophosphorylated. However, the mutated recombinant protein in which Thr226 was replaced by Ala lost the ability to phosphorylate MBP, suggesting that Thr226 residue is essential for kinase activity. The MRK mRNA transcript in T. thermophila increased markedly upon temperature downshift from 35 to 15 degrees C (0.8 degrees C/min). Interestingly, osmotic shock either by sorbitol (100-200 mM) or NaCl (25-100 mM) also induced mRNA expression of the MRK in T. pyriformis. In addition, the activity of the kinase as determined by an immune complex kinase assay using MBP as a substrate was also induced by osmotic stress. This is the first demonstration of a MAPK-related kinase in the unicellular eukaryotic protozoan Tetrahymena that is induced by physical stresses such as cold temperature and osmolarity. The present results suggest that this MRK may function in the stress-signaling pathway in Tetrahymena cells.

  70. *A Caenorhabditis elegans JNK signal transduction pathway regulates coordinated movement via type-D GABAergic motor neurons. Reviewed

    EMBO J.   Vol. 18 ( 13 ) page: 3604-3615   1999

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    The c-Jun N-terminal kinase (JNK) of the MAP kinase superfamily is activated in response to a variety of cellular stresses and is involved in apoptosis in neurons. However, the roles of the JNK signaling pathway in the nervous system are unknown. The genes for the Caenorhabditis elegans homolog of JNK, JNK-1, and its direct activator, JKK-1, were isolated based on their abilities to function in the Hog1 MAP kinase pathway in yeast. JKK-1 is a member of the MAP kinase kinase superfamily and functions as a specific activator of JNK. Both jnk-1 and jkk-1 are expressed in most neurons. jkk-1 null mutant animals exhibit defects in locomotion that can be rescued by the conditional expression of JKK-1 in mutant adults, suggesting that the defect is not due to a developmental error. Furthermore, ectopic expression of JKK-1 in type-D motor neurons is sufficient to rescue the movement defect. Thus, the C.elegans JNK pathway functions in type-D GABAergic motor neurons and thereby modulates coordinated locomotion.

  71. The EGP1 gene may be a positive regulator of protein phosphatase type 1 in the growth control of Saccharomyces cerevisiae. Reviewed

    Molecular and Cellular Biology   Vol. 15 ( 7 ) page: 3767-3776   1995

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The Saccharomyces cerevisiae GLC7 gene encodes the catalytic subunit of type 1 protein phosphatase (PP1) and is required for cell growth. A cold-sensitive glc7 mutant (glc7Y170) arrests in G2/M but remains viable at the restrictive temperature. In an effort to identify additional gene products that function in concert with PP1 to regulate growth, we isolated a mutation (gpp1) that exacerbated the growth phenotype of the glc7Y170 mutation, resulting in rapid death of the double mutant at the nonpermissive temperature. We identified an additional gene, EGP1, as an extra-copy suppressor of the glc7Y170 gpp1-1 double mutant. The nucleotide sequence of EGP1 predicts a leucine-rich repeat protein that is similar to Sds22, a protein from the fission yeast Schizosaccharomyces pombe that positively modulates PP1. EGP1 is essential for cell growth but becomes dispensable upon overexpression of the GLC7 gene. Egp1 and PP1 directly interact, as assayed by coimmunoprecipitation. These results suggest that Egp1 functions as a positive modulator of PP1 in the growth control of S. cerevisiae.

  72. The Glc7 type 1 protein phosphatase of Saccharomyces cerevisiae is required for cell cycle progression in G2/M. Reviewed

    Molecular and cellular biology   Vol. 14 ( 5 ) page: 3158-65   1995

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    We isolated a mutant carrying a conditional mutation in the GLC7 gene, encoding the catalytic subunit of a type 1 protein phosphatase, by selection of suppressors that restored the growth defect of cdc24 mutants at high temperature and simultaneously conferred cold-sensitive growth. This cold sensitivity for growth is caused by a single mutation (glc7Y-170) at position 170 of the Glc7 protein, resulting in replacement of cysteine with tyrosine. Genetic analysis suggested that the glc7Y-170 allele is associated with a recessive negative phenotype, reducing the activity of Glc7 in the cell. The glc7Y-170 mutant missegregated chromosome III at the permissive temperature, arrested growth as large-budded cells at the restrictive temperature, exhibited a significant increase in the number of nuclei at or in the neck, and had a short spindle. Furthermore, the glc7Y-170 mutant exhibited a high level of CDC28-dependent protein kinase activity when incubated at the restrictive temperature. These findings suggest that the glc7Y-170 mutation is defective in the G2/M phase of the cell cycle. Thus, type 1 protein phosphatase in Saccharomyces cerevisiae is essential for the G2/M transition.

  73. DNA-binding domain of RCC1 protein is not essential for coupling mitosis with DNA replication. Reviewed

    Seino H, Hisamoto N, Uzawa S, Sekiguchi T, Nishimoto T.

    Journal of Cell Science   Vol. 102 ( 3 ) page: 393-400   1992

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The RCC1 protein that is required for coupling mitosis with the S phase has a DNA-binding domain in the N-terminal region outside the repeat. We found that RCC1 protein without any DNA-binding activity complemented the tsBN2 mutation with the same efficiency as that of intact RCC1 protein. In ts+ transformants of tsBN2 cells transfected with the RCC1 cDNA lacking the DNA-binding domain, an endogenous RCC1 disappeared at 39.5 degrees C, and the deleted RCC1 protein encoded by the transfected cDNA was found in the cytoplasm, but a significant amount of it was also found in the nuclei. This deleted RCC1 protein was eluted from the nuclei with the same concentration of NaCl and DNase I as was used for the intact RCC1 protein in BHK21 cells. Furthermore, the deleted RCC1 protein co-migrated with the nucleosome fraction on sucrose density gradient analysis. These results indicate that the RCC1 protein binds chromatin with the aid of other unknown protein(s). Thus, the DNA-binding domain of RCC1 protein is not essential for coupling between the S and M phases, but was shown instead to function as a nuclear translocation signal.

  74. RCCl is a nuclear protein required for coupling activation of cdc2 kinase with DNA synthesis and for start of the cell cycle.

    Seino H, Nishitani H, Seki T, Hisamoto N, Tazunoki T, Shiraki N, Ohtsubo M, Yamashita K, Sekiguchi T, Nishimoto T.

    Cold Spring Harbor Symposium of Quantitative Biology   Vol. 56   page: 367-375   1991

     More details

    Language:English  

  75. The human CCG1 gene, essential for progression of the G1 phase, encodes a 210-kilodalton nuclear DNA-binding protein. Reviewed

    Sekiguchi T, Nohiro Y, Nakamura Y, Hisamoto N, Nishimoto T

    Molecular and Cellular Biology   Vol. 11 ( 6 ) page: 3317-3325   1991

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The human CCG1 gene complements tsBN462, a temperature-sensitive G1 mutant of the BHK21 cell line. The previously cloned cDNA turned out to be a truncated form of the actual CCG1 cDNA. The newly cloned CCG1 cDNA was 6.0 kb and encoded a protein with a molecular mass of 210 kDa. Using an antibody to a predicted peptide from the CCG1 protein, a protein with a molecular mass of over 200 kDa was identified in human, monkey, and hamster cell lines. In the newly defined C-terminal region, an acidic domain was found. It contained four consensus target sequences for casein kinase II and was phosphorylated by this enzyme in vitro. However, this C-terminal region was not required to complement tsBN462 mutation since the region encoding the C-terminal part was frequently missing in complemented clones derived by DNA-mediated gene transfer. CCG1 contains a sequence similar to the putative DNA-binding domain of HMG1 in addition to the previously detected amino acid sequences common in nuclear proteins, such as a proline cluster and a nuclear translocation signal. Consistent with these predictions, CCG1 was present in nuclei, possessed DNA-binding activity, and was eluted with similar concentrations of salt, 0.3 to 0.4 M NaCl either from isolated nuclei or from a DNA-cellulose column.

▼display all

Presentations 6

  1. C. elegans Tensin regulates axon regeneration via Met-like signalling. Invited

    Naoki Hisamoto

    Neuro2019  2019.7.25 

     More details

    Event date: 2019.7

    Language:Japanese   Presentation type:Oral presentation (general)  

    Country:Japan  

  2. The role of serotonin in C. elegans axon regeneration. Invited International conference

    久本直毅

    International Workshop on NeuroScience  2017.5.7  Neuroscience Center, Nagoya University

     More details

    Event date: 2017.5

    Language:English   Presentation type:Oral presentation (keynote)  

    Venue:Nagoya, Japan   Country:Japan  

  3. Regulation of axon regeneration via a JNK pathway in C. elegans

    Hisamoto N, Li C, Pastuhov SI, BastianiM, Matsumoto K.

     More details

    Event date: 2012.9

    Language:English   Presentation type:Oral presentation (general)  

    Country:Japan  

  4. MAPキナーゼホスファターゼによる神経軸索再生制御

    第84回日本生化学会大会 

     More details

    Event date: 2011.9

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:京都   Country:Japan  

  5. Relationship between kinesin and dynein in polarized sorting of neuronal proteins

    BMMB2008 

     More details

    Event date: 2008.12

    Language:English   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

  6. 線虫 C. elegans をモデル動物とした JNK/p38 MAP キナーゼカスケードの神経系における役割

    久本 直毅, 川崎 正人,日野 未歩,坂本 リエ,松本 邦弘

    第24回 日本分子生物学会年会 

     More details

    Event date: 2002.12

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Country:Japan  

▼display all

Research Project for Joint Research, Competitive Funding, etc. 6

  1. 成体における損傷神経軸索の再生低下現象の解明

    2013.11

    平成25年度第23回自然科学系 学術研究助成 

      More details

    Grant type:Competitive

  2. 神経切断による軸索再生機構の発動メカニズムの解明

    2013.10

    平成25年度研究助成 

      More details

    Grant type:Competitive

  3. 神経軸索再生と変性のメカニズムの解明

    2012.12

    平成24年度研究助成金 

      More details

    Grant type:Competitive

  4. 線虫をモデルとした神経軸索再生機構の解明

    2012.5 - 2013.5

    ライフサイエンス研究奨励 

      More details

    Grant type:Competitive

    本研究では、線虫をモデル動物として軸索再生を制御する因子を同定・解析することにより、神経軸索再生において重要な機能を果たすシグナル伝達機構を解明することを目的とする。

  5. 線虫をモデル動物としたパーキンソン病原因遺伝子の解析

    2008.11 - 2009.11

    基礎科学研究助成 

      More details

    Grant type:Competitive

  6. 神経細胞の極性輸送を制御するキナーゼLRK-1の解析

    2006 - 2007

▼display all

KAKENHI (Grants-in-Aid for Scientific Research) 14

  1. 透明魚を用いた血液脳関門の維持・破綻メカニズムの解明

    Grant number:24K21966  2024.6 - 2026.3

    科学研究費助成事業  挑戦的研究(萌芽)

    久本 直毅, 伊藤 翼

      More details

    Authorship:Principal investigator 

    Grant amount:\6370000 ( Direct Cost: \4900000 、 Indirect Cost:\1470000 )

    血液脳関門(Blood Brain Barrier: BBB)は、血液から脳内、または脳内から血液への物質輸送を制限するバリアであり、脳機能の恒常性維持に必須な役目を担っている。アルツハイマー病やてんかん等の脳神経疾患では、症状に先立ってBBBの崩壊が起きることから、成体でのBBB機能の研究はこれらの疾患の理解に重要と考えられている。しかし、それを行うための良い実験系がこれまでなかった。本研究では新たなモデル動物として透明魚Danionella translucidaを用いることにより、成体でのBBBの破綻ダイナミクスを解析する系を確立する。さらにBBBに影響を与える化合物の探索も行う。

  2. 神経軸索再生におけるオートファジー制御因子の役割

    Grant number:22H04643  2022.4 - 2024.3

    科学研究費助成事業  新学術領域研究(研究領域提案型)

    久本 直毅

      More details

    Authorship:Principal investigator 

    Grant amount:\5850000 ( Direct Cost: \4500000 、 Indirect Cost:\1350000 )

    オートファジー制御因子であるULKは、切断された神経軸索の再生も促進することがわかっているが、そのメカニズムの詳細については不明の部分が多い。本研究では、ULKが既知のオートファジー経路と、ヒスチジン残基のリン酸化誘導を介した新規の経路も同時に活性化することで軸索再生を促進することを新たに見出したので、その詳細について解明する。

  3. 線虫をモデルとした神経軸索再生制御機構

    Grant number:21H02578  2021.4 - 2024.3

    科学研究費助成事業  基盤研究(B)

    久本 直毅

      More details

    Authorship:Principal investigator 

    Grant amount:\17160000 ( Direct Cost: \13200000 、 Indirect Cost:\3960000 )

    切断された神経を修復する普遍的機構の理解は、神経損傷治療の発展に必要不可欠であり、患者および社会に貢献する重要な課題であるが、そのメカニズムの詳細については不明の部分が多い。本研究では、その中でも比較的理解が進んでいる線虫C. elegansをモデルとして、神経軸索再生を制御するシグナル伝達経路の未解明部分について、これまで得てきた知見や発見を基に解析することで、その経路を統一的に解明する研究を行う。
    今年度は、線虫C. elegansの神経軸索再生を制御する経路のうち、Rhoシグナルの上流で機能するインテグリンのさらに上流の経路について主に解析を行った。インテグリンの上流では、軸索切断により低分子量Gタンパク質Rapの線虫ホモログRAP-2が活性化され、それがtalinホモログTLN-1を細胞膜にリクルートすることにより、細胞内からインテグリンの活性化を誘導する。興味深いことに、tln-1のインテグリン結合ドメインの変異による再生率の低下は、活性化型変異を導入したインテグリンにより抑圧できるが、rap-2欠損変異における再生率の低下は活性化型インテグリン変異体では抑圧できない。一方、rap-2欠損変異における再生率の低下はTLN-1を細胞膜に強制的に局在化することで抑圧できたことから、RAP-2がTLN-1を介してインテグリン経路非依存的に機能することが示唆された。TLN-1はvinculin線虫ホモログDEB-1と結合することから、deb-1変異体における軸索再生率を検討したところ、rap-2と同様に再生率の低下が見られた。さらにDEB-1と結合するvinexinホモログSORB-1の欠損変異体でも、同様に再生率の低下が見られた。また遺伝学的解析から、deb-1変異とsorb-1変異は同一経路上で機能することが示唆された。さらにどちらの変異体もインテグリン経路の活性化によって再生率の低下が抑圧できなかったことから、DEB-1-SORB-1がTLN-1のインテグリン非依存的な機能を仲介する可能性が示された。一方、神経軸索再生におけるGqの上流経路については、化学物質であるascr#5の合成に必要な酵素群が切断軸索で機能していることを遺伝学的に確認したが、それらの遺伝子の切断軸索細胞での発現は非常に弱かったため、検出方法を検討中である。
    線虫の神経軸索再生においてインテグリン上流で機能する経路について、TLN-1結合因子でvinculinホモログであるDEB-1と、DEB-1に結合するvinexinホモログSORB-1が、同一経路かつインテグリン活性化とは異なる経路で、神経軸索再生を促進することを見出すことができたことが主な判断理由である。DEB-1およびSORB-1が神経軸索再生に必要であるという知見自体が新規である上、これらが同一経路で軸索再生を制御することも判明したことから、RAP-2によるTLN-1を介したインテグリン非依存的軸索再生促進経路の一部が明らかになったといえる。一方、研究費申請時のもうひとつの課題であるGqの上流経路についても、一定の成果を得ている。なお、ascr#5合成酵素の切断軸索における発現についてはまだはっきりしたデータが得られていないが、これについては実験の改良によっていずれ検出できると思われる。したがって、本研究は概ね順調に進んでいると言って良いと思われる。
    インテグリンの上流において、DEB-1およびSORB-1が神経軸索再生を促進することがわかったので、これに結合する因子を探索することでDEB-1-SORB-1による軸索再生促進機構の詳細について明らかにする。具体的には、SORB-1に結合する因子の酵母ツーハイブリッド法によるスクリーニングや、線虫で軸索再生を促進することが判明している解析済または解析中の因子との関係について遺伝学的な検討を行うことにより、SORB-1のさらに下流で機能する因子の探索を行う。一方、Gqの上流経路については、まずはascr#5合成酵素の切断軸索における発現について、実験系を改良することで確実な検出ができるようにする。また、ascr#5合成酵素の転写を行う因子の候補がいくつかあるので、その方向からの解析を行うことで、ascr#5合成酵素が実際に切断軸索で機能している証左を得ることを試みると同時に、その軸索再生における動態と役割について明らかにする。

  4. Analysis of svh genes regulating axon regeneration

    Grant number:17H03544  2017.4 - 2020.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    Hisamoto Naoki

      More details

    Authorship:Principal investigator 

    Grant amount:\17550000 ( Direct Cost: \13500000 、 Indirect Cost:\4050000 )

    Nerves have long projections called axons, and when they are physically severed, various neurological disorders occur. Many nerves have the ability to regenerate severed axons, but the molecular mechanisms that induce regeneration are only partially understood. In this study, we attempted to identify and analyze the novel factors that regulate axon regeneration using the model organism C. elegans. As a result, we identified many regulatory factors, including several svh genes, and clarified their functions and roles in axon regeneration.

  5. 残存軸索断片が発信する神経軸索再生制御シグナル

    Grant number:16F16113  2016.4 - 2018.3

    科学研究費助成事業  特別研究員奨励費

    久本 直毅, PASTUHOV STRAHIL

      More details

    Authorship:Principal investigator 

    Grant amount:\2300000 ( Direct Cost: \2300000 )

    昨年度までの線虫をモデルとした解析において、軸索切断後に近位側軸索の先端に形成される成長円錐が、切断の際に細胞体より分離された遠位側の残存軸索断片の切断部付近を忌避しながら伸長する現象が、アナンダミド合成酵素であるNAPE-PLDの線虫ホモログnape-1とnape-2に依存することを発見していた。本年度は、その忌避現象が軸索切断により生じる他のイベントにも依存しているのか、それともアナンダミド単独で十分かについて調べるために、アナンダミド合成の律速酵素であるNAPE-1を異所発現させることにより検証した。そこで切断軸索に体側部で直交するPLM神経においてNAPE-1を特異的に発現させたところ、切断軸索はNAPE-1を異所発現した場合にのみPLM神経の軸索を忌避して伸長することを見出した。またその現象が、アナンダミド受容体の候補として同定したNPR-19およびNPR-32の2つの遺伝子を欠損する変異体、そしてその受容体候補の下流で機能するGoの変異体ではそれぞれ起きないことも確認した。なお、その忌避は切断された軸索でのみ起こり、発生過程にある伸長中の軸索には影響しないことも判明した。以上のことから、アナンダミドが切断された再生軸索の伸長方向を特異的に制御することを明らかにした。おそらく、アナンダミドは神経の切断により切断部位において急速に合成・放出されると考えられる。放出されたアナンダミドは切断領域に留まって、再生してきた軸索が切断部位を横切らないように負の制御を行っていると考えられる。なお、本研究は最終的に論文として発表された。
    29年度が最終年度であるため、記入しない。
    29年度が最終年度であるため、記入しない。

  6. 切断軸索からのダイイングコード

    Grant number:17H05501  2017.4 - 2019.3

    新学術領域研究(研究領域提案型)

    久本 直毅

      More details

    Authorship:Principal investigator 

    Grant amount:\9360000 ( Direct Cost: \7200000 、 Indirect Cost:\2160000 )

    昨年度までの線虫をモデル動物とした研究から、神経軸索再生において、カスパーゼであるCED-3はABCトランスポーターであるCED-7のC端を切断することで、軸索切断依存的なPSの細胞外提示を誘導することが明らかになっていた。一方、カスパーゼが活性化すると細胞死を誘導することがよく知られているが、軸索切断によるカスパーゼの活性化が、なぜ細胞死を誘導することなく軸索再生を促進できるのか、そのシグナルを区別するメカニズムについては不明であった。そこで本年度は、それを明らかにするために、CED-3の上流で軸索再生を制御する因子について探索した。その結果、カスパーゼであるCED-3の他に、Apaf-1の線虫ホモログCED-4も、切断したD型運動神経の軸索再生に関わることを見出した。さらに、小胞体にあるカルシウム結合タンパク質カルレティキュリンの線虫ホモログCRT-1が、CED-3の上流で機能することも見出した。crt-1変異体では、ced-3変異体やced-7変異体同様、切断依存的なPSの細胞外提示が起こらなかった。さらに、crt-1変異体でみられる軸索再生率の低下は、C端を欠損させて活性化型にしたCED-7を切断神経で発現することにより抑圧できた。CRT-1はカルシウム動態には影響するが、細胞死を誘導する因子ではないことから、細胞死の経路とは異なる経路である小胞体カルシウム経路が、CED-3およびCED-4を活性化することで、細胞内でのカスパーゼの活性化を局所的なものに抑え、それによりCED-7のC端の切断を介したPSの軸索切断領域特異的な細胞外への提示が行われていることが示唆された。
    平成30年度が最終年度であるため、記入しない。
    平成30年度が最終年度であるため、記入しない。

  7. アナンダミドによる軸索再生抑制機構の解析

    2013.4 - 2015.3

    科学研究費補助金  新学術領域研究

    久本直毅

      More details

    Authorship:Principal investigator 

    アナンダミドはエンドカンナビノイドに属する脂質メディエーターのひとつである。哺乳動物では、アナンダミドは神経炎症や創傷などのダメージにより産生され、神経保護や免疫系の調節、摂食や代謝調節などを行うことが知られている。しかし、その機能については未だ不明の部分が多い。申請者は最近、線虫C.elegansをモデル動物とした軸索再生の研究から、アナンダミドが三量体G蛋白質を介して、プロテインキナーゼC 経路→JNK MAPキナーゼ経路を抑制することにより、神経切断後の軸索再生を抑制することを初めて明らかにした (Nature Neurosci. 2012; Nature Commun. 2012)。その後の解析により、線虫の軸索再生抑制に関わるアナンダミド受容体の候補およびアナンダミド合成酵素の候補をそれぞれ機能的に同定し、それらによる再生の抑制が内在性のアナンダミド依存的であることも見出している。
    上記の結果を踏まえ、(1) C. elegansのアナンダミド受容体の同定と解析;(2) C. elegansのアナンダミド合成酵素の同定と解析;(3) 軸索再生におけるアナンダミドの合成場所と時期の解析;(4) アナンダミドによる軸索再生機構の生理学的意義の解析; (5) アナンダミド産生を制御するシグナル伝達経路の解析;の5つの研究を遂行する。

  8. MAPキナーゼカスケードを活性化する酸化ストレスセンサーの網羅的同定

    2009.4 - 2010.3

    科学研究費補助金  新学術領域研究、課題番号:21117509

    久本直毅

      More details

    Authorship:Principal investigator 

  9. 線虫JNKカスケードの網羅的解析

    2008 - 2010

    科学研究費補助金  基盤研究(C),課題番号:20570181

    久本 直毅

      More details

    Authorship:Principal investigator 

  10. 神経細胞の極性輸送を制御するキナーゼLRK-1の解析

    2006.4 - 2007.3

    科学研究費補助金  基盤研究(C)

    久本 直毅

      More details

    Authorship:Principal investigator 

  11. 神経細胞の極性輸送を制御するキナーゼLRK-1の解析

    2004 - 2005

    科学研究費補助金  若手研究(B),課題番号:16770145

    久本 直毅

      More details

    Authorship:Principal investigator 

  12. 線虫C. elegansをモデル動物としたストレス応答シグナル伝達経路の解析

    2002.4 - 2007.3

    科学研究費補助金  特定領域研究,課題番号:14086206

    久本 直毅

      More details

    Authorship:Coinvestigator(s) 

  13. 線虫C. elegansをモデル動物としたシナプス小胞局在制御機構の解析

    2001.4 - 2002.3

    科学研究費補助金  特定領域研究

    久本直毅

      More details

    Authorship:Principal investigator 

  14. 線虫C.elegansをモデル動物としたp38 MAPKカスケードの解析

    2000.4 - 2001.3

    科学研究費補助金  奨励研究(A)

      More details

    Authorship:Principal investigator 

▼display all

 

Teaching Experience (On-campus) 10

  1. 基礎生物学演習

    2012

  2. 基礎細胞学I

    2012

  3. 基礎細胞学II

    2012

  4. First Year Seminar A

    2012

  5. First Year Seminar A

    2011

  6. 基礎生物学演習

    2011

  7. 基礎細胞学II

    2011

  8. 基礎細胞学I

    2011

  9. 基礎細胞学I

    2010

  10. 基礎細胞学I

    2008

▼display all