Updated on 2023/03/30

写真a

 
AMANO, Mutsuki
 
Organization
Graduate School of Medicine Center for Neurological Diseases and Cance Division Associate professor
Graduate School
Graduate School of Medicine
Undergraduate School
School of Medicine
Title
Associate professor
Contact information
メールアドレス

Degree 2

  1. 博士(バイオサイエンス) ( 1998.3   奈良先端科学技術大学院大学 ) 

  2. 修士(理学) ( 1992.3   神戸大学 ) 

Research Interests 5

  1. Signal Transduction

  2. Phosphorylation

  3. Kinase

  4. Cytoskeleton

  5. Proteomics

Research Areas 4

  1. Life Science / Molecular biology

  2. Life Science / Pharmacology

  3. Others / Others  / Biochemistry

  4. Others / Others  / Cell Biology

Current Research Project and SDGs 2

  1. Regulation of cytoskeleton by small GTPase Rho and its targets.

  2. タンパク質リン酸化酵素とリン酸化シグナルネットワークの解析

Education 3

  1. Nara Institute of Science and Technology   Graduate School, Division of Biological Science

    - 1998.3

      More details

    Country: Japan

  2. Kobe University   Graduate School, Division of Natural Science

    1990.4 - 1992.3

      More details

    Country: Japan

  3. Kobe University   Faculty of Science

    - 1990

      More details

    Country: Japan

Professional Memberships 6

  1. The Japanese Pharmacological Society

  2. 日本分子生物学会

  3. 日本生化学会

  4. 日本細胞生物学会

  5. 日本癌学会

  6. Japan Neuroscience Society

▼display all

 

Papers 78

  1. DARPP-32/protein phosphatase 1 regulates Rasgrp2 as a novel component of dopamine D1 receptor signaling in striatum.

    Kuroiwa M, Shuto T, Nagai T, Amano M, Kaibuchi K, Nairn AC, Nishi A

    Neurochemistry international   Vol. 162   page: 105438   2023.1

     More details

    Language:English  

    DOI: 10.1016/j.neuint.2022.105438

    PubMed

  2. Rho-Kinase/ROCK Phosphorylates PSD-93 Downstream of NMDARs to Orchestrate Synaptic Plasticity.

    Hossen E, Funahashi Y, Faruk MO, Ahammad RU, Amano M, Yamada K, Kaibuchi K

    International journal of molecular sciences   Vol. 24 ( 1 )   2022.12

     More details

    Language:English  

    DOI: 10.3390/ijms24010404

    PubMed

  3. Dopamine drives neuronal excitability via KCNQ channel phosphorylation for reward behavior.

    Tsuboi D, Otsuka T, Shimomura T, Faruk MO, Yamahashi Y, Amano M, Funahashi Y, Kuroda K, Nishioka T, Kobayashi K, Sano H, Nagai T, Yamada K, Tzingounis AV, Nambu A, Kubo Y, Kawaguchi Y, Kaibuchi K

    Cell reports   Vol. 40 ( 10 ) page: 111309   2022.9

     More details

    Language:English  

    DOI: 10.1016/j.celrep.2022.111309

    PubMed

  4. Rho-Rho-Kinase Regulates Ras-ERK Signaling Through SynGAP1 for Dendritic Spine Morphology.

    Wu M, Funahashi Y, Takano T, Hossen E, Ahammad RU, Tsuboi D, Amano M, Yamada K, Kaibuchi K

    Neurochemical research   Vol. 47 ( 9 ) page: 2757 - 2772   2022.9

     More details

    Language:English  

    DOI: 10.1007/s11064-022-03623-y

    PubMed

  5. Identification of the Kinase-Substrate Recognition Interface between MYPT1 and Rho-Kinase

    Amano Mutsuki, Kanazawa Yoko, Kozawa Kei, Kaibuchi Kozo

    BIOMOLECULES   Vol. 12 ( 2 )   2022.2

     More details

  6. Muscarinic signaling regulates voltage-gated potassium channel KCNQ2 phosphorylation in the nucleus accumbens via protein kinase C for aversive learning.

    Faruk MO, Tsuboi D, Yamahashi Y, Funahashi Y, Lin YH, Ahammad RU, Hossen E, Amano M, Nishioka T, Tzingounis AV, Yamada K, Nagai T, Kaibuchi K

    Journal of neurochemistry   Vol. 160 ( 3 ) page: 325 - 341   2022.2

     More details

    Language:English  

    DOI: 10.1111/jnc.15555

    PubMed

  7. KANPHOS: A Database of Kinase-Associated Neural Protein Phosphorylation in the Brain

    Ahammad Rijwan Uddin, Nishioka Tomoki, Yoshimoto Junichiro, Kannon Takayuki, Amano Mutsuki, Funahashi Yasuhiro, Tsuboi Daisuke, Faruk Md. Omar, Yamahashi Yukie, Yamada Kiyofumi, Nagai Taku, Kaibuchi Kozo

    CELLS   Vol. 11 ( 1 )   2022.1

     More details

  8. Dynamic subcellular localization and transcription activity of the SRF cofactor MKL2 in the striatum are regulated by MAPK

    Ariza Anthony, Funahashi Yasuhiro, Kozawa Sachi, Faruk Md Omar, Nagai Taku, Amano Mutsuki, Kaibuchi Kozo

    JOURNAL OF NEUROCHEMISTRY   Vol. 157 ( 6 ) page: 1774 - 1788   2021.6

     More details

  9. ARHGAP10, which encodes Rho GTPase-activating protein 10, is a novel gene for schizophrenia risk.

    Sekiguchi M, Sobue A, Kushima I, Wang C, Arioka Y, Kato H, Kodama A, Kubo H, Ito N, Sawahata M, Hada K, Ikeda R, Shinno M, Mizukoshi C, Tsujimura K, Yoshimi A, Ishizuka K, Takasaki Y, Kimura H, Xing J, Yu Y, Yamamoto M, Okada T, Shishido E, Inada T, Nakatochi M, Takano T, Kuroda K, Amano M, Aleksic B, Yamomoto T, Sakuma T, Aida T, Tanaka K, Hashimoto R, Arai M, Ikeda M, Iwata N, Shimamura T, Nagai T, Nabeshima T, Kaibuchi K, Yamada K, Mori D, Ozaki N

    Translational psychiatry   Vol. 10 ( 1 ) page: 247   2020.7

     More details

  10. Dopamine Receptor Dop1R2 Stabilizes Appetitive Olfactory Memory through the Raf/MAPK Pathway in Drosophila.

    Sun H, Nishioka T, Hiramatsu S, Kondo S, Amano M, Kaibuchi K, Ichinose T, Tanimoto H

    The Journal of neuroscience : the official journal of the Society for Neuroscience   Vol. 40 ( 14 ) page: 2935 - 2942   2020.4

     More details

  11. Protein kinases phosphorylate long disordered regions in intrinsically disordered proteins

    Koike Ryotaro, Amano Mutsuki, Kaibuchi Kozo, Ota Motonori

    PROTEIN SCIENCE   Vol. 29 ( 2 ) page: 564 - 571   2020.2

     More details

    Language:Japanese  

    DOI: 10.1002/pro.3789

    Web of Science

    PubMed

  12. Phosphorylation of Npas4 by MAPK Regulates Reward-Related Gene Expression and Behaviors

    Funahashi Yasuhiro, Ariza Anthony, Emi Ryosuke, Xu Yifan, Shan Wei, Suzuki Ko, Kozawa Sachi, Ahammad Rijwan Uddin, Wu Mengya, Takano Tetsuya, Yura Yoshimitsu, Kuroda Keisuke, Nagai Taku, Amano Mutsuki, Yamada Kiyofumi, Kaibuchi Kozo

    CELL REPORTS   Vol. 29 ( 10 ) page: 3235 - +   2019.12

     More details

  13. Protein Kinase N Promotes Stress-Induced Cardiac Dysfunction Through Phosphorylation of Myocardin-Related Transcription Factor A and Disruption of Its Interaction With Actin

    Sakaguchi Teruhiro, Takefuji Mikito, Wettschureck Nina, Hamaguchi Tomonari, Amano Mutsuki, Kato Katsuhiro, Tsuda Takuma, Eguchi Shunsuke, Ishihama Sohta, Mori Yu, Yura Yoshimitsu, Yoshida Tatsuya, Unno Kazumasa, Okumura Takahiro, Ishii Hideki, Shimizu Yuuki, Bando Yasuko K., Ohashi Koji, Ouchi Noriyuki, Enomoto Atsushi, Offermanns Stefan, Kaibuchi Kozo, Murohara Toyoaki

    CIRCULATION   Vol. 140 ( 21 ) page: 1737 - 1752   2019.11

     More details

  14. Pathological Progression Induced by the Frontotemporal Dementia-Associated R406W Tau Mutation in Patient-Derived iPSCs

    Nakamura Mari, Shiozawa Seiji, Tsuboi Daisuke, Amano Mutsuki, Watanabe Hirotaka, Maeda Sumihiro, Kimura Taeko, Yoshimatsu Sho, Kisa Fumihiko, Karch Celeste M., Miyasaka Tomohiro, Takashima Akihiko, Sahara Naruhiko, Hisanaga Shin-ichi, Ikeuchi Takeshi, Kaibuchi Kozo, Okano Hideyuki

    STEM CELL REPORTS   Vol. 13 ( 4 ) page: 684 - 699   2019.10

     More details

  15. Discovery of a key missing signaling between RHOA/RHO-kinase and ras underlying spine enlargement and LTP

    Wu M., Funahashi Y., Takano T., Tsuboi D., Ahammad R., Amano M., Kaibuchi K.

    JOURNAL OF NEUROCHEMISTRY   Vol. 150   page: 121 - 121   2019.7

     More details

  16. Comprehensive analysis of kinase-oriented phospho-signaling pathways.

    Amano M, Nishioka T, Tsuboi D, Kuroda K, Funahashi Y, Yamahashi Y, Kaibuchi K

    Journal of biochemistry   Vol. 165 ( 4 ) page: 301 - 307   2019.4

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

    DOI: 10.1093/jb/mvy115

    Web of Science

    PubMed

  17. In Vivo Identification of Protein Kinase Substrates by Kinase-Oriented Substrate Screening (KIOSS).

    Nishioka T, Amano M, Funahashi Y, Tsuboi D, Yamahashi Y, Kaibuchi K

    Current protocols in chemical biology   Vol. 11 ( 1 ) page: e60   2019.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1002/cpch.60

    PubMed

  18. Balance between dopamine and adenosine signals regulates the PKA/Rap1 pathway in striatal medium spiny neurons.

    Zhang X, Nagai T, Ahammad RU, Kuroda K, Nakamuta S, Nakano T, Yukinawa N, Funahashi Y, Yamahashi Y, Amano M, Yoshimoto J, Yamada K, Kaibuchi K

    Neurochemistry international   Vol. 122   page: 8 - 18   2019.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.neuint.2018.10.008

    Web of Science

    PubMed

  19. Targeting Tyro3 ameliorates a model of PGRN-mutant FTLD-TDP via tau-mediated synaptic pathology

    Fujita Kyota, Chen Xigui, Homma Hidenori, Tagawa Kazuhiko, Amano Mutsuki, Saito Ayumu, Imoto Seiya, Akatsu Hiroyasu, Hashizume Yoshio, Kaibuchi Kozo, Miyano Satoru, Okazawa Hitoshi

    NATURE COMMUNICATIONS   Vol. 9 ( 1 ) page: 433   2018.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/s41467-018-02821-z

    Web of Science

    PubMed

  20. Mechanism of dopamine signaling for membrane excitability

    Tsuboi D., Shimomura T., Nakano T., Nagai T., Amano M., Yoshimoto J., Kubo Y., Kaibuchi K.

    JOURNAL OF NEUROCHEMISTRY   Vol. 142   page: 135 - 135   2017.8

     More details

  21. Discovery of long-range inhibitory signaling to ensure single axon formation Reviewed

    Takano T, Wu M, Nakamuta S, Naoki H, Ishizawa N, Namba T, Watanabe T, Xu C, Hamaguchi T, Yura Y, Amano M, Hahn KM, and Kaibuchi K.

    Nat Commun   Vol. 8 ( 1 ) page: 33   2017.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/s41467-017-00044-2

    Web of Science

    PubMed

  22. KANPHOS (Kinase-Associated Phospho-Signaling) Platform - A database for neural phosphoproteomics with quality control

    Kuroda Keisuke, Nagai Taku, Amano Mutsuki, Yoshimoto Junichiro, Kannon Takayuki, Nishioka Tomoki, Usui Shiro, Kaibuchi Kozo

    JOURNAL OF PHARMACOLOGICAL SCIENCES   Vol. 133 ( 3 ) page: S263 - S263   2017.3

     More details

  23. A FRET Biosensor for ROCK Based on a Consensus Substrate Sequence Identified by KISS Technology Reviewed

    Li C, Imanishi A, Komatsu N, Terai K, Amano M, Kaibuchi K, and Matsuda M.

    Cell Struct Funct   Vol. 42 ( 1 ) page: 1 - 13   2017.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1247/csf.16016

    PubMed

  24. A FRET Biosensor for ROCK Based on a Consensus Substrate Sequence Identified by KISS Technology

    Li Chunjie, Imanishi Ayako, Komatsu Naoki, Terai Kenta, Amano Mutsuki, Kaibuchi Kozo, Matsuda Michiyuki

    CELL STRUCTURE AND FUNCTION   Vol. 42 ( 1 ) page: 1 - 13   2017

     More details

  25. Identification of Protein Kinase Substrates by the Kinase-Interacting Substrate Screening (KISS) Approach Invited Reviewed

    Amano, M. Nishioka, T. Yura, Y. Kaibuchi, K.

    Curr Protoc Cell Biol   Vol. 72   page: 14 16 1-14 16 12   2016.9

     More details

    Authorship:Lead author   Language:English  

    DOI: 10.1002/cpcb.8

  26. Focused Proteomics Revealed a Novel Rho-kinase Signaling Pathway in the Heart Reviewed

    Yura, Y. Amano, M. Takefuji, M. Bando, T. Suzuki, K. Kato, K. Hamaguchi, T. Hasanuzzaman Shohag, M. Takano, T. Funahashi, Y. Nakamuta, S. Kuroda, K. Nishioka, T. Murohara, T. Kaibuchi, K.

    Cell Struct Funct   Vol. 41 ( 2 ) page: 105-120   2016.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1247/csf.16011

  27. Phosphoproteomics of the Dopamine Pathway Enables Discovery of Rap1 Activation as a Reward Signal In Vivo Reviewed

    Nagai, T. Nakamuta, S. Kuroda, K. Nakauchi, S. Nishioka, T. Takano, T. Zhang, X. Tsuboi, D. Funahashi, Y. Nakano, T. Yoshimoto, J. Kobayashi, K. Uchigashima, M. Watanabe, M. Miura, M. Nishi, A. Kobayashi, K. Yamada, K. Amano, M. Kaibuchi, K.

    Neuron   Vol. 89 ( 3 ) page: 550-565   2016.2

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.neuron.2015.12.019

  28. Single-Cell Memory Regulates a Neural Circuit for Sensory Behavior Reviewed

    Kobayashi, K. Nakano, S. Amano, M. Tsuboi, D. Nishioka, T. Ikeda, S. Yokoyama, G. Kaibuchi, K. Mori, I.

    Cell Rep   Vol. 14 ( 1 ) page: 11-21   2016.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.celrep.2015.11.064

  29. Developing novel methods to search for substrates of protein kinases such as Rho-kinase Invited Reviewed

    Nishioka, T. Shohag, M. H. Amano, M. Kaibuchi, K.

    Biochim Biophys Acta   Vol. 1854 ( 10 ) page: 1663-1666   2015.10

     More details

    Language:English  

    DOI: 10.1016/j.bbapap.2015.03.001

  30. Phosphoproteomic Analysis Using the WW and FHA Domains as Biological Filters Reviewed

    Hasanuzzaman Shohag, M. Nishioka, T. Uddin Ahammad, R. Nakamuta, S. Yura, Y. Hamaguchi, T. Kaibuchi, K. Amano, M.

    Cell Struct Funct   Vol. 40 ( 2 ) page: 95-104   2015.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1247/csf.15004

  31. Kinase-interacting substrate screening is a novel method to identify kinase substrates Reviewed

    Amano, M., Hamaguchi, T., Shohag, M. H., Kozawa, K., Kato, K., Zhang, X., Yura, Y., Matsuura, Y., Kataoka, C., Nishioka, T., and Kaibuchi, K.

    J Cell Biol   Vol. 209 ( 6 ) page: 895-912   2015.6

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1083/jcb.201412008

  32. In vivo Screening for Substrates of Protein Kinase A Using a Combination of Proteomic Approaches and Pharmacological Modulation of Kinase Activity. Reviewed

    Hamaguchi, T., Nakamuta, S., Funahashi, Y., Takano, T., Nishioka, T., Shohag, M. H., Yura, Y., Kaibuchi, K., and Amano, M.

    Cell Struct Funct   Vol. 40   page: 1-12   2015.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1247/csf.14014

  33. Preferential targeting of p39-activated Cdk5 to Rac1-induced lamellipodia. Reviewed

    Ito, Y., Asada, A., Kobayashi, H., Takano, T., Sharma, G., Saito, T., Ohta, Y., Amano, M., Kaibuchi, K., and Hisanaga, S.

    Mol Cell Neurosci   Vol. 61   page: 34-45   2014.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.mcn.2014.05.006

  34. Distinct distribution and localization of Rho-kinase in mouse epithelial, muscle and neural tissues Reviewed

    Iizuka, M., Kimura, K., Wang, S., Kato, K., Amano, M., Kaibuchi, K., Mizoguchi, A.

    Cell Struct Funct   Vol. 37 ( 2 ) page: 155-175   2012.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The small GTP-binding protein Rho plays a crucial role in a wide variety of cellular functions through various effector proteins. Rho-kinase is a key effector protein of Rho, which is composed of two isoforms, ROCK1 and ROCK2. To clarify the site of action of ROCK1 and ROCK2, we performed immunofluorescence and immunoelectron microscopic analyses using isoform-specific antibodies in mouse tissues. In the large and small intestines, ROCK1 immunoreactivity was predominantly identified in epithelial cells, and ROCK2 immunoreactivity was negligible. In these epithelial cells, ROCK1 immunoreactivity was distributed on plasma membranes, while ROCK1 immunogold signals were localized at cell-cell contacts and cell adhesion sites, especially at the adherens junctions at the ultrastructural level. In the bladder epithelium, however, ROCK1 and ROCK2 signals were identified at intermediate filaments, and ROCK2 signals were also observed in nuclei. In the three types of muscular cells - smooth, cardiac, and skeletal muscle cells - ROCK1 and ROCK2 also showed differential distribution. ROCK1 signals were localized at actin filaments, plasma membranes, and vesicles near plasma membranes in smooth muscle cells; at the lysosomes in skeletal muscle cells; and were undetectable in cardiac muscle cells. ROCK2 signals were localized at actin filaments and centrosomes in smooth muscle cells, at intercalated discs in cardiac muscle cells, and at Z-discs and sarcoplasmic reticulum in skeletal muscle cells. In the brain, ROCK1 immunoreactivity was distributed in glia, whereas ROCK2 immunoreactivity was observed in neurons. These results indicate that the two isoforms of Rho-kinase distribute differentially to accomplish their specific functions.

  35. The inositol 5-phosphatase SHIP2 is an effector of RhoA and is involved in cell polarity and migration Reviewed

    Kato, K., Yazawa, T., Taki, K., Mori, K., Wang, S., Nishioka, T., Hamaguchi, T., Itoh, T., Takenawa, T., Kataoka, C., Matsuura, Y., Amano, M., Murohara, T., Kaibuchi, K.

    Mol Biol Cell   Vol. 23 ( 13 ) page: 2593-2604   2012.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Cell migration is essential for various physiological and pathological processes. Polarization in motile cells requires the coordination of several key signaling molecules, including RhoA small GTPases and phosphoinositides. Although RhoA participates in a front-rear polarization in migrating cells, little is known about the functional interaction between RhoA and lipid turnover. We find here that src-homology 2-containing inositol-5-phosphatase 2 (SHIP2) interacts with RhoA in a GTP-dependent manner. The association between SHIP2 and RhoA is observed in spreading and migrating U251 glioma cells. The depletion of SHIP2 attenuates cell polarization and migration, which is rescued by wild-type SHIP2 but not by a mutant defective in RhoA binding. In addition, the depletion of SHIP2 impairs the proper localization of phosphatidylinositol 3,4,5-trisphosphate, which is not restored by a mutant defective in RhoA binding. These results suggest that RhoA associates with SHIP2 to regulate cell polarization and migration.

    DOI: 10.1091/mbc.E11-11-0958

  36. Proteomic screening for Rho-kinase substrates by combining kinase and phosphatase inhibitors with 14-3-3zeta affinity chromatography Reviewed

    Nishioka, T., Nakayama, M., Amano, M., Kaibuchi, K.

    Cell Struct Funct   Vol. 37 ( 1 ) page: 39-48   2012.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The small GTPase RhoA is a molecular switch in various extracellular signals. Rho-kinase/ROCK/ROK, a major effector of RhoA, regulates diverse cellular functions by phosphorylating cytoskeletal proteins, endocytic proteins, and polarity proteins. More than twenty Rho-kinase substrates have been reported, but the known substrates do not fully explain the Rho-kinase functions. Herein, we describe the comprehensive screening for Rho-kinase substrates by treating HeLa cells with Rho-kinase and phosphatase inhibitors. The cell lysates containing the phosphorylated substrates were then subjected to affinity chromatography using beads coated with 14-3-3 protein, which interacts with proteins containing phosphorylated serine or threonine residues, to enrich the phosphorylated proteins. The identities of the molecules and phosphorylation sites were determined by liquid chromatography tandem mass spectrometry (LC/MS/MS) after tryptic digestion and phosphopeptide enrichment. The phosphorylated proteins whose phosphopeptide ion peaks were suppressed by treatment with the Rho-kinase inhibitor were regarded as candidate substrates. We identified 121 proteins as candidate substrates. We also identified phosphorylation sites in Partitioning defective 3 homolog (Par-3) at Ser143 and Ser144. We found that Rho-kinase phosphorylated Par-3 at Ser144 both in vitro and in vivo. The method used in this study would be applicable and useful to identify novel substrates of other kinases.

  37. A proteomic approach for comprehensively screening substrates of protein kinases such as Rho-kinase Reviewed

    Amano, M., Tsumura, Y., Taki, K., Harada, H., Mori, K., Nishioka, T., Kato, K., Suzuki, T., Nishioka, Y., Iwamatsu, A.,Kaibuchi, K.

    PLoS One   Vol. 5 ( 1 ) page: e8704   2010

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    BACKGROUND: Protein kinases are major components of signal transduction pathways in multiple cellular processes. Kinases directly interact with and phosphorylate downstream substrates, thus modulating their functions. Despite the importance of identifying substrates in order to more fully understand the signaling network of respective kinases, efficient methods to search for substrates remain poorly explored. METHODOLOGY/PRINCIPAL FINDINGS: We combined mass spectrometry and affinity column chromatography of the catalytic domain of protein kinases to screen potential substrates. Using the active catalytic fragment of Rho-kinase/ROCK/ROK as the model bait, we obtained about 300 interacting proteins from the rat brain cytosol fraction, which included the proteins previously reported as Rho-kinase substrates. Several novel interacting proteins, including doublecortin, were phosphorylated by Rho-kinase both in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE: This method would enable identification of novel specific substrates for kinases such as Rho-kinase with high sensitivity.

  38. Rho-kinase/ROCK: A key regulator of the cytoskeleton and cell polarity Invited Reviewed

    Amano, M., Nakayama, M., Kaibuchi, K.

    Cytoskeleton   Vol. 67 ( 9 ) page: 545-54   2010

     More details

    Authorship:Lead author   Language:English  

    Rho-associated kinase (Rho-kinase/ROCK/ROK) is an effector of the small GTPase Rho and belongs to the AGC family of kinases. Rho-kinase has pleiotropic functions including the regulation of cellular contraction, motility, morphology, polarity, cell division, and gene expression. Pharmacological analyses have revealed that Rho-kinase is involved in a wide range of diseases such as vasospasm, pulmonary hypertension, nerve injury, and glaucoma, and is therefore considered to be a potential therapeutic target. This review focuses on the structure, function, and modes of activation and action of Rho-kinase.

  39. *Rho-kinase contributes to sustained RhoA activation through phosphorylation of p190A RhoGAP Reviewed

    Mori, K.Amano, M.Takefuji, M.Kato, K.Morita, Y.Nishioka, T.Matsuura, Y.Murohara, T.Kaibuchi, K.

    J Biol Chem   Vol. 284 ( 8 ) page: 5067-5076   2009

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    RhoA is transiently activated by specific extracellular signals such as endothelin-1 (ET-1) in vascular smooth muscle cells. RhoGAP negatively regulates RhoA activity: thus, RhoA becomes the GDP-bound inactive form afterward. Sustained activation of RhoA is induced with high doses of the extracellular signals and is implicated in certain diseases such as vasospasms. However, it remains largely unknown how prolonged activation of RhoA is induced. Here we show that Rho-kinase, an effector of RhoA, phosphorylated p190A RhoGAP at Ser(1150) and attenuated p190A RhoGAP activity in COS7 cells. Binding of Rnd to p190A RhoGAP is thought to enhance its activation. Phosphorylation of p190A RhoGAP by Rho-kinase impaired Rnd binding. Stimulation of vascular smooth muscle cells with a high dose of ET-1 provoked sustained RhoA activation and p190A RhoGAP phosphorylation, both of which were prohibited by a Rho-kinase inhibitor. The phosphomimic mutation of p190A RhoGAP weakened Rnd binding and RhoGAP activities. Taken together, these results suggest that ET-1 induces Rho-kinase activation and subsequent phosphorylation of p190A RhoGAP, leading to prolonged RhoA activation.

  40. Rho-kinase phosphorylates PAR-3 and disrupts PAR complex formation Reviewed

    Nakayama, M.Goto, T. M.Sugimoto, M.Nishimura, T.Shinagawa, T.Ohno, S.Amano, M.Kaibuchi, K.

    Dev Cell   Vol. 14 ( 2 ) page: 205-215   2008

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    A polarity complex of PAR-3, PAR-6, and atypical protein kinase C (aPKC) functions in various cell polarization events. PAR-3 directly interacts with Tiam1/Taim2 (STEF), Rac1-specific guanine nucleotide exchange factors, and forms a complex with aPKC-PAR-6-Cdc42*GTP, leading to Rac1 activation. RhoA antagonizes Rac1 in certain types of cells. However, the relationship between RhoA and the PAR complex remains elusive. We found here that Rho-kinase/ROCK/ROK, the effector of RhoA, phosphorylated PAR-3 at Thr833 and thereby disrupted its interaction with aPKC and PAR-6, but not with Tiam2. Phosphorylated PAR-3 was observed in the leading edge, and in central and rear portions of migrating cells having front-rear polarity. Knockdown of PAR-3 by small interfering RNA (siRNA) impaired cell migration, front-rear polarization, and PAR-3-mediated Rac1 activation, which were recovered with siRNA-resistant PAR-3, but not with the phospho-mimic PAR-3 mutant. We propose that RhoA/Rho-kinase inhibits PAR complex formation through PAR-3 phosphorylation, resulting in Rac1 inactivation.

  41. Rho-kinase modulates the function of STEF, a Rac GEF, through its phosphorylation Reviewed

    Takefuji, M., Mori, K., Morita, Y., Arimura, N., Nishimura, T., Nakayama, M., Hoshino, M., Iwamatsu, A., Murohara, T., Kaibuchi, K., Amano, M.

    Biochem Biophys Res Commun   Vol. 355 ( 3 ) page: 788   2007.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Rho family GTPases are key regulators of various physiological processes. Several recent studies indicated that the antagonistic relationship between Rho and Rac is essential for cell polarity and that the Rac activity is negatively regulated by Rho. In this study, we found that Rho-kinase, an effector of Rho, counteracted the Rac GEF STEF-induced Rac1 activation in COS7 cells. Rho-kinase phosphorylated STEF at Thr1662 in vitro, and Y-27632, a Rho-kinase inhibitor, suppressed lysophosphatidic acid-induced phosphorylation of STEF in PC12D cells. STEF interacted with specific molecules such as microtubule-associated protein 1B, and the phosphorylation of STEF by Rho-kinase diminished its interaction with these molecules. STEF promoted nerve growth factor-induced neurite outgrowth in PC12D cells, while the phosphomimic mutant of STEF had a weakened ability to enhance neurite outgrowth. Taken together, these results suggest that the phosphorylation of STEF by Rho-kinase exerts the inhibitory effect on the function of STEF.

  42. Nuclear Rho kinase, ROCK2, targets p300 acetyltransferase Reviewed

    J NeurochemJ Biol Chem   Vol. 281 ( 22 ) page: 15320-15329   2006

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  43. Molecular mechanism for the regulation of rho-kinase by dimerization and its inhibition by fasudil Reviewed

    Structure   Vol. 14 ( 3 ) page: 589-600   2006

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  44. Regulatory machinery of UNC-33 Ce-CRMP localization in neurites during neuronal development in Caenorhabditis elegans Reviewed

    J Neurochem   Vol. 95 ( 6 ) page: 1629-1641   2005

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  45. Rho-kinase and myosin II activities are required for cell type and environment specific migration Reviewed

    Genes Cells   Vol. 10 ( 2 ) page: 107-117   2005

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  46. Rho mediates endocytosis of epidermal growth factor receptor through phosphorylation of endophilin A1 by Rho-kinase Reviewed

    Genes Cells   Vol. 10 ( 10 ) page: 973-987   2005

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  47. Phosphorylation by Rho kinase regulates CRMP-2 activity in growth cones Reviewed

    Mol Cell Biol   Vol. 25 ( 22 ) page: 9973-9984   2005

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  48. Design and synthesis of Rho kinase inhibitors (I) Reviewed

    Bioorg Med Chem   Vol. 12 ( 9 ) page: 2115-2137   2004

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  49. Interaction of Rho-kinase with myosin II at stress fibres Reviewed

    Genes Cells   Vol. 9 ( 7 ) page: 653-660   2004

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  50. Inflammatory stimuli upregulate Rho-kinase in human coronary vascular smooth muscle cells Reviewed

    J Mol Cell Cardiol   Vol. 37 ( 2 ) page: 537-546   2004

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  51. Entrapment of Rho ADP-ribosylated by Clostridium botulinum C3 exoenzyme in the Rho-GDI-1 complex

    J Biol Chem   Vol. 278 ( 31 ) page: 28523-28527   2003

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  52. Identification of Tau and MAP2 as novel substrates of Rho-kinase and myosin phosphatase Reviewed

    J Neurochem   Vol. 87 ( 3 ) page: 780-790   2003

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  53. Parallel coiled-coil association of the RhoA-binding domain in Rho-kinase Reviewed

    J Biol Chem   Vol. 278 ( 41 ) page: 46046-46051   2003

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  54. Isolation of the interacting molecules with GEX-3 by a novel functional screening Reviewed

    Biochem Biophys Res Commun   Vol. 292 ( 3 ) page: 697-701   2002

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  55. Translocation of Na(+),K(+)-ATPase is induced by Rho small GTPase in renal epithelial cells Reviewed

    Biochem Biophys Res Commun   Vol. 297 ( 5 ) page: 1231-1237   2002

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  56. Rho-kinase-mediated contraction of isolated stress fibers Reviewed

    J Cell Biol   Vol. 153 ( 3 ) page: 569-584   2001

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  57. Arachidonic acid-induced Ca2+ sensitization of smooth muscle contraction through activation of Rho-kinase Reviewed

    Pflugers Arch   Vol. 441 ( 5 ) page: 596-603   2001

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  58. Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells

    Trends Pharmacol Sci   Vol. 22 ( 1 ) page: 32-39   2001

     More details

    Language:English  

  59. CRMP-2 induces axons in cultured hippocampal neurons Reviewed

    Nat Neurosci   Vol. 4 ( 8 ) page: 781-782   2001

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  60. Phosphorylation of ERM proteins at filopodia induced by Cdc42 Reviewed

    Genes Cells   Vol. 5 ( 7 ) page: 571-581   2000

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  61. Regulation and functions of Rho-associated kinase

    Exp Cell Res   Vol. 261 ( 1 ) page: 44-51   2000

     More details

    Authorship:Lead author   Language:English  

  62. Purification and in vitro activity of Rho-associated kinase Reviewed

    Methods Enzymol   Vol. 325   page: 149-155   2000

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  63. Phosphorylation of Collapsin Response Mediator Protein-2 by Rho-kinase: Evidence for Two Separate Signaling Pathways for Growth Cone Collapse Reviewed

    J Biol Chem   Vol. 275 ( 31 ) page: 23973-23980   2000

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  64. Identification of Calponin as a Novel Substrate of Rho-Kinase Reviewed

    Biochem Biophys Res Commun   Vol. 273 ( 1 ) page: 110-116   2000

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

  65. *The COOH terminus of Rho-kinase negatively regulates Rho-kinase activity. Reviewed

    J. Biol. Chem.   Vol. 274   page: 32418-32424   1999

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  66. Phosphorylation of myosin-binding subunit(MBS) of myosin phosphatase by Rho-kinase in vivo.

    J. Cell Biol.   Vol. 147   page: 1023-1038   1999

     More details

    Language:English  

  67. Rho-associated kinase of chicken gizzard smooth muscle.

    J. Biol. Chem.   Vol. 274   page: 3744-3752   1999

     More details

    Language:English  

  68. Regulation of Cytoskeleton and cell adhesions by the small GTPase Rho and its targets.

    Trends in Cardiovascular Medicine   Vol. 8   page: 162-168   1998

     More details

    Language:English  

  69. Rho-kinase phosphorylates COOH-terminal threonines of Ezrin/Radixin/Moesin(ERM)proteins and regulates their Head-to-tail association.

    J Cell Biol   Vol. 140   page: 647-657   1998

     More details

    Language:English  

  70. Myosin II activation promotes neurite retraction during the action of Rho and Rho-kinase.

    Genes Cells   Vol. 3   page: 177-188   1998

     More details

    Language:English  

  71. Cytoskeletal rearrangements and transcriptional activation of c-fos serum response element by Rho-kinase.

    J Biol Chem   Vol. 272   page: 26121-25127   1997

     More details

    Language:English  

  72. *Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Reviewed

    Science   Vol. 275   page: 1308-1311   1997

     More details

    Authorship:Lead author   Language:English  

  73. Phosphorylation of glial fibrillary acidic protein at the same sites by cleavage furrow kinase and Rho-associated kinase.

    J Biol Chem   Vol. 272   page: 10333-10336   1997

     More details

    Language:English  

  74. Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation.

    J Biol Chem   Vol. 272   page: 12257-12260   1997

     More details

    Language:English  

  75. Regulation of myosin phosphatase by Rho and Rho-associated kinase(Rho-kinase). Reviewed

    Science   Vol. 273   page: 245-248   1996

     More details

    Language:English  

  76. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for the small GTP-binding protein Rho.

    EMBO J   Vol. 15   page: 2208-2216   1996

     More details

    Language:English  

  77. *Phosphorylation and activation of myosin by Rho-associated kinase(Rho-kinase).

    J Biol Chem   Vol. 271   page: 20246-20249   1996

     More details

    Language:English  

  78. Identification of a putative target for Rho as a serine-threonine kinase protein Kinase N. Reviewed

    Science   Vol. 271   page: 648-650   1996

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

▼display all

Research Project for Joint Research, Competitive Funding, etc. 1

  1. Rhoファミリーシグナル伝達系分子を対象とした疾患関連遺伝子の探索

    2006

KAKENHI (Grants-in-Aid for Scientific Research) 11

  1. がん幹細胞のリン酸化シグナルの解析による治療標的分子の探索

    Grant number:20K07600  2020.4 - 2023.3

    科学研究費助成事業  基盤研究(C)

    渡辺 崇, 柳 久乃, 天野 睦紀, 下野 洋平

      More details

    Authorship:Coinvestigator(s) 

    がん幹細胞は自己複製能と多分化能、強い造腫瘍性、治療抵抗性といった特徴を有し、がんの再発や転移の原因とされている。申請者の所属する研究室では、乳がんの手術検体を移植した異種移植(PDX)マウスを作製することで、肝臓に自然転移するがん幹細胞を解析できる実験系を世界に先駆けて樹立した。申請者らは本PDXマウスのがん幹細胞では足場タンパク質S100が高発現しており、転移がん幹細胞ではS100の発現がさらに10倍以上誘導されることを見出した。本研究では、S100による乳がん幹細胞の特性を制御する分子機構、特に機能的リン酸化シグナルに焦点を絞り、乳がん幹細胞を標的とする治療ターゲットを提案する。
    当該年度は人工脳腫瘍幹細胞をモデルとし、リン酸化プロテオミクスの手法を用いて脳腫瘍がん幹細胞の多様性と、それを制御する分子機構の解析を行なった。先行研究により人工的に作製した脳腫瘍がん幹細胞は、代謝特性が異なる2つのサブクローン(ATSとBTS)に大別できることが判明している。今回、それらのサブクローンに特徴的なリン酸化タンパク質を14-3-3用いて濃縮し、質量分析によって網羅的に同定した。その結果、ATSあるいはBTSに特徴的にリン酸化が亢進しているタンパク質を見出すことに成功し、脳腫瘍がん幹細胞の不均一がリン酸化シグナルにより制御されていることが示唆された。
    得られたリン酸化タンパク質のうち、細胞運動や極性制御に関与することが知られているAktの基質Girdinに焦点を絞り、詳細な解析を進めた。14-3-3が結合するGirdinの
    領域をPulldown実験により検討したところ、GirdinのC末端中、1490番目のセリン残基に14-3-3が結合することを見出した。さらに、脳腫瘍がん幹細胞内でのGirdinの機能を解析するため、Girdinの遺伝子発現を抑制したATS, BTSを樹立した。脳腫瘍がん幹細胞の自己複製能と腫瘍形成能をin vitroで検証することができるスフェア形成試験を行なったところ、ATSはGirdin の遺伝子発現抑制により影響を受けないものの、BTSではGirdin の遺伝子発現抑制よりスフェアの形成能が著しく減弱することが明らかになった。また、Girdinの遺伝子発現抑制はATSとBTSの細胞増殖あるいは、代謝特性に大きな影響を与えないことを見出している。
    これらのことから、Girdinのリン酸化レベルは脳腫瘍がん幹細胞の不均一性を制御する分子機構の一端であることが示唆された。
    がん幹細胞を制御するリン酸化シグナルを解明する目的で、人工脳腫瘍がん幹細胞をモデルとした研究に重点を移行した。昨年まで研究に用いてきた乳がん幹細胞と異なり、人工脳腫瘍がん幹細胞はin vitroで増殖することが可能で、生化学的なアプローチに適していた。その結果、リン酸化プロテオミクスによるリン酸化タンパク質の同定、その制御因子の遺伝子発現抑制による機能解析に成功している。現在は移植実験並びに、網羅的遺伝子発現解析などに研究を展開しており、全体としては概ね順調に進展している。
    今年度に同定したGirdinを手がかりとし、人工脳腫瘍がん幹細胞の不均一性を制御するリン酸化シグナルの研究を進める。具体的にはBTS中でGirdinのリン酸化を担うキナーゼの同定を行う。また、Girdin遺伝子発現抑制したがん幹細胞をマウスに移植することによる腫瘍形成能への影響を検討する。さらには、網羅的遺伝子発現解析、1細胞遺伝子発現解析などのバイオインフォマティクス的な手法で研究を展開し、統合的に脳腫瘍がん幹細胞を制御するリン酸化シグナルの解析を行うことで、脳腫瘍がん幹細胞の不均一性を解明し、それを克服できる治療ターゲットを勘案する。

  2. 心臓の硬化を制御するG蛋白質共役受容体の機能解明と心不全治療薬シーズの探索

    Grant number:20H03674  2020.4 - 2023.3

    科学研究費助成事業  基盤研究(B)

    竹藤 幹人, 榎本 篤, 室原 豊明, 天野 睦紀

      More details

    Authorship:Coinvestigator(s) 

    近年、心臓が硬くなり拡がりにくいために症状を呈する「収縮機能が保たれた心不全(HFpEF)」が注目されている。従来の心収縮機能低下を標的とする治療法ではHFpEFの治療効果は乏しく、HFpEFに対する新たな治療法の開発が求められている。adhesion-GPCRファミリーは物理的刺激により活性化されるGPCRとして新たに分類され、メカノストレスに対する生体反応を制御する分子として注目されている。adhesion-GPCR X がHFpEFに関わっていることを明らかにし、その下流で活性化するリン酸化シグナルを解析する。本研究では、HFpEF治療薬の開発シーズを得ることを目指す。
    これまで心不全は、心収縮能が低下する病態とされてきたが、近年、心臓が硬くなり拡がりにくいために症状を呈する「収縮機能が保たれた心不全(HFpEF)」が高齢者特有の心不全として注目されている。従来の心収縮機能低下を標的とする治療法ではHFpEFの治療効果は乏しく、超高齢社会をむかえるなかでHFpEFに対する新たな治療法の開発が求められている。既に加齢および心不全により発現が増加する機能未知のGタンパク質共役受容体(adhesion-GPCR X)を同定し、遺伝子欠損マウスを用いた予備的実験を行い、adhesion-GPCR X の下流で活性化するα-kinase XがHFpEF発症に関わることを見出した。CRISPR/CAS9システムにより、Cre発現依存的α-kinase X欠損マウスを作製した。研究代表者が開発した薬物誘導性心筋特異的Creマウスと交配し、心筋特異的α-kinase X欠損マウスを作製した。
    NOS阻害薬(L-NAME)と高脂肪食(HFD)摂取によるHFpEFマウスモデルを用いて、心筋特異的α-kinase X欠損マウスがHFpEFを抑制するかを検討した。心臓超音波を用いてE/AとE/E’により心臓の拡張障害を評価したところ、α-kinase X欠損マウスは拡張障害が悪化したことから、α-kinase XのHFpEFへの関与が示唆された。さらにカテーテル検査にて心臓の拡張能が障害されていることも明らかにした。免疫免職法により心筋組織を評価したところ、心臓間質の線維化の変化は乏しいことから、α-kinase Xは心筋細胞の拡張能を制御していると考えられた。
    コロナ感染により研究施設利用や海外からの試薬の取り寄せに制限があった時期があったが、研究自体は進行している。
    心筋特異的adhesion-GPCR X欠損マウスに対して、NOS阻害薬(L-NAME)と高脂肪食(HFD)摂取によるHFpEFマウスモデルを用いて、心筋特異的adhesion-GPCR X欠損マウスがHFpEFを抑制するかを検討する。心臓超音波を用いてE/AとE/E’により心臓の拡張障害、カテーテルを用いた心内圧測定による拡張障害の評価、生存率などを明らかにする。Hematoxylin-Eosin染色、Picro-Sirius Red染色、Azan染色、各種特殊染色により、心筋の性状を検討する。原子間力顕微鏡(Core AFM Nanosurf)を用いて心臓の表層および心臓凍結切片を評価する。原子間力顕微鏡は探針と試料表面との間に働く力(弾性率)を検出することにより試料の硬さの評価が可能であり、adhesion-GPCR X 欠損マウスでは心臓の硬化がどの程度抑制されるかを示す。メカノストレスによる心筋細胞の硬化を評価する。adhesion-GPCR X欠損マウスから単離した心筋細胞をシリコン膜ストレッチチャンバー上で培養し、一軸性進展刺激を加えた時の心筋細胞の反応(アクチン線維の配向の変化、ミオシン軽鎖のリン酸化)を定量することで心筋細胞の硬さを評価する。
    α-kinase Xの基質同定のため、遺伝子欠損マウスから心筋細胞を単離し、細胞溶解液をリン酸化カラムに添加し、リン酸化されたペプチドを収集する。収集したサンプルを質量分析法により解析し、α-kinase Xによりリン酸化される物質およびリン酸化部位を決定し、心筋細胞の拡張メカニズムを検討する。

  3. 血栓形成における12-リポキシゲナーゼの局在・活性制御メカニズムの解明

    Grant number:19K08853  2019.4 - 2023.3

    科学研究費助成事業  基盤研究(C)

    勝見 章, 天野 睦紀

      More details

    Authorship:Coinvestigator(s) 

    血小板におけるアゴニスト受容体からのシグナルは Gα13を介して低分子量GTPase RhoAを活性化する。その結果血小板の形態変化、濃染顆粒 内容物の分泌をおこす。我々はアフィニティクロマトグラフィーにより活性化RhoA がフォルミンDaam1を介して12-リポキシゲナーゼ(12-LOX)に結合することを見いだした。 12-LOXは主に血小板に発現し、アラキドン酸からの12-ヒドロキシエイコサテトラエン酸 (12-HETE)等の脂質メディエーター合成を介して血小板凝集を惹起する。本研究では活性化RhoA-Daam1が、12-LOXの細胞膜への局在を誘導し活性を制御することを証明する。
    アラキドン酸リポキシゲナーゼ(ALOX)とその下流の脂質メディエーターは動脈硬化、血小板凝集、慢性炎症、がんの進展などに関与する多機能蛋白である。ALOX下流の脂質メディエーターについては活発に研究が行われているが、上流の制御メカニズムについては殆ど報告がなされていない。当該研究ではALOXの細胞内局在をRho family GTPaseが制御しており、動脈硬化部位、免疫器官など多様な臓器に脂質メディエーターをリクルートする際に Rho-ALOX経路が重要であるという仮説を証明するために蛋白生化学、マススペクトロメトリー、加齢マウスモデル等を用いた実験を計画した。我々はRhoA, Rac1,Cdc42などに加え、RhoH, Rac2等の血球特異的GTPaseをbaitにした網羅的アフィニティクロマトグラフィーとそれに続くマススペクトロメトリー(LC/MS-MS)の実験系を確立し、GTP結合型の活性型活性型RhoAに特異的に結合する複数の蛋白を同定した。そのうちアラキドン酸リポキシゲナーゼ-12(ALOX12)が活性型RhoAに結合することを見いだした。RhoAとALOX12をCOS-1細胞内で発現したところ両者の直接の結合は認められなかった。一方でRhoAエフェクターforminとALOX12の結合が発現実験で証明された。このことからALOX12はforminを介して活性型RhoAに結合することが強く示唆された。GTPase阻害剤による実験により、ALOXとの活性化依存性の結合が明らかになったRho family分子を同定した。GTPase阻害剤を内因性のALOXが発現した細胞に添加し、脂質メディエーター(ロイコトリエン、リポキシン、HETEなど)の産生抑制を定量する実験系を確立した。
    本研究ではRhoファミリーGTPaseをbaitにした網羅的アフィニティクロマトグラフィーとそれに続くマススペクトロメトリー(LC/MS-MS)の実験系を確立し、血小板細胞質分画からGTP結合型の活性型活性型RhoAに特異的に結合する複数の蛋白を同定した。そのうちアラキドン酸リポキシゲナーゼ-12(ALOX12)が活性型RhoAに結合することを見いだした。RhoAとALOX12の直接の結合は認められなかったが、RhoAエフェクターforminとALOX12の結合がCOS-1細胞での発現実験で証明され、ALOX12はforminを介して活性型RhoAに結合することが判明した。GTPase阻害剤による実験により、ALOXとの活性化依存性の結合が明らかになったRho family分子を同定した。GTPase阻害剤を内因性のALOXが発現した細胞に添加し、脂質メディエーター(ロイコトリエン、リポキシン、HETEなど)産生抑制を測定する系を既に確立している。以上のことから研究計画は概ね順調に進展していると考えられる。
    1)巨核球細胞株MEG-O1、CMK-86にL63RhoA(活性型)とN19RhoA(不活性型)を発現し、培養上清中の12-HETE産生がL63RhoAにより亢進することを確認する。さらに活性型RhoAによる12-HETE産生亢進がRhoA、forminの阻害薬であるC3 toxin、SMIFH2により抑制されるが、Rho-kinase阻害剤Y-27632では抑制されないことを証明する。
    2)GST-forminを洗浄血小板に混和しcytoplasmicアクチン重合アッセイとpyreneラベル精製アクチンアッセイの双方でアクチン重合の定量を行い、12-LOX阻害剤ML355によりformin上でのアクチン重合が阻害されるかどうか検討する。これにより12-LOXがforminを介したアクチン重合を制御していることを証明する。また、ML355の添加による血小板のアクチン形態変化をRhodamine Phalloidin染色で観察する。
    3)RhoA欠失マウスから分離した血小板の、アゴニスト刺激時の12-LOXの局在、12-HETE分泌量をそれぞれ免疫染色、ELISAで測定し、野生型マウス血小板と比較する。

  4. Analysis of substrate recognition and regulatory mechanisms for protein kinases.

    Grant number:17K07383  2017.4 - 2021.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    Amano Mutsuki

      More details

    Authorship:Principal investigator 

    Grant amount:\4940000 ( Direct Cost: \3800000 、 Indirect Cost:\1140000 )

    In this study, we analyzed substrate recognition and regulatory mechanisms of protein kinases, as well as physiological and pathological functions. We identified the specific sequences of MYPT1, a substrate for Rho-kinase, as docking motifs (DMs) conferring selectivity and efficiency of phosphorylation by Rho-kinase. We also found that longer intrinsically disordered regions (IDRs) are preferably phosphorylated by stochastic simulation model using our screening dataset for 15 protein kinases. In addition, functional analyses revealed that MAPK-Npas4/MKL2 (mouse striatal neurons) and PKN-MKL1 (mouse heart) signals are involved in dopamine-induced gene expression and stress-induced cardiac dysfunction, respectively.

  5. Study on regulatory mechanism of neural activity and emotional behavior by intracellular signals

    Grant number:17H01380  2017.4 - 2021.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (A)

    Kaibuchi Kozo

      More details

    Authorship:Coinvestigator(s) 

    In this study, we comprehensively identified proteins that are phosphorylated downstream of neuromodulators (dopamine, adenosine, acetylcholine) and glutamate using our proprietary phospho-proteomics method. We have elucidated the intracellular signal transduction that regulates neuronal excitatory, synaptic plasticity, and gene expression at the molecular level, and also elucidated the regulatory mechanism of emotional behavior and its learning & memory.

  6. The role of protein kinase N in cardiomyocyte

    Grant number:17K09571  2017.4 - 2020.3

    TAKEFUJI MIKITO

      More details

    Authorship:Coinvestigator(s) 

    Heart failure is a complex syndrome that results from structural or functional impairment of ventricular filling or blood ejection. Protein phosphorylation is a major and essential intracellular mechanism that mediates various cellular processes in cardiomyocytes in response to extracellular and intracellular signals. We demonstrated that RHOA activates 2 members of the PKN family of proteins, PKN1 and PKN2, in cardiomyocytes of mice with cardiac dysfunction. Cardiomyocyte-specific deletion of the genes encoding Pkn1 and Pkn2 protected mice from pressure overload induced cardiac dysfunction. Furthermore, we identified MRTFA as a novel substrate of PKN1 and PKN2 and found that MRTFA phosphorylation by PKN was considerably more effective than that by ROCK in vitro. Our results indicate that PKN1 and PKN2 activation causes cardiac dysfunction and is involved in the transition to heart failure, thus providing unique targets for therapeutic intervention for heart failure.

  7. Analysis of genes that affect individuality

    Grant number:16H06528  2016.6 - 2021.3

    Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

    Hoshino MIkio

      More details

    Authorship:Coinvestigator(s) 

    To understand the genetic factors that govern individuality, this study investigated the genetic factors behind male (masculine) and female (feminine) behavior, as well as those behind good social interaction. First, we found that the transcription factor Ptf1a is expressed in the hypothalamus during mouse embryonic development and functions in the normal differentiation of the brain into male and female brains by give the brain "sex-differentiation competence”. We also revealed that the AUTS2 gene, which is associated with autism spectrum disorders in humans, regulates the excitatory/inhibitory balance in the brain by limiting the number of excitatory synapses, and that the breakage of the gene causes diverse changes in social behavior in mice. This study provides clues to the genetic factors of individuality.

  8. The role of cellular localization of ALOX proteins in vascular aging

    Grant number:15K09451  2015.4 - 2019.3

    KATSUMI Akira

      More details

    Authorship:Coinvestigator(s) 

    Rho family proteins play a role in organelle development, cytoskeletal dynamics, cell movement, and other common cellular functions.To identify novel downstream effectors of RhoA, we performed GST-RhoA affinity column chromatography by using platelet lysates. Cytosol fraction of platelet was loaded onto affinity columns on which GST, GST-RhoA-N19, or GST-RhoA-L63 was immobilized. Using triple quadrupole liquid chromatography tandem mass spectrometer, several proteins associated with active RhoA were identified. Arachidonate lipoxygenase (ALOX) binds to GST-RhoA-L63, but not to GST-RhoA-N19 along with the known RhoA effectors. ALOX does not directly bind to RhoA-L63, although Daam1 is shown to bind to ALOX. The second LH2 domain of ALOX directly binds to N-terminal of Daam1, suggesting that Daam1 functions as a scaffolding protein for the assembly of ALOX. We further investigate the roles of Daam1 on ALOX activity and subcellular localization of these molecules.

  9. 低分子量G蛋白質Rhoシグナルが関わる疾患の分子基盤の解明

    2011.4 - 2013.3

    科学研究費補助金  基盤研究(C)

    天野睦紀

      More details

    Authorship:Principal investigator 

  10. 細胞増殖・分化に関わる蛋白質リン酸化酵素の新規基質スクリーニング法の開発

    2008

    科学研究費補助金  特定領域研究,課題番号:20058012

    天野 睦紀

      More details

    Authorship:Principal investigator 

  11. Rhoファミリーシグナル伝達系分子を対象とした疾患関連遺伝子の探索と解析    

    2008

    科学研究費補助金  基盤研究(C),課題番号:20590308

    天野 睦紀

      More details

    Authorship:Principal investigator 

▼display all

 

Teaching Experience (On-campus) 23

  1. 生体と薬物

    2020

  2. 生物学基礎II

    2020

  3. 生体と薬物

    2019

  4. 生物学基礎II

    2019

  5. 生体と薬物

    2018

  6. 生物学基礎II

    2018

  7. 生物学基礎II

    2017

  8. 生体と薬物

    2017

  9. 生物学基礎II

    2016

  10. 生体と薬物

    2016

  11. 生物学基礎II

    2015

  12. 生物学基礎II

    2014

  13. 生体と薬物

    2014

  14. 生物学基礎II

    2013

  15. 生体と薬物

    2013

  16. 生物学基礎II

    2012

  17. 生体と薬物

    2012

  18. 生物学基礎II

    2011

  19. 生体と薬物

    2011

  20. 生体と薬物

    2010

  21. 生体と薬物

    2009

  22. 生体と薬物

    2008

  23. 生体と薬物

    015

▼display all