Updated on 2024/11/26

写真a

 
MA Te
 
Organization
Graduate School of Bioagricultural Sciences Department of Forest and Environmental Resources Sciences Assistant Professor
Graduate School
Graduate School of Bioagricultural Sciences
Undergraduate School
School of Agricultural Sciences Department of Bioenvironmental Sciences
Title
Assistant Professor
Contact information
メールアドレス

Degree 1

  1. 博士(農学) ( 2018.3   名古屋大学 ) 

Research Areas 4

  1. Life Science / Forest science

  2. Life Science / Wood science

  3. Environmental Science/Agriculture Science / Agricultural environmental engineering and agricultural information engineering

  4. Informatics / Mathematical informatics

Current Research Project and SDGs 1

  1. 分光イメージング手法による農産物の非破壊品質評価

Research History 3

  1. Nagoya University   Graduate School of Bioagricultural Sciences Lab. System Engineering for Biology   Assistant Professor

    2024.4

  2. Nagoya University   Approved Program for Mathematics, Data science and AI Smart Higher Education Graduate School of Bioagricultural Sciences   Designated Lecturer

    2022.10 - 2024.3

  3. Nagoya University   Graduate School of Bioagricultural Sciences   Designated Assistant Professor

    2018.4 - 2022.9

Education 3

  1. Nagoya University   Graduate School, Division of Agriculture

    - 2018.3

      More details

    Country: Japan

  2. Nagoya University   Graduate School, Division of Agriculture

    - 2015.3

      More details

    Country: Japan

  3. Nagoya University   Faculty of Agriculture

    - 2013.3

      More details

    Country: Japan

Professional Memberships 3

  1. 近赤外研究会   会員

  2. 日本木材学会   会員

  3. 日本木材加工技術協会

Awards 5

  1. NIR Advance Award

    2018.11   近赤外研究会  

     More details

    Award type:Award from international society, conference, symposium, etc.  Country:Japan

  2. 優秀ポスター賞

    2017.3   日本木材学会  

     More details

    Award type:Award from international society, conference, symposium, etc.  Country:Japan

  3. Best Poster Award

    2016.11   Asian NIR Consortium  

     More details

    Award type:International academic award (Japan or overseas)  Country:Japan

  4. Student Travel Award

    2014.11   近赤外研究会  

     More details

    Award type:Award from Japanese society, conference, symposium, etc.  Country:Japan

  5. 卒業論文最優秀発表賞

    2013.2   名古屋大学農学部生物環境科学科  

     More details

    Country:Japan

 

Papers 54

  1. Development of a time-resolved laser-induced fluorescence fingerprinting method for detecting low-level adulteration in extra virgin olive oil Reviewed

    Te Ma, Hao Jiang, Satoru Tsuchikawa, Tetsuya Inagaki

    Food Chemistry   Vol. 465   page: 142125 - 142125   2025.2

     More details

    Authorship:Lead author   Language:English  

    DOI: https://doi.org/10.1016/j.foodchem.2024.142125

  2. Enhanced detection of early bruises in apples using near-infrared hyperspectral imaging with geometrical influence correction for universal size adaptation Reviewed

    Bin Li, Te Ma, Tetsuya Inagaki, Satoru Tsuchikawa

    Postharvest Biology and Technology   Vol. 219   page: 113282 - 113282   2025.1

     More details

  3. The effects of growth rate on the age dependent variation of wood properties evaluated by differential geometry Reviewed

    Takaaki Fujimoto, Te Ma, Tetsuya Inagaki, Satoru Tsuchikawa

    Industrial Crops and Products   Vol. 222   2024.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    A correct understanding of the variations seen in wood properties with tree age is of great importance for both the forestry and timber industries. However, this phenomenon is complex because of the differences between individuals and the variations associated with multiple wood properties. In this study, we have identified age-dependent changes in the state of wood as a surface that contains comprehensive information on the coupled variation of multiple properties in many individuals. By comparing the geometric quantities of the surface between sample groups with different growth rates caused by silvicultural treatments, we have discussed the ideal forest management in terms of wood quality and forest ecosystems. The slow-growing group showed larger Gaussian curvatures of the surface and a more tortuous and longer geodesic than the fast-growing group, resulting in less energy loss during tree growth. Assuming that processes with high symmetry are more sustainable, the characteristic class representing the global structure of the growth process indicates that the slow-growing group follows a more sustainable process than the fast-growing group. These results indicate that it is ideal for trees to grow slowly, in terms of variation of wood properties and forest ecosystem. Because the geometric quantities are invariant under coordinate transformations, the proposed methods provide us with the intrinsic behavior of the tree growth process independent of a specific coordinate system, that is, a concrete space spanned by the measured wood properties.

    DOI: 10.1016/j.indcrop.2024.119596

    Web of Science

    Scopus

  4. Enhanced quantification of chlorophyll a and its degradation products in olive oil using time-resolved laser-induced fluorescence fingerprint analysis Reviewed

    Te Ma, Hao Jiang, Satoru Tsuchikawa, Tetsuya Inagaki

    Food Chemistry   Vol. 460   2024.12

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    Potential errors in the fluorescence analysis of chlorophylls and their degradation products, primarily due to spectral overlap and inner filter, are widely acknowledged. This study aimed to devise a sensitivity-enhanced technique for the concurrent quantification of chlorophyll a and its degradation products while minimizing effects from type-B chlorophylls. Initially, a time-resolved laser-induced fluorescence spectroscopic system was designed and tested on stardard chlorophyll samples. The origins, implications, and mitigation strategies of spectral overlap and the inner filter effect on the measured fluorescence intensity were thoroughly examined. Then, this methodology was proved to be efficacious within complex liquid matrices derived from olive oil. The experimental outcomes not only shed additional light on the mechanisms of chlorophyll fluorescence overlap and the inner filter effect, but also establish a general framework for developing spectrally and timely resolved fluorescence fingerprint analysis for the simultaneous quantification of chlorophylls and their degradation products at high concentrations.

    DOI: 10.1016/j.foodchem.2024.140656

    Web of Science

    Scopus

    PubMed

  5. Validation Study on the Practical Accuracy of Wood Species Identification via Deep Learning from Visible Microscopic Images Reviewed

    Te Ma, Fumiya Kimura, Satoru Tsuchikawa, Miho Kojima, Tetsuya Inagaki

    BioResources   Vol. 19 ( 3 ) page: 4838 - 4851   2024.8

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    This study aimed to validate the accuracy of identifying Japanese hardwood species from microscopic cross-sectional images using convolutional neural networks (CNN). The overarching goal is to create a versatile model that can handle microscopic cross-sectional images of wood. To gauge the practical accuracy, a comprehensive database of microscopic images of Japanese hardwood species was provided by the Forest Research and Management Organization. These images, captured from various positions on wood blocks, different trees, and diverse production areas, resulted in substantial intra-species image variation. To assess the effect of data distribution on accuracy, two datasets, D1 and D2, representing a segregated and a non-segregated dataset, respectively—from 1,000 images (20 images from each of the 50 species) were compiled. For D1, distinct images were allocated to the training, validation, and testing sets. However, in D2, the same images were used for both training and testing. Furthermore, the influence of the evaluation methodology on the identification accuracy was investigated by comparing two approaches: patch evaluation and E2 image evaluation. The accuracy of the model for uniformly sized images was approximately 90%, whereas that for variably sized images it was approximately 70%.

    DOI: 10.15376/biores.19.3.4838-4851

    Web of Science

    Scopus

▼display all

Books 5

  1. Wooden Material and Environmental Sciences

    Ma T., Tsuchikawa S., Inagaki T.( Role: Sole author)

    Near-Infrared Spectroscopy: Theory, Spectral Analysis, Instrumentation, and Applications  2020.11  ( ISBN:9789811586477

     More details

    Language:Japanese

    Near-infrared spectroscopy (NIRS) is suitable for both the qualification and quantification of organic properties associated with C-H, O-H, or N-H groups. There have been considerable efforts made toward proposing and developing various technologies and devices for the rapid and nondestructive measurement of various samples related to natural materials and environmental sciences. In this chapter, the utilizations of NIRS in the fields of wood material, soil, sediment, waste liquid, atmospheric gas detection, and archeological science will be explained through some representative studies.

    DOI: 10.1007/978-981-15-8648-4_16

    Scopus

  2. The Encyclopedia of Archaeological Sciences

    Satoru Tsuchikawa, Te Ma, Tetsuya Inagaki( Role: Joint author)

    John Wiley & Sons, Inc.  2018  ( ISBN:9780470674611

     More details

    Language:English Book type:Scholarly book

  3. 分光イメージング法による食品混入異物の検査

    土川 覚、馬 特、小堀 光、片山詔久( Role: Joint author)

    日本工業出版  2015.11 

     More details

    Language:Japanese Book type:Scholarly book

  4. 分光イメージング法を活用した食品混入異物の非破壊検査

    土川 覚, 馬 特, 小堀 光, 片山詔久( Role: Joint author)

    日本オプトメカトロニクス協会  2015 

     More details

    Responsible for pages:53(3)   Language:Japanese Book type:Scholarly book

  5. 分光画像解析による食品異物混入の非破壊検査-表面近傍の有機異物検出の可能性-

    土川 覚、馬 特、小堀 光、片山詔久( Role: Joint author)

    日本工業出版  2014 

     More details

    Language:Japanese Book type:Scholarly book

Presentations 39

  1. 近赤外空間分解分光法を用いた木材品質の非破壊評価

    馬 特, Gary Schajer, 稲垣哲也, Zarin Pirouz, 土川 覚

    第68回日本木材大会 

     More details

    Event date: 2018.3

    Language:Japanese   Presentation type:Poster presentation  

    Country:Japan  

  2. Prediction of wood fibril angle and moisture content using optical scattering and absorption properties International conference

    Te Ma, Gary Schajer, Zarin Pirouz, Tetsuya Inagaki, Satoru Tsuchikawa

     More details

    Event date: 2017.6

    Language:English   Presentation type:Poster presentation  

    Country:Canada  

  3. Non-destructive evaluation of wood density and MFA in high-spatial resolution using NIR hyperspectral imaging International conference

    The 2017 IUFRO All-Division 5 Conference 

     More details

    Event date: 2017.6

    Language:English   Presentation type:Oral presentation (general)  

    Country:Canada  

  4. 近赤外ハイパースペクトラルイメージング法を活用した木材品質の非破壊評価

    馬 特, 稲垣哲也, 土川 覚

    第67回日本木材大会 

     More details

    Event date: 2017.3

    Language:Japanese   Presentation type:Poster presentation  

    Country:Japan  

  5. Non-destructive evaluation of wood density and MFA in high-spatial resolution using NIR hyperspectral imaging International conference

    Te Ma, Tetsueya Inagaki, Satoru Tsuchikawa

    The 5th Asian NIR Symposium 2016 

     More details

    Event date: 2016.11 - 2016.12

    Language:English   Presentation type:Poster presentation  

    Country:Japan  

▼display all

Research Project for Joint Research, Competitive Funding, etc. 3

  1. 次世代近赤外シングルピクセルイメージング技術による食品中低密度有機異物の検出

    2024.10 - 2026.9

    2024年浦上財団研究助成  

      More details

    Authorship:Principal investigator 

  2. アバカから生まれるセルロースナノファイバー (CNF) フィルムとその非破壊品質検査技術の開発

    2024.10 - 2026.9

    フジシール財団 若手研究助成 

      More details

    Authorship:Principal investigator 

  3. 時間・空間分解分光法による青果物収穫後の品質変化の生理機構解明と非破壊品質評価技術の開発

    2022.12 - 2024.11

    ヒロセ財団 第9回研究助成  

      More details

    Authorship:Principal investigator 

KAKENHI (Grants-in-Aid for Scientific Research) 4

  1. 木材乾燥過程における水分移動および割れ発生メカニズムの解明

    Grant number:24K09016  2024.4 - 2027.3

    基盤研究(C) 

    馬 特

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\4550000 ( Direct Cost: \3500000 、 Indirect Cost:\1050000 )

    本研究では、①分光情報と空間情報を同時に獲得できる近赤外ハイパースペクトラルイメージング法を用いて、様々な乾燥条件下の木材内部の水分布を可視化し、非等温条件下における三次元乾燥モデルの構築を試みる。また、② デジタル画像相関法によって乾燥過程で木材に生じる残留応力の可視化を試み、乾燥応力の発生機構や割れなどの損傷との関連性を明らかにする。さらに、③木材試料の損傷をX線マイクロCT手法で観察し、有限要素法よる変形および割れの予測アルゴリズム開発を目指す。本研究により、含水率変化による材の割れ発生メカニズムの解明や、効率的かつ内部割れが生じない乾燥スケジュールの構築が期待される。

  2. Moisture dynamics monitoring in wood by snapshot-type near-infrared hyperspectral images

    Grant number:22H02405  2022.4 - 2025.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

      More details

    Authorship:Coinvestigator(s) 

  3. 木材乾燥過程における水分分布の可視化および AI・シミュレーション技術の開発

    Grant number:22K14926  2022.4 - 2024.3

    科学研究費補助金  若手研究 

    馬 特

      More details

    Authorship:Principal investigator 

    Grant amount:\4680000 ( Direct Cost: \3600000 、 Indirect Cost:\1080000 )

    本研究では、分光情報と空間情報を同時に獲得できる近赤外ハイパースペクトラルイメージング法(NIR-HSI)を用いて、様々な乾燥条件下の木材内部の自由水・結合水分布を可視化することにより、熱および水分拡散係数から木材乾燥過程をモデル化する。さらに、乾燥応力によって生じた木材試料の変化を観察し、有限要素法および人工知能(AI)による変形および割れの予測アルゴリズム開発を目指す。
    初年度には、ヒノキを実験サンプルとして使用し、合計56個のサンプルを約30×30×30mmの大きさに分割した。サンプルの湿度を制御するために2つの乾燥器を用意した。乾燥器Aは、水によって約95%の高い相対湿度(RH)に調整、乾燥器Bは五酸化二リンによって約10%の低いRHに調整した。28個のサンプルを平衡水分含量に達するまで乾燥器Aに入れた。その後、木材サンプルを乾燥器Bに移し、定期的に取り出して下記の測定を行った。
    先ず、各サンプルをX線CTで木材の物理構造、内部の割れ、および密度データを取得し、3Dシミュレーション用モデルを構築した。その後、各木材試料を約5mmの間隔で切断しつつ、その断面を近赤外ハイパースペクトラルイメージング(NIR-HSI)カメラで撮影した。含水率(MC)の計算のため、撮影前後の重量および全乾燥重量を測定した。同じ測定は、乾燥器BからAの順にも行った。測定されたMCとNIRスペクトルの間のキャリブレーションモデルは、偏最小二乗(PLS)回帰分析に基づいて構築した。最後に、MCキャリブレーションモデルを分光画像に適用して、測定された木材サンプルの湿度の可視化を実現できた。
    本実験では、「NIR分光法の利点である非破壊測定」の視点を大きく変えて木材乾燥過程における材内の水の3次元空間分布をあえて破壊的な計測によって把握できた。さらに、NIR-HSIでの水の可視化結果に基づいて、水分分布の時間変化と表面温度による水分移動特性をパラメータ化し、非等温乾燥条件下で3次元シミュレーション乾燥過程のモデル化に成功した。さらなる実証実験により、NIR-HSI法が木材乾燥過程における水移動機構のモデル構築のための有力な分析ツールになることが期待できる。
    令和4年度の研究計画である「熱および水分拡散係数から木材乾燥過程のモデル化」を達成するため、木材人工乾燥の実験を繰り返した。近赤外ハイパースペクトラルイメージング法による観測深度は材表層の数mm程度であり、柱材などの材内の水分分布の観察には使えないという現実を直視し、非破壊測定に固執せず、木材試料を乾燥しながら一定の間隔で切断しつつ分光画像の撮影を連続的に行った。その結果、木材乾燥過程における材内の水の3次元空間分布を把握でき、水分分布の時間変化と表面温度による水分移動特性をパラメータ化し、非等温乾燥条件下で3次元シミュレーション乾燥過程のモデル化にも成功した。また、マイクロX線CT装置を活用し、材の変形計測を非接触かつ高い分解能で撮影できた。これにより、次年度の研究計画である「Al・シミュレーション法によるひずみ・割れ予測モデルの構築」のための準備ができたといえる。さらに、上記の研究成果を国学会と国際誌でも発表でき、研究は概ね順調に進展しているといえる。
    令和4年度の研究成果である「水の空間分布と材の変形情報」を元に、有限要素法、AI学習などを組み合わせて材の変形・割れの予測モデルの構築を試みる。また、新しい木材試料を準備し、乾燥応力が原因で実際に生じたひずみ・割れの状況との比較を行い、予測モデルの妥当性を担保する。その後、水分分布および乾燥温度のパラメータを変えながらシミュレーションを繰り返し、乾燥による木材割れの発生メカニズムの解明を図る。さらに、同じ樹種の木材試料をマイクロ波による乾燥や自然乾燥の実験も同時に進める。各乾燥条件での木材の破壊特徴を比較し、人工乾燥と自然乾燥のシミュレーションにおける最適なパラメータの設定の違いなどを検討する。一連の実験により、最適な乾燥スケジュールを自動提案する手法の確立を目指す。

  4. Non-destructive wood species classification and multiple characteristics evaluation of wood by near-infrared spatially resolved spectroscopy

    Grant number:19K15886  2019.4 - 2021.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research 

    Ma Te

      More details

    Authorship:Principal investigator  Grant type:Competitive

    In this research, an optical system was developed to acquire multi-wavelength absorption and scattering characteristics from the spatial distribution of a point light source that used to illuminate wood sample. As a result, it was possible to create a calibration model that can be used to classify multiple wood species, and it was possible to improve the prediction accuracy compared to conventional spectroscopy. We also found the possibility of measuring wood tensile strain by the same spatially resolved spectroscopy. Furthermore, in connection with international joint research, we found the possibility of measuring the hardness of fruits by this method in a non-destructive and highly accurate manner. These results were submitted to two international journals (Holzforschung, Postharvest Biology and Technology) and once at a domestic conference (71st Japan Wood Society).

 

Social Contribution 1

  1. 科学技術振興財団、日本・アジア青少年サイエンス交流事業、さくらサイエンスプラン ( 計12回 運営参加)

    Role(s):Organizing member

    2014 - 2024