Updated on 2023/09/08

写真a

 
MASUTANI, Chikahide
 
Organization
Research Institute of Environmental Medicine Division of Stress Adaptation and Protection Professor
Graduate School
Graduate School of Medicine
Title
Professor

Degree 1

  1. Ph.D. ( 1991.3   The University of Tokyo ) 

Research History 10

  1. Nagoya University   Research Institute of Environmental Medicine Division of Stress Adaptation and Protection   Professor

    2010.9

  2. 名古屋大学環境医学研究所 教授

    2010.9

      More details

    Country:Japan

  3. 大阪大学大学院生命機能研究科 准教授

    2007.4 - 2010.8

      More details

    Country:Japan

  4. Osaka University   Graduate School of Frontier Biosciences

    2007.4 - 2010.8

  5. 大阪大学大学院生命機能研究科 助教授

    2005.7 - 2007.3

      More details

    Country:Japan

▼display all

Education 2

  1. The University of Tokyo   Graduate School, Division of Pharmaceutical Sciences

    1986.4 - 1991.3

      More details

    Country: Japan

  2. The University of Tokyo   Faculty of Pharmaceutical Science

    1982.4 - 1986.3

      More details

    Country: Japan

 

Papers 125

  1. Novel mechanisms for the removal of strong replication-blocking HMCES- and thiazolidine-DNA adducts in humans. Reviewed

    Sugimoto Y, Masuda Y, Iwai S, Miyake Y, Kanao R, Masutani C

    Nucleic acids research     2023.4

     More details

    Authorship:Last author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1093/nar/gkad246

    PubMed

  2. RFWD3 and translesion DNA polymerases contribute to PCNA modification-dependent DNA damage tolerance Reviewed

    Rie Kanao, Hidehiko Kawai, Toshiyasu Taniguchi, Minoru Takata, Chikahide Masutani

    Life Science Alliance   Vol. 5 ( 12 )   2022.7

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.26508/lsa.202201584

  3. Regulation of HLTF-mediated PCNA polyubiquitination by RFC and PCNA monoubiquitination levels determines choice of damage tolerance pathway. Reviewed

    Masuda Y, Mitsuyuki S, Kanao R, Hishiki A, Hashimoto H, Masutani C

    Nucleic acids research     2018.10

     More details

    Authorship:Last author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1093/nar/gky943

    PubMed

  4. USP7 is a suppressor of PCNA ubiquitination and oxidative-stress-induced mutagenesis in human cells. Reviewed

    Kashiwaba, S., Kanao, R., Masuda, Y., Kusumoto-Matsuo, R., Hanaoka, F., Masutani, C.

    Cell Reports   Vol. 13   page: 2072-2080   2015.12

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j. celrep.2015.11.014

  5. Different types of interaction between PCNA and PIP boxes contribute to distinct cellular functions of Y-family DNA polymerases Reviewed

    Masuda Yuji, Kanao Rie, Kaji Kentaro, Ohmori Haruo, Hanaoka Fumio, Masutani Chikahide

    NUCLEIC ACIDS RESEARCH   Vol. 43 ( 16 ) page: 7898 - 7910   2015.9

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1093/nar/gkv712

    Web of Science

    Scopus

    PubMed

▼display all

Books 26

  1. Translesion DNA synthesis (in "DNA Repair Disorders" edited by Nishigori and Sugasawa)

    Chikahide Masutani, Fumio Hanaoka( Role: Joint author)

    Springer  2019 

     More details

    Language:English Book type:Scholarly book

  2. Translesion DNA synthesis

    Masutani C., Hanaoka F.( Role: Sole author)

    DNA Repair Disorders  2018.1  ( ISBN:9789811067211

     More details

    Language:Japanese

    Human DNA polymerase η (pol η) is the gene product that is altered in the variant form of xeroderma pigmentosum. Pol η has a structure that can accommodate the cyclobutane pyrimidine dimer, the most prominent ultraviolet-induced DNA lesion. Pol η catalyzes efficient and accurate translesion DNA synthesis (TLS) under the fine control of systems involving interactions with mono-ubiquitinated proliferating cell nuclear antigen. Pol η can also catalyze TLS past cisplatin lesions, which might contribute to the resistance of tumors to chemotherapy. Other Y-family polymerases, pol ι, pol κ, and REV1, and a B-family polymerase pol ζ can contribute to erroneous TLS past ultraviolet-induced lesions. However, these polymerases also contribute to the maintenance of genomic stability in the presence of their cognate DNA lesions. A-family polymerases, pol θ and pol ν, also have TLS abilities, and pol θ has an important role in an alternative end-joining repair pathway for DNA double-strand breaks, protecting against genomic instability. PrimPol is a protein with DNA polymerase and primase activities that is capable of initiating de novo DNA/RNA synthesis and that also has the capacity to bypass modifications that stall the replisome, by TLS or origin-independent re-priming. This chapter summarizes our current knowledge relating to DNA polymerases that are capable of catalyzing TLS.

    DOI: 10.1007/978-981-10-6722-8_12

    Scopus

  3. Translesion DNA synthesis and damage tolerance pathways

    Masuda Y., Hanaoka F., Masutani C.( Role: Sole author)

    DNA Replication, Recombination, and Repair: Molecular Mechanisms and Pathology  2016.1  ( ISBN:9784431558712

     More details

    Language:Japanese

    One of the critical cellular effects of DNA damage is the impediment of the activity of high-fidelity DNA polymerases for replication. Although DNA repair mechanisms physically remove DNA damage before the initiation of DNA replication, remaining damage DNA can still persist in S phase and inhibit replicative DNA polymerases. To deal with this, cells have developed mechanisms to copy chromosomes with unrepaired DNA damage, known as DNA damage tolerance (DDT) mechanisms. As a consequence of DDT, cells can complete chromosomal duplication even in the presence of low levels of DNA damage. DDT mechanisms have been classified into two pathways: translesion DNA synthesis (TLS) and homology-directed repair. In TLS, specialized TLS DNA polymerases utilize damaged DNA as the template and extend the 3′ end of the stalled primer beyond the damage. In homology-directed repair, the stalled primer anneals with the newly synthesized daughter strand and transiently utilizes the undamaged complementary sequence as a template for DNA synthesis. In this article, we summarize and discuss the molecular mechanisms of the DDT pathways of well-analyzed organisms: Escherichia coli, the budding yeast Saccharomyces cerevisiae, and mammalians.

    DOI: 10.1007/978-4-431-55873-6_11

    Scopus

  4. Translesion DNA synthesis and damage tolerance pathways (in DNA Replication, Recombination, and Repair - Molecular Mechanisms and Pathology" edited by Hanaoka and Sugasawa)

    Yuji Masuda, Fumio Hanaoka, Chikahide Masutani( Role: Joint author)

    Springer  2016 

     More details

    Language:English Book type:Scholarly book

  5. DNA polymerase eta (in "Function of Translesion DNA Polymerases in Genome Stability" edited byMariorano and Hoffmann)

    Chikahide Masutani, Rie Kanao, Fumio Hanaoka( Role: Joint author)

    Research Signpost  2015 

     More details

    Language:English Book type:Scholarly book

▼display all

MISC 1

  1. Structure and mechanism of human DNA polymerase eta (vol 465, pg 1044, 2010)

    Christian Biertuempfel, Ye Zhao, Yuji Kondo, Santiago Ramon-Maiques, Mark Gregory, Jae Young Lee, Chikahide Masutani, Alan R. Lehmann, Fumio Hanaoka, Wei Yang

    NATURE   Vol. 476 ( 7360 ) page: 360 - 360   2011.8

     More details

    Language:English   Publisher:NATURE PUBLISHING GROUP  

    DOI: 10.1038/nature10338

    Web of Science

KAKENHI (Grants-in-Aid for Scientific Research) 10

  1. DNA損傷によるDNA複製の阻害と転写の阻害を連携制御するメカニズムの解析

    Grant number:21K19843  2021.7 - 2023.3

    挑戦的研究(萌芽)

    益谷 央豪

      More details

    Authorship:Principal investigator 

    Grant amount:\6500000 ( Direct Cost: \5000000 、 Indirect Cost:\1500000 )

  2. ヒト細胞のDNA損傷トレランスの分子機構と細胞レベルの機能の解析

    Grant number:20H04335  2020.4 - 2023.3

    益谷 央豪

      More details

    Authorship:Principal investigator 

    Grant amount:\17680000 ( Direct Cost: \13600000 、 Indirect Cost:\4080000 )

    細胞は、ゲノム上に未修復のDNA損傷を残したまま、DNA複製を継続・完了する、DNA損傷トレランスと総称される機構を備えている。ヒト細胞における主要な経路は、DNAポリメラーゼ・イータによる損傷乗り越えDNA合成(TLS: translesion synthesis)であり、その制御機構の解析を行う。DNA損傷トレランスは、DNA複製因子PCNAのモノ‐及びポリ‐ユビキチン化によって制御されるが、さらに、PCNAホモ3量体中の複数の分子が同時に修飾を受けるマルチ‐ユビキチン化により活性化される新経路を見出している。本計画では、この新経路に関わる分子を同定しその機能を解析する。

  3. ヒト細胞のDNA損傷トレランスの連携制御メカニズムの解析

    2016.4

    科学研究費補助金  基盤研究(A)

    益谷 央豪

      More details

    Authorship:Principal investigator 

  4. analysis of regulatory mechanisms of DNA damage tolerance pathways in human cells

    Grant number:16H01775  2016.4 - 2020.3

    Masutani Chikahide

      More details

    Authorship:Principal investigator 

    Grant amount:\41340000 ( Direct Cost: \31800000 、 Indirect Cost:\9540000 )

    We demonstrated the relevance of three PCNA interacting peptide motifs of Pol eta for the regulation of translesion DNA synthesis in human cells. We also identified a region, which is different from the previous report, of Pol eta to interact with RAD18. We reported the molecular mechanisms of mono- and poly-ubiquitination reactions of PCNA by usisng reconstituted in vitro systems. Then, molecular mechanism of the deubiquitination reaction by USP7 is also demonstrated. Finally, we constituted the system to analyse the DNA damage tolerance pathway regulated by the multiple modifications of a PCNA homo trimer.

  5. DNA損傷による複製阻害を回避するメカニズムの包括的理解

    2013.4 - 2016.3

    科学研究費補助金  基盤研究(A)

▼display all

 

Teaching Experience (On-campus) 1

  1. Natural Environment and the Human Being

    2011