Updated on 2025/05/11

写真a

 
AMANO, Hiroshi
 
Organization
Institute of Materials and Systems for Sustainability Center for Integrated Research of Future Electronics Innovative Devices Section Professor
Graduate School
Graduate School of Engineering
Undergraduate School
School of Engineering
Title
Professor
Contact information
メールアドレス
External link

Degree 7

  1. 名誉博士号 ( 2017.1   グアテマラパジェ大学 ) 

  2. 名誉博士号 ( 2016.6   モンゴル国立大学 ) 

  3. 名誉博士号 ( 2016.5   フランスオーベルニュ大学ブレイズパスカル大学 ) 

  4. 名誉博士号 ( 2016.4   イタリアパドバ大学 ) 

  5. 名誉博士号 ( 2015.9   スウェーデンリンショーピング大学 ) 

▼display all

Research Interests 10

  1. Light emitting diodelaser diode, High power and high frequency transistor, Solar cells, Nano structure, Crystal growth of compound semiconductors, Semiconductor device physics

  2. Light emitting diodelaser diode

  3. Nano structure

  4. Semiconductor device physics

  5. Crystal growth of compound semiconductors

  6. High power and high frequency transistor

  7. ナノ構造

  8. Solar cells

  9. パワーデバイス 

  10. ミリ波 マイクロ波デバイス

Research Areas 1

  1. Others / Others  / Electrrical and Electronic Materials Engineering

Current Research Project and SDGs 3

  1. 安心・安全で省エネルギー化に貢献する半導体デバイス

  2. Crystal growth and device fabrications of group III nitride semiconductors

  3. 卓越大学院DIIプログラム

Research History 15

  1. Institute of Materials and Systems for Sustainability   Center for Integrated Research of Future Electronics   Director of CIRFE

    2015.10

      More details

    Country:Japan

  2. Nagoya University   Institute of Materials and Systems for Sustainability Center for Integrated Research of Future Electronics Innovative Devices Section   Professor

    2015.10

      More details

  3. 名城大学特別栄誉教授

    2015.7

      More details

    Country:Japan

  4. Meijo University

    2015.7

      More details

  5. 名古屋市立大学 客員教授

    2015.4 - 2016.3

      More details

    Country:Japan

▼display all

Education 3

  1. Nagoya University   Graduate School, Division of Engineering   Department of Electrical and Electornics Engineering

    1985.4 - 1988.3

      More details

    Country: Japan

  2. Nagoya University   Graduate School, Division of Engineering   Department of Electrical and Electronics Enginnering

    1983.4 - 1985.3

      More details

    Country: Japan

  3. Nagoya University   Faculty of Engineering   Department of Electronics

    1979.4 - 1983.3

      More details

    Country: Japan

Professional Memberships 34

  1. 日本学士院   会員

    2022.12

  2. IEEE   メンバー

    2022.1

  3. 中国工程院   外国籍院士

    2019.11

  4. National Academy of Inventors,USA   NAI Fellow

    2017.10

  5. 照明学会   名誉会員

    2016.9

▼display all

Committee Memberships 30

  1. IWUMD-2017   組織委員長  

    2016.10 - 2017.12   

  2. 国立研究会開発法人産業術総合研究所   柱冠フェロー  

    2016.8   

      More details

    Committee type:Government

  3. International Solid State Lighting Alliance   国際諮問委員  

    2016.8   

      More details

    Committee type:Academic society

  4. OPIC2017   組織委員  

    2016.8   

      More details

    Committee type:Academic society

  5. 国際物理オリンピック日本大会   組織委員会副委員長  

    2016.5 - 2023.8   

      More details

    Committee type:Other

▼display all

Awards 36

  1. 卓越教授

    2023.4   名古屋大学   卓越教授

     More details

    Country:Japan

  2. 特別教授

    2019.10   広島大学   特別教授

     More details

    Country:Japan

  3. 応用物理学会化合物半導体エレクトロニクス業績賞(赤﨑勇賞)

    2016.3   応用物理学会   青色及び紫外光デバイスの開発

    天野 浩

     More details

    Award type:Award from Japanese society, conference, symposium, etc.  Country:Japan

  4. 丸八会顕彰

    2015.10   丸八会  

     More details

    Country:Japan

  5. 第10回業績賞及び赤﨑勇賞

    2015.10   日本結晶成長学会   高品質窒化物半導体の創出と青色・紫外光素子の実現

    天野 浩

     More details

    Award type:Award from Japanese society, conference, symposium, etc.  Country:Japan

▼display all

 

Papers 855

  1. Observation of 2D-magnesium-intercalated gallium nitride superlattices. Reviewed

    Wang J, Cai W, Lu W, Lu S, Kano E, Agulto VC, Sarkar B, Watanabe H, Ikarashi N, Iwamoto T, Nakajima M, Honda Y, Amano H

    Nature   Vol. 631 ( 8019 ) page: 67 - 72   2024.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Nature  

    Since the demonstration of p-type gallium nitride (GaN) through doping with substitutional magnesium (Mg) atoms1,2, rapid and comprehensive developments, such as blue light-emitting diodes, have considerably shaped our modern lives and contributed to a more carbon-neutral society3–5. However, the details of the interplay between GaN and Mg have remained largely unknown6–11. Here we observe that Mg-intercalated GaN superlattices can form spontaneously by annealing a metallic Mg film on GaN at atmospheric pressure. To our knowledge, this marks the first instance of a two-dimensional metal intercalated into a bulk semiconductor, with each Mg monolayer being intricately inserted between several monolayers of hexagonal GaN. Characterized as an interstitial intercalation, this process induces substantial uniaxial compressive strain perpendicular to the interstitial layers. Consequently, the GaN layers in the Mg-intercalated GaN superlattices exhibit an exceptional elastic strain exceeding −10% (equivalent to a stress of more than 20 GPa), among the highest recorded for thin-film materials12. The strain alters the electronic band structure and greatly enhances hole transport along the compression direction. Furthermore, the Mg sheets induce a unique periodic transition in GaN polarity, generating polarization-field-induced net charges. These characteristics offer fresh insights into semiconductor doping and conductivity enhancement, as well as into elastic strain engineering of nanomaterials and metal–semiconductor superlattices13.

    DOI: 10.1038/s41586-024-07513-x

    Scopus

    PubMed

  2. 15 GHz GaN Hi-Lo IMPATT Diodes With Pulsed Peak Power of 25.5 W Reviewed

    Kawasaki, S; Kumabe, T; Deki, M; Watanabe, H; Tanaka, A; Honda, Y; Arai, M; Amano, H

    IEEE TRANSACTIONS ON ELECTRON DEVICES   Vol. 71 ( 3 ) page: 1408 - 1415   2024.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:IEEE Transactions on Electron Devices  

    The p+-n-n - n+ structure, known as Hi-Lo structure, was investigated in gallium nitride (GaN) single-drift-region (SDR) impact ionization avalanche transit-time (IMPATT) diodes to improve the output power and efficiency. The 15 GHz GaN Hi-Lo IMPATT diode was designed according to the Scharfetter and Gummel model under realistic conditions, suppressing the tunneling current (<10-4 cm2) and breakdown voltage (< 400 V). Even in such conditions, the calculated efficiency was higher than that of the p+-n abrupt junction structure and the improvement of RF characteristics was expected. The fabricated GaN Hi-Lo IMPATT diodes showed a clear avalanche breakdown and a pulsed microwave oscillation in the frequency range from 15 to 17 GHz. The maximum peak output power of 25.5 W and the efficiency of 2% were achieved, showing the highest values on microwave band GaN IMPATT diodes, and we confirmed that the Hi-Lo structure is effective for the high-power and high-efficiency operation of GaN IMPATT diodes.

    DOI: 10.1109/TED.2023.3345822

    Web of Science

    Scopus

  3. Demonstration of AlGaN-on-AlN p-n Diodes With Dopant-Free Distributed Polarization Doping Reviewed

    Kumabe T., Yoshikawa A., Kawasaki S., Kushimoto M., Honda Y., Arai M., Suda J., Amano H.

    IEEE Transactions on Electron Devices     2024

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:IEEE Transactions on Electron Devices  

    Nearly ideal vertical Al<inline-formula> <tex-math notation="LaTeX">$_{\textit{x}}$</tex-math> </inline-formula>Ga<inline-formula> <tex-math notation="LaTeX">$_{\text{1}-\textit{x}}$</tex-math> </inline-formula>N (<inline-formula> <tex-math notation="LaTeX">$\text{0.7} \leq \textit{x} &lt; \text{1.0}$</tex-math> </inline-formula>) p-n diodes are fabricated on an aluminum nitride (AlN) substrate. Distributed polarization doping (DPD) was employed for both p-type and n-type layers of the p-n junction, instead of conventional impurity doping, to overcome the major bottleneck of AlN-based material: the control of conductivity. Capacitance&#x2013;voltage measurements revealed that the net charge concentration agreed well with the DPD charge concentration expected from the device layer structure. The fabricated devices exhibited a low turn-on voltage of 6.5 V, a low differential specific ON-resistance of 3 M<inline-formula> <tex-math notation="LaTeX">$\Omega$</tex-math> </inline-formula> cm<inline-formula> <tex-math notation="LaTeX">$^{\text{2}}$</tex-math> </inline-formula>, electroluminescence (maximum at 5.1 eV), and an ideality factor of 2 for a wide range of temperatures (room temperature&#x2014;573 K). Moreover, the breakdown electric field was 7.3 MV cm<inline-formula> <tex-math notation="LaTeX">$^{-\text{1}}$</tex-math> </inline-formula>, which was almost twice as high as the reported critical electric field of GaN at the same doping concentration. These results clearly demonstrate the usefulness of DPD in the fabrication of high-performance AlN-based power devices.

    DOI: 10.1109/TED.2024.3367314

    Scopus

  4. Junction Diameter Dependence of Oscillation Frequency of GaN IMPATT Diode Up to 21 GHz Reviewed

    Kawasaki, S; Kumabe, T; Ando, Y; Deki, M; Watanabe, H; Tanaka, A; Honda, Y; Arai, M; Amano, H

    IEEE ELECTRON DEVICE LETTERS   Vol. 44 ( 8 ) page: 1328 - 1331   2023.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:IEEE Electron Device Letters  

    An experimental study on the effects of junction capacitance and current density on the oscillation characteristics of GaN single-drift-region (SDR) impact ionization avalanche transit-time (IMPATT) diodes were carried out using GaN p+-n abrupt junction diodes of various diameters, 200, 150, and 100 μ m , with a depletion layer width of 2 μ m. The fabricated diodes showed a clear avalanche breakdown at 315 V and a pulsed microwave oscillation with a peak output power exceeding 30 dBm. The oscillation frequency depended on junction diameter and current density. It was widely modulated from 8.56 to 21.1 GHz with decreasing junction diameter and increasing current density. The highest oscillation frequency was obtained with a current density of 13.8 kA/cm2 and a junction diameter of 100 μ m. A numerical calculation based on Read-type small-signal theory was carried out and found to well explain the experimental results.

    DOI: 10.1109/LED.2023.3285938

    Web of Science

    Scopus

  5. Reverse Leakage Mechanism of Dislocation-Free GaN Vertical p-n Diodes Reviewed

    Kwon, W; Kawasaki, S; Watanabe, H; Tanaka, A; Honda, Y; Ikeda, H; Iso, K; Amano, H

    IEEE ELECTRON DEVICE LETTERS   Vol. 44 ( 7 ) page: 1172 - 1175   2023.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:IEEE Electron Device Letters  

    The reverse leakage mechanism of threading dislocation (TD)-free gallium nitride (GaN) vertical p-n diode was investigated in various temperature range, and it was compared with that of the p-n diode having a threading dislocation density (TDD) of around 10^6 cm -2. The reverse leakage current was increased markedly by increasing the temperature from 400 K, the dominant mechanism was explained by thermionic and Poole-Frenkel emissions for TD-free and high-TDD p-n diodes, respectively. At high temperatures and electric fields, the leakage current of the high TDD p-n diode showed 2 times higher than the TD-free p-n diode. These results indicate that the performance of vertical GaN devices, especially when employed at high temperatures and electric fields, can be enhanced by removing TDs.

    DOI: 10.1109/LED.2023.3274306

    Web of Science

    Scopus

▼display all

Books 32

  1. Growth of GaN on sapphire via low-temperature deposited buffer layer and realization of p-type gan by MG doping followed by low- energy electron beam irradiation

    Amano H.( Role: Sole author)

    Nobel Lectures In Physics (2011-2015)  2022.2  ( ISBN:9789811245534

     More details

    Language:Japanese

    This is a personal history of one of the Japanese researchers engaged in developing a method for growing GaN on a sapphire substrate, paving the way for the realization of smart television and display systems using blue LEDs. The most important work was done in the mid- to late 80s. The background to the author's work and the process by which the technology enabling the growth of GaN and the realization of p-type GaN was established are reviewed.

    Scopus

  2. 次世代半導体素材GaNの挑戦 : 22世紀の世界を先導する日本の科学技術

    天野 浩( Role: Sole author)

    講談社  2020  ( ISBN:9784065136300

     More details

    Responsible for pages:.   Language:Japanese

    researchmap

  3. 次世代半導体素材GaNの挑戦 : 22世紀の世界を先導する日本の科学技術

    天野 浩 ( Role: Sole author)

    講談社  2020  ( ISBN:9784065136300

     More details

    Language:Japanese

    CiNii Books

  4. 電磁気学ビギナーズ講義

    大野 哲靖, 松村 年郎, 内山 剛, 横水 康伸, 天野 浩( Role: Sole author)

    培風館  2018  ( ISBN:9784563025212

     More details

    Responsible for pages:.   Language:Japanese

    researchmap

  5. 持続可能な未来のための知恵とわざ : ローマクラブメンバーとノーベル賞受賞者の対話

    林 良嗣, 中村 秀規, Weizsäcker Ernst, U. von, c, 赤崎 勇, 小宮山 宏, 天野 浩, 飯尾 歩( Role: Sole author)

    明石書店  2017  ( ISBN:9784750345512

     More details

    Responsible for pages:.   Language:Japanese

    researchmap

▼display all

MISC 13

  1. Crystal engineering by tuning the growth kinetics of GaN 3-D microstructures in SAG-HVPE

    Avit Geoffrey, Zeghouane Mohammed, Andre Yamina, Castelluci Dominique, Gil Evelyne, Bae Si-Young, Amano Hiroshi, Trassoudaine Agnes

    CRYSTENGCOMM   Vol. 20 ( 40 ) page: 6207-6213   2018.10

     More details

    Language:English   Publishing type:Rapid communication, short report, research note, etc. (scientific journal)  

    DOI: 10.1039/c8ce01177j

    researchmap

  2. Reduction of Residual Impurities in Homoepitaxial m-Plane (10(1)over-bar0) GaN by Using N-2 Carrier Gas in Metalorganic Vapor Phase Epitaxy

    Barry Ousmane I, Lekhal Kaddour, Bae Si-Young, Lee Ho-Jun, Pristovsek Markus, Honda Yoshio, Amano Hiroshi

    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS   Vol. 12 ( 8 )   2018.8

     More details

    Language:English   Publishing type:Rapid communication, short report, research note, etc. (scientific journal)  

    DOI: 10.1002/pssr.201800124

    researchmap

  3. Transferrable monolithic multicomponent system for near-ultraviolet optoelectronics

    Chuan Qin, Xumin Gao, Jialei Yuan, Zheng Shi, Yuan Jiang, Yuhuai Liu, Yongjin Wang, Hiroshi Amano

    Applied Physics Express   Vol. 11 ( 5 )   2018.5

     More details

    Language:English   Publishing type:Rapid communication, short report, research note, etc. (scientific journal)   Publisher:Japan Society of Applied Physics  

    A monolithic near-ultraviolet multicomponent system is implemented on a 0.8-mm-diameter suspended membrane by integrating a transmitter, waveguide, and receiver into a single chip. Two identical InGaN/Al0.10Ga0.90N multiple-quantum well (MQW) diodes are fabricated using the same process flow, which separately function as a transmitter and receiver. There is a spectral overlap between the emission and detection spectra of the MQW diodes. Therefore, the receiver can respond to changes in the emission of the transmitter. The multicomponent system is mechanically transferred from silicon, and the wire-bonded transmitter on glass experimentally demonstrates spatial light transmission at 200 Mbps using non-return-to-zero on–off keying modulation.

    DOI: 10.7567/APEX.11.051201

    Scopus

    researchmap

  4. Correlation between dislocations and leakage current of p-n diodes on a free-standing GaN substrate

    Shigeyoshi Usami, Yuto Ando, Atsushi Tanaka, Kentaro Nagamatsu, Manato Deki, Maki Kushimoto, Shugo Nitta, Yoshio Honda, Hiroshi Amano, Yoshihiro Sugawara, Yong-Zhao Yao, Yukari Ishikawa

    APPLIED PHYSICS LETTERS   Vol. 112 ( 18 )   2018.4

     More details

    Language:English   Publishing type:Rapid communication, short report, research note, etc. (scientific journal)   Publisher:AMER INST PHYSICS  

    Dislocations that cause a reverse leakage current in vertical p-n diodes on a GaN free-standing substrate were investigated. Under a high reverse bias, dot-like leakage spots were observed using an emission microscope. Subsequent cathodoluminescence (CL) observations revealed that the leakage spots coincided with part of the CL dark spots, indicating that some types of dislocation cause reverse leakage. When etch pits were formed on the dislocations by KOH etching, three sizes of etch pits were obtained (large, medium, and small). Among these etch pits, only the medium pits coincided with leakage spots. Additionally, transmission electron microscopy observations revealed that pure screw dislocations are present under the leakage spots. The results revealed that lc pure screw dislocations are related to the reverse leakage in vertical p-n diodes. Published by AIP Publishing.

    DOI: 10.1063/1.5024704

    Web of Science

    researchmap

  5. The 2018 GaN power electronics roadmap

    H. Amano, Y. Baines, E. Beam, Matteo Borga, T. Bouchet, Paul R Chalker, M. Charles, Kevin J Chen, Nadim Chowdhury, Rongming Chu, Carlo De Santi, Maria Merlyne De Souza, Stefaan Decoutere, L. Di Cioccio, Bernd Eckardt, Takashi Egawa, P. Fay, Joseph J Freedsman, L. Guido, Oliver Häberlen, Geoff Haynes, Thomas Heckel, Dilini Hemakumara, Peter Houston, Jie Hu, Mengyuan Hua, Qingyun Huang, Alex Huang, Sheng Jiang, H. Kawai, Dan Kinzer, Martin Kuball, Ashwani Kumar, Kean Boon Lee, Xu Li, Denis Marcon, Martin März, R. McCarthy, Gaudenzio Meneghesso, Matteo Meneghini, E. Morvan, A. Nakajima, E. M.S. Narayanan, Stephen Oliver, Tomás Palacios, Daniel Piedra, M. Plissonnier, R. Reddy, Min Sun, Iain Thayne, A. Torres, Nicola Trivellin, V. Unni, Michael J Uren, Marleen Van Hove, David J Wallis, J. Wang, J. Xie, S. Yagi, Shu Yang, C. Youtsey, Ruiyang Yu, Enrico Zanoni, Stefan Zeltner, Yuhao Zhang

    Journal of Physics D: Applied Physics   Vol. 51 ( 16 )   2018.3

     More details

    Language:English   Publishing type:Book review, literature introduction, etc.   Publisher:Institute of Physics Publishing  

    Gallium nitride (GaN) is a compound semiconductor that has tremendous potential to facilitate economic growth in a semiconductor industry that is silicon-based and currently faced with diminishing returns of performance versus cost of investment. At a material level, its high electric field strength and electron mobility have already shown tremendous potential for high frequency communications and photonic applications. Advances in growth on commercially viable large area substrates are now at the point where power conversion applications of GaN are at the cusp of commercialisation. The future for building on the work described here in ways driven by specific challenges emerging from entirely new markets and applications is very exciting. This collection of GaN technology developments is therefore not itself a road map but a valuable collection of global state-of-the-art GaN research that will inform the next phase of the technology as market driven requirements evolve. First generation production devices are igniting large new markets and applications that can only be achieved using the advantages of higher speed, low specific resistivity and low saturation switching transistors. Major investments are being made by industrial companies in a wide variety of markets exploring the use of the technology in new circuit topologies, packaging solutions and system architectures that are required to achieve and optimise the system advantages offered by GaN transistors. It is this momentum that will drive priorities for the next stages of device research gathered here.

    DOI: 10.1088/1361-6463/aaaf9d

    Scopus

    researchmap

▼display all

Presentations 487

  1. A journey full of challenges How a poor university sparked the LED revolution and the continual impact in the future smart society Invited

    Hiroshi Amano

    Nyquist Lecture   2023.9.19  Yale University

     More details

    Event date: 2023.9

    Language:English   Presentation type:Oral presentation (keynote)  

    Venue:Yale University   Country:United States  

  2. 何故、今の日本でスタートアップが必要か Invited

    天野 浩

    ディープテックシリアルイノベーションセンター 開所式  2023.9.11  名大

     More details

    Event date: 2023.9

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:名大   Country:Japan  

  3. 新エレクトロニクスが創る近未来社会 Invited

    天野 浩

    IEICE ICT Pioneers Webinar シリーズ  2023.9.6  電子情報通信学会

     More details

    Event date: 2023.9

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:オンライン   Country:Japan  

  4. 大学が果たすべき役割と TELオーディトリアムへの期待 Invited

    天野 浩

    TElオーディトリアムオープニングイベント  2023.9.5  TEL

     More details

    Event date: 2023.9

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:名大   Country:Japan  

  5. How a poor university sparked the LED revolution and the continual impact in the future smart society Invited

    Hiroshi Amano

    Royal Palm Lecture Series   2023.9.1  National Taiwan University

     More details

    Event date: 2023.9

    Language:English   Presentation type:Oral presentation (keynote)  

    Venue:Taiwan   Country:Taiwan, Province of China  

▼display all

Research Project for Joint Research, Competitive Funding, etc. 32

  1. 有害物質分解システムに向けた高性能紫外線レーザーダイオードの研究

    2016.4 - 2019.3

    J-MOST日中共同研究 

    天野 浩

      More details

    Grant type:Competitive

    AlGaN結晶を用いた紫外線レーザーダイオードの試作

  2. Si基板上のInGaNナノワイヤ太陽電池

    2016.4 - 2018.3

    二国間交流事業(共同研究・セミナー)フランス 

    天野 浩

      More details

    Grant type:Competitive

    Si基板上にGaNナノロッドを成長させ、太陽電池を試作する。

  3. V4(高In組成InGaNの高品質エピタキシャル成長)

    2015.11 - 2018.3

    V4(高In組成InGaNの高品質エピタキシャル成長) 

    天野 浩

      More details

    Grant type:Competitive

  4. 高In組成InGaNの高品質エピタキシャル成長と次世代ディスプレイ・照明及び通信用光源と高効率太陽電池

    2015.4 - 2019.3

    国際科学技術共同研究推進事業(戦略的国際共同研究プログラム:SICORP)V4 

    天野 浩

      More details

    Grant type:Competitive

    加工GaN基板による高In組成InGaN量子ドットの成長

  5. 高性能・高信頼性太陽光発電の発電コスト低減技術開発/革新的新構造太陽電池の研究開発/超高効率・低コストⅢ-Ⅴ化合物太陽電池モジュールの研究開発(窒化物ハイブリッド結晶成)

    2015.4 - 2018.3

    NEDO (高性能・高信頼性太陽光発電の発電コスト低減技術開発) 

    天野 浩

      More details

    Grant type:Competitive

    窒化物半導体窓層他接合太陽電池

▼display all

KAKENHI (Grants-in-Aid for Scientific Research) 24

  1. GaNのIMPATT格子によるコヒーレントハイパワーTHz源

    Grant number:22H00213  2022.4 - 2027.3

    科学研究費助成事業  基盤研究(A)

    天野 浩

      More details

    Authorship:Principal investigator 

    Grant amount:\41340000 ( Direct Cost: \31800000 、 Indirect Cost:\9540000 )

  2. Growth of high-quality bulk GaN substrate by ammonothermal method

    Grant number:19F19752  2019.7 - 2021.3

      More details

    Authorship:Other 

  3. nGaN nanorod-based energy-harvesting/energy-saving devices/systems

    Grant number:18F18347  2018.11 - 2020.3

      More details

    Authorship:Other 

  4. 分極を有する半導体の物理構築と深紫外発光素子への展開

    2013.4 - 2016.3

    科学研究費補助金  特別推進研究

    天野 浩

      More details

    Authorship:Principal investigator 

  5. 圧力印加MOVPEによる高品質InGaN厚膜成長

    2010.4 - 2013.3

    科学研究費補助金  22246004 基盤研究(A)

    天野 浩

      More details

    Authorship:Principal investigator 

▼display all

Industrial property rights 32

  1. 薄膜基板と半導体装置とこれらの製造方法および成膜装置および成膜方法およびGaNテンプレート

    天野 浩、本田善央、光成 正

     More details

    Applicant:国立大学法人 名古屋大学

    Application no:PCT/JP2016/000895  Date applied:2016.2

    Country of applicant:Domestic  

    方向性スパッタリングを用いたSi基板上への半極性面GaNの成長法

  2. III 族窒化物半導体基板の製造方法及びIII 族窒化物半導体基板

    本田善央、天野浩、松本光二、小野俊昭

     More details

    Applicant:株式会社SUMCO

    Application no:特願2015-222503  Date applied:2015.11

    Country of applicant:Domestic  

    クラックを生じさせないためのSi基板上のGaN成長法

  3. 発光ダイオード素子及びその製造方法

    上山智、天野浩、岩谷素顕、赤﨑勇、西村拓哉、寺前文晴、近藤俊行

     More details

    Applicant:学校法人 名城大学

    Application no:2009-080543  Date applied:2009.3

    Patent/Registration no:5330880  Date registered:2013.8 

    Country of applicant:Domestic  

  4. GaN系化合物半導体の成長方法及び成長層付き基板

    天野 浩、上山 智

     More details

    Applicant:名城大学 スタンレー電気株式会社

    Application no:特願2013-012169  Date applied:2009.2

    Patent/Registration no:5570625  Date registered:2014.7 

    Country of applicant:Domestic  

  5. 発光素子及びその製造方法

    上山智、岩谷素顕、天野浩、赤﨑勇、鈴木敦志、北野司、寺前文晴、近藤俊行

     More details

    Applicant:学校法人名城大学

    Application no:2008-283595  Date applied:2008.11

    Patent/Registration no:5306779  Date registered:2013.7 

    Country of applicant:Domestic  

▼display all

 

Teaching Experience (On-campus) 18

  1. 量子理論

    2015

  2. 半導体工学

    2015

  3. 電磁気学I

    2015

  4. 電磁気学I

    2014

  5. 半導体工学

    2014

▼display all

Teaching Experience (Off-campus) 2

  1. 半導体工学

    2010.4 - 2011.3 名城大学)

  2. デジタル電子回路

    2010.4 - 2011.3 名城大学)

 

Social Contribution 13

  1. 浜松・東三河地域イノベーション戦略推進協議会 長期的教育システム研究チーム 顧問

    2016.6

  2. 浜松科学館 名誉館長

    2015.4 - 2017.3

  3. テクノ・フェア2013

    2013.9

     More details

    9月6日テクノ・フェア2013にてパネル展示

  4. 岡崎高校スーパーサイエンススクール 大学研究室体験

    2013.8

     More details

    8/5-8/9 岡崎高校の2名の生徒を研究室で受け入れ、LED、PV、HFETに関する講義とLEDの製造体験を行った

  5. オープンキャンパス2013

    2013.8

     More details

    8月7日に行われたオープンキャンパス2013において、研究室公開を行った。

▼display all

Media Coverage 21

  1. 産業春秋 Newspaper, magazine

    日刊工業新聞  2022.3

     More details

    Author:Other 

  2. パソコン用充電器2300台を名大に寄贈 Newspaper, magazine

    中日新聞  2022.3

     More details

    Author:Other 

  3. 日経SDGsフェスinどまんなか「地球規模での課題解決へ イノベーション多彩に提示」 Newspaper, magazine

    日経新聞  2022.1

     More details

    Author:Other 

  4. 持論「脱炭素時代の半導体に挑戦」 Newspaper, magazine

    日経新聞  2022.1

     More details

    Author:Other 

  5. WAYS”道を拓く” Internet

    朝日インテック  2021.12

▼display all